1
|
Bi C, Yuan B, Zhang Y, Wang M, Tian Y, Li M. Prevalent integration of genomic repetitive and regulatory elements and donor sequences at CRISPR-Cas9-induced breaks. Commun Biol 2025; 8:94. [PMID: 39833279 PMCID: PMC11747631 DOI: 10.1038/s42003-025-07539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
CRISPR-Cas9 genome editing has been extensively applied in both academia and clinical settings, but its genotoxic risks, including large insertions (LgIns), remain poorly studied due to methodological limitations. This study presents the first detailed report of unintended LgIns consistently induced by different Cas9 editing regimes using various types of donors across multiple gene loci. Among these insertions, retrotransposable elements (REs) and host genomic coding and regulatory sequences are prevalent. RE frequencies and 3D genome organization analysis suggest LgIns originate from randomly acquired genomic fragments by DNA repair mechanisms. Additionally, significant unintended full-length and concatemeric double-stranded DNA (dsDNA) donor integrations occur when donor DNA is present. We further demonstrate that phosphorylated dsDNA donors consistently reduce large insertions and deletions by almost two-fold without compromising homology-directed repair (HDR) efficiency. Taken together, our study addresses a ubiquitous and overlooked risk of unintended LgIns in Cas9 editing, contributing valuable insights for the safe use of Cas9 editing tools.
Collapse
Affiliation(s)
- Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Baolei Yuan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yeteng Tian
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
2
|
Halurkar MS, Inoue O, Singh A, Mukherjee R, Ginugu M, Ahn C, Bonatto Paese CL, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-Cre transgene elicits complex developmental and metabolic phenotypes. Nat Commun 2025; 16:770. [PMID: 39824816 PMCID: PMC11742029 DOI: 10.1038/s41467-024-54763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/20/2024] [Indexed: 01/20/2025] Open
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, tissue specific growth defects, and craniofacial abnormalities. Mapping the transgene insertion site reveals insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Archana Singh
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Pioneering Medicines, 140 First St., Suite 302, Cambridge, MA, USA
| | - Meghana Ginugu
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Ahn
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Smirnov A, Nurislamov A, Koncevaya G, Serova I, Kabirova E, Chuyko E, Maltceva E, Savoskin M, Zadorozhny D, Svyatchenko VA, Protopopova EV, Taranov OS, Legostaev SS, Loktev VB, Serov O, Battulin N. Characterizing a lethal CAG-ACE2 transgenic mouse model for SARS-CoV-2 infection using Cas9-enhanced nanopore sequencing. Transgenic Res 2024; 33:453-466. [PMID: 39320390 DOI: 10.1007/s11248-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The SARS-CoV-2 pandemic has underscored the necessity for functional transgenic animal models for testing. Mouse lines with overexpression of the human receptor ACE2 serve as the common animal model to study COVID-19 infection. Overexpression of ACE2 under a strong ubiquitous promoter facilitates convenient and sensitive testing of COVID-19 pathology. We performed pronuclear microinjections using a 5 kb CAG-ACE2 linear transgene construct and identified three founder lines with 140, 72, and 73 copies, respectively. Two of these lines were further analyzed for ACE2 expression profiles and sensitivity to SARS-CoV-2 infection. Both lines expressed ACE2 in all organs analyzed. Embryonic fibroblast cell lines derived from transgenic embryos demonstrated severe cytopathic effects following infection, even at low doses of SARS-CoV-2 (0,1-1.0 TCID50). Infected mice from the two lines began to show COVID-19 clinical signs three days post-infection and succumbed between days 4 and 7. Histological examination of lung tissues from terminally ill mice revealed severe pathological alterations. To further characterize the integration site in one of the lines, we applied nanopore sequencing combined with Cas9 enrichment to examine the internal transgene concatemer structure. Oxford Nanopore sequencing (ONT) is becoming the gold standard for transgene insert characterization, but it is relatively inefficient without targeted region enrichment. We digested genomic DNA with Cas9 and gRNA against the ACE2 transgene to create ends suitable for ONT adapter ligation. ONT data analysis revealed that most of the transgene copies were arranged in a head-to-tail configuration, with palindromic junctions being rare. We also detected occasional plasmid backbone fragments within the concatemer, likely co-purified during transgene gel extraction, which is a common occurrence in pronuclear microinjections.
Collapse
Affiliation(s)
- Alexander Smirnov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Artem Nurislamov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Galina Koncevaya
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Eduard Chuyko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | | | - Maxim Savoskin
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Daniil Zadorozhny
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340
| | - Victor A Svyatchenko
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Elena V Protopopova
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Oleg S Taranov
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Stanislav S Legostaev
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Valery B Loktev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
- State Research Center for Virology and Biotechnology "Vector", Novosibirsk, Koltsovo, Russia, 630559
| | - Oleg Serov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090.
- Novosibirsk State University, Novosibirsk, Russia, 630090.
| |
Collapse
|
4
|
Halurkar MS, Inoue O, Mukherjee R, Paese CLB, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-CreEvdr transgene elicits complex developmental and metabolic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563165. [PMID: 37904917 PMCID: PMC10614962 DOI: 10.1101/2023.10.20.563165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we performed comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibited major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, growth defects, and craniofacial abnormalities. Mapping the transgene insertion site revealed insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of the intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | | | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Samantha A. Brugmann
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
5
|
Biswal AK, Hernandez LRB, Castillo AIR, Debernardi JM, Dhugga KS. An efficient transformation method for genome editing of elite bread wheat cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1135047. [PMID: 37275249 PMCID: PMC10234211 DOI: 10.3389/fpls.2023.1135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
An efficient genetic transformation protocol is necessary to edit genes for trait improvement directly in elite bread wheat cultivars. We used a protein fusion between a wheat growth-regulating factor 4 (GRF4) and its interacting factor (GIF1) to develop a reproducible genetic transformation and regeneration protocol, which we then used to successfully transform elite bread wheat cultivars Baj, Kachu, Morocco, Reedling, RL6077, and Sujata in addition to the experimental cultivar Fielder. Immature embryos were transformed with the vector using particle bombardment method. Transformation frequency increased nearly 60-fold with the GRF4-GIF1-containing vectors as compared to the control vector and ranged from ~5% in the cultivar Kachu to 13% in the cultivar RL6077. We then edited two genes that confer resistance against leaf rust and powdery mildew directly in the aforementioned elite cultivars. A wheat promoter, TaU3 or TaU6, to drive the expression of guide RNA was effective in gene editing whereas the OsU3 promoter failed to generate any edits. Editing efficiency was nearly perfect with the wheat promoters. Our protocol has made it possible to edit genes directly in elite wheat cultivars and would be useful for gene editing in other wheat varieties, which have been recalcitrant to transformation thus far.
Collapse
Affiliation(s)
- Akshaya K. Biswal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Ana I. R. Castillo
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Juan M. Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
6
|
Clappier C, Böttner D, Heinzelmann D, Stadermann A, Schulz P, Schmidt M, Lindner B. Deciphering integration loci of CHO manufacturing cell lines using long read nanopore sequencing. N Biotechnol 2023; 75:31-39. [PMID: 36925062 DOI: 10.1016/j.nbt.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Despite advances in genetic characterization of Chinese hamster ovary (CHO) cell lines regarding identification of integration sites using next generation sequencing, e.g. targeted locus amplification sequencing (TLA-seq), the concatemer structure of the integrated vectors remains elusive. Here, the entire integration locus of two CHO manufacturing cell lines was reconstructed combining CRISPR/Cas9 target enrichment, nanopore sequencing and the Canu de novo assembly pipeline. An IgG producing CHO cell line integrated 3 vector copies, which were near full-length and contained all relevant vector elements such as transgenes and their promoters on each of the vector copies. In contrast, a second CHO cell line producing a bivalent bispecific antibody integrated 7 highly fragmented vector copies in different orientations leading to head-to-head and tail-to-tail fusions. The size of the vector fragments ranged from 3.0 to 11.4 kbp each carrying 1-3 transgenes. The breakpoints of the genome-vector and vector-vector junctions were validated using Sanger sequencing and Southern blotting. A comparison to TLA-seq data confirmed the genomic breakpoints, but most of the breakpoints of the vector-vector fusions were missed by TLA-seq. For the first time, the complete transgene locus of CHO manufacturing cell lines could be deciphered. Strikingly, the application of the nanopore long-read sequencing technology led to novel insights into the complexity of genomic transgene integrations of CHO manufacturing cell lines generated via random integration.
Collapse
Affiliation(s)
- Christian Clappier
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Dennis Böttner
- Research, Cardiometabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Daniel Heinzelmann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany.
| |
Collapse
|
7
|
Erbs V, Lorentz R, Eisenman B, Schaeffer L, Luppi L, Lindner L, Hérault Y, Pavlovic G, Wattenhofer-Donzé M, Birling MC. Increased On-Target Rate and Risk of Concatemerization after CRISPR-Enhanced Targeting in ES Cells. Genes (Basel) 2023; 14:genes14020401. [PMID: 36833328 PMCID: PMC9957269 DOI: 10.3390/genes14020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The French mouse clinic (Institut Clinique de la Souris; ICS) has produced more than 2000 targeting vectors for 'à la carte' mutagenesis in C57BL/6N mice. Although most of the vectors were used successfully for homologous recombination in murine embryonic stem cells (ESCs), a few have failed to target a specific locus after several attempts. We show here that co-electroporation of a CRISPR plasmid with the same targeting construct as the one that failed previously allows the systematic achievement of positive clones. A careful validation of these clones is, however, necessary as a significant number of clones (but not all) show a concatemerization of the targeting plasmid at the locus. A detailed Southern blot analysis permitted characterization of the nature of these events as standard long-range 5' and 3' PCRs were not able to distinguish between correct and incorrect alleles. We show that a simple and inexpensive PCR performed prior to ESC amplification allows detection and elimination of those clones with concatemers. Finally, although we only tested murine ESCs, our results highlight the risk of mis-validation of any genetically modified cell line (such as established lines, induced pluripotent stem cells or those used for ex vivo gene therapy) that combines the use of CRISPR/Cas9 and a circular double-stranded donor. We strongly advise the CRISPR community to perform a Southern blot with internal probes when using CRISPR to enhance homologous recombination in any cell type, including fertilized oocytes.
Collapse
Affiliation(s)
- Valérie Erbs
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Romain Lorentz
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Benjamin Eisenman
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Laurence Schaeffer
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Laurence Luppi
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Loic Lindner
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Yann Hérault
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
- CNRS, INSERM, Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Guillaume Pavlovic
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marie Wattenhofer-Donzé
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marie-Christine Birling
- CNRS, INSERM, Université de Strasbourg, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
- Correspondence:
| |
Collapse
|
8
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
9
|
Battulin N, Korablev A, Ryzhkova A, Smirnov A, Kabirova E, Khabarova A, Lagunov T, Serova I, Serov O. The human EF1a promoter does not provide expression of the transgene in mice. Transgenic Res 2022; 31:525-535. [PMID: 35960480 PMCID: PMC9372930 DOI: 10.1007/s11248-022-00319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.
Collapse
Affiliation(s)
- Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090. .,Institute of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia, 630090.
| | - Alexey Korablev
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anastasia Ryzhkova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Evelyn Kabirova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anna Khabarova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Timofey Lagunov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Irina Serova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Oleg Serov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| |
Collapse
|