1
|
Sen BC, Mavi PS, Irazoki O, Datta S, Kaiser S, Cava F, Flärdh K. A dispensable SepIVA orthologue in Streptomyces venezuelae is associated with polar growth and not cell division. BMC Microbiol 2024; 24:481. [PMID: 39558276 PMCID: PMC11571769 DOI: 10.1186/s12866-024-03625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND SepIVA has been reported to be an essential septation factor in Mycolicibacterium smegmatis and Mycobacterium tuberculosis. It is a coiled-coil protein with similarity to DivIVA, a protein necessary for polar growth in members of the phylum Actinomycetota. Orthologues of SepIVA are broadly distributed among actinomycetes, including in Streptomyces spp. RESULTS To clarify the role of SepIVA and its potential involvement in cell division in streptomycetes, we generated sepIVA deletion mutants in Streptomyces venezuelae and found that sepIVA is dispensable for growth, cell division and sporulation. Further, mNeonGreen-SepIVA fusion protein did not localize at division septa, and we found no evidence of involvement of SepIVA in cell division. Instead, mNeonGreen-SepIVA was accumulated at the tips of growing vegetative hyphae in ways reminiscent of the apical localization of polarisome components like DivIVA. Bacterial two-hybrid system analyses revealed an interaction between SepIVA and DivIVA. The results indicate that SepIVA is associated with polar growth. However, no phenotypic effects of sepIVA deletion could be detected, and no evidence was observed of redundancy with the other DivIVA-like coiled-coil proteins Scy and FilP that are also associated with apical growth in streptomycetes. CONCLUSIONS We conclude that S. venezuelae SepIVA, in contrast to the situation in mycobacteria, is dispensable for growth and viability. The results suggest that it is associated with polar growth rather than septum formation.
Collapse
Affiliation(s)
- Beer Chakra Sen
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | | | - Oihane Irazoki
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Susmita Datta
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Sebastian Kaiser
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Klas Flärdh
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden.
| |
Collapse
|
2
|
Trouve J, Zapun A, Bellard L, Juillot D, Pelletier A, Freton C, Baudoin M, Carballido-Lopez R, Campo N, Wong YS, Grangeasse C, Morlot C. DivIVA controls the dynamics of septum splitting and cell elongation in Streptococcus pneumoniae. mBio 2024; 15:e0131124. [PMID: 39287436 PMCID: PMC11481917 DOI: 10.1128/mbio.01311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Bacterial shape and division rely on the dynamics of cell wall assembly, which involves regulated synthesis and cleavage of the peptidoglycan. In ovococci, these processes are coordinated within an annular mid-cell region with nanometric dimensions. More precisely, the cross-wall synthesized by the divisome is split to generate a lateral wall, whose expansion is insured by the insertion of the so-called peripheral peptidoglycan by the elongasome. Septum cleavage and peripheral peptidoglycan synthesis are, thus, crucial remodeling events for ovococcal cell division and elongation. The structural DivIVA protein has long been known as a major regulator of these processes, but its mode of action remains unknown. Here, we integrate click chemistry-based peptidoglycan labeling, direct stochastic optical reconstruction microscopy, and in silico modeling, as well as epifluorescence and stimulated emission depletion microscopy to investigate the role of DivIVA in Streptococcus pneumoniae cell morphogenesis. Our work reveals two distinct phases of peptidoglycan remodeling during the cell cycle that are differentially controlled by DivIVA. In particular, we show that DivIVA ensures homogeneous septum cleavage and peripheral peptidoglycan synthesis around the division site and their maintenance throughout the cell cycle. Our data additionally suggest that DivIVA impacts the contribution of the elongasome and class A penicillin-binding proteins to cell elongation. We also report the position of DivIVA on either side of the septum, consistent with its known affinity for negatively curved membranes. Finally, we take the opportunity provided by these new observations to propose hypotheses for the mechanism of action of this key morphogenetic protein.IMPORTANCEThis study sheds light on fundamental processes governing bacterial growth and division, using integrated click chemistry, advanced microscopy, and computational modeling approaches. It addresses cell wall synthesis mechanisms in the opportunistic human pathogen Streptococcus pneumoniae, responsible for a range of illnesses (otitis, pneumonia, meningitis, septicemia) and for one million deaths every year worldwide. This bacterium belongs to the morphological group of ovococci, which includes many streptococcal and enterococcal pathogens. In this study, we have dissected the function of DivIVA, which is a structural protein involved in cell division, morphogenesis, and chromosome partitioning in Gram-positive bacteria. This work unveils the role of DivIVA in the orchestration of cell division and elongation along the pneumococcal cell cycle. It not only enhances our understanding of how ovoid bacteria proliferate but also offers the opportunity to consider how DivIVA might serve as a scaffold and sensor for particular membrane regions, thereby participating in various cell cycle processes.
Collapse
Affiliation(s)
| | - André Zapun
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Laure Bellard
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Dimitri Juillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Anais Pelletier
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | - Celine Freton
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | | | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | - Cecile Morlot
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
3
|
Pöhl S, Giacomelli G, Meyer FM, Kleeberg V, Cohen EJ, Biboy J, Rosum J, Glatter T, Vollmer W, van Teeseling MCF, Heider J, Bramkamp M, Thanbichler M. An outer membrane porin-lipoprotein complex modulates elongasome movement to establish cell curvature in Rhodospirillum rubrum. Nat Commun 2024; 15:7616. [PMID: 39223154 PMCID: PMC11369160 DOI: 10.1038/s41467-024-51790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, Germany
| | | | - Fabian M Meyer
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Volker Kleeberg
- Institut für Biologie II, University of Freiburg, Freiburg, Germany
- Pädagogische Forschungsstelle Kassel, Kassel, Germany
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Johann Heider
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Marc Bramkamp
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
4
|
Meyer FM, Bramkamp M. Cell wall synthesizing complexes in Mycobacteriales. Curr Opin Microbiol 2024; 79:102478. [PMID: 38653035 DOI: 10.1016/j.mib.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fabian M Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
5
|
Meyer FM, Repnik U, Karnaukhova E, Schubert K, Bramkamp M. Effects of benzothiazinone and ethambutol on the integrity of the corynebacterial cell envelope. Cell Surf 2023; 10:100116. [PMID: 38044953 PMCID: PMC10689261 DOI: 10.1016/j.tcsw.2023.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The mycomembrane (MM) is a mycolic acid layer covering the surface of Mycobacteria and related species. This group includes important pathogens such as Mycobacterium tuberculosis, Corynebacterium diphtheriae, but also the biotechnologically important strain Corynebacterium glutamicum. Biosynthesis of the MM is an attractive target for antibiotic intervention. The first line anti-tuberculosis drug ethambutol (EMB) and the new drug candidate, benzothiazinone 043 (BTZ) interfere with the synthesis of the arabinogalactan (AG), which is a structural scaffold for covalently attached mycolic acids that form the inner leaflet of the MM. We previously showed that C. glutamicum cells treated with a sublethal concentration of EMB lose the integrity of the MM. In this study we examined the effects of BTZ on the cell envelope. Our work shows that BTZ efficiently blocks the apical growth machinery, however effects in combinatorial treatment with β-lactam antibiotics are only additive, not synergistic. Transmission electron microscopy (TEM) analysis revealed a distinct middle layer in the septum of control cells considered to be the inner leaflet of the MM covalently attached to the AG. This layer was not detectable in the septa of BTZ or EMB treated cells. In addition, we observed that EMB treated cells have a thicker and less electron dense peptidoglycan (PG). While EMB and BTZ both effectively block elongation growth, BTZ also strongly reduces septal cell wall synthesis, slowing down growth effectively. This renders BTZ treated cells likely more tolerant to antibiotics that act on growing bacteria.
Collapse
Affiliation(s)
- Fabian M. Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Urska Repnik
- Central Microscopy Facility, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ekaterina Karnaukhova
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Karin Schubert
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
- Central Microscopy Facility, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Sutton JAF, Cooke M, Tinajero-Trejo M, Wacnik K, Salamaga B, Portman-Ross C, Lund VA, Hobbs JK, Foster SJ. The roles of GpsB and DivIVA in Staphylococcus aureus growth and division. Front Microbiol 2023; 14:1241249. [PMID: 37711690 PMCID: PMC10498921 DOI: 10.3389/fmicb.2023.1241249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
The spheroid bacterium Staphylococcus aureus is often used as a model of morphogenesis due to its apparently simple cell cycle. S. aureus has many cell division proteins that are conserved across bacteria alluding to common functions. However, despite intensive study, we still do not know the roles of many of these components. Here, we have examined the functions of the paralogues DivIVA and GpsB in the S. aureus cell cycle. Cells lacking gpsB display a more spherical phenotype than the wild-type cells, which is associated with a decrease in peripheral cell wall peptidoglycan synthesis. This correlates with increased localization of penicillin-binding proteins at the developing septum, notably PBPs 2 and 3. Our results highlight the role of GpsB as an apparent regulator of cell morphogenesis in S. aureus.
Collapse
Affiliation(s)
- Joshua A. F. Sutton
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Mark Cooke
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mariana Tinajero-Trejo
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Wacnik
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Bartłomiej Salamaga
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Callum Portman-Ross
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Victoria A. Lund
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Hołówka J, Łebkowski T, Feddersen H, Giacomelli G, Drużka K, Makowski Ł, Trojanowski D, Broda N, Bramkamp M, Zakrzewska-Czerwińska J. Mycobacterial IHF is a highly dynamic nucleoid-associated protein that assists HupB in organizing chromatin. Front Microbiol 2023; 14:1146406. [PMID: 36960278 PMCID: PMC10028186 DOI: 10.3389/fmicb.2023.1146406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) crucially contribute to organizing bacterial chromatin and regulating gene expression. Among the most highly expressed NAPs are the HU and integration host factor (IHF) proteins, whose functional homologues, HupB and mycobacterial integration host factor (mIHF), are found in mycobacteria. Despite their importance for the pathogenicity and/or survival of tubercle bacilli, the role of these proteins in mycobacterial chromosome organization remains unknown. Here, we used various approaches, including super-resolution microscopy, to perform a comprehensive analysis of the roles of HupB and mIHF in chromosome organization. We report that HupB is a structural agent that maintains chromosome integrity on a local scale, and that the lack of this protein alters chromosome morphology. In contrast, mIHF is a highly dynamic protein that binds DNA only transiently, exhibits susceptibility to the chromosomal DNA topology changes and whose depletion leads to the growth arrest of tubercle bacilli. Additionally, we have shown that depletion of Mycobacterium smegmatis integration host factor (msIHF) leads to chromosome shrinkage and replication inhibition.
Collapse
Affiliation(s)
- Joanna Hołówka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Joanna Hołówka,
| | - Tomasz Łebkowski
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Helge Feddersen
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Karolina Drużka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Łukasz Makowski
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Damian Trojanowski
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Natalia Broda
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | | |
Collapse
|
8
|
Holtrup S, Greger M, Mayer B, Specht M, Waidner B. Insights Into the Helical Shape Complex of Helicobacter pylori. Front Microbiol 2022; 13:929194. [PMID: 36090072 PMCID: PMC9448923 DOI: 10.3389/fmicb.2022.929194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
One important factor that promotes the colonization of the upper digestive system of the human pathogen Helicobacter pylori is its helical cell shape. The bacteria cell shape is predominantly defined by its peptidoglycan cell wall. In rod-shaped species, PG synthesis is mediated by two dynamic molecular machines that facilitate growth along the perpendicular axis and the septum, called the elongasome and the divisome, respectively. Furthermore, many bacteria evolved additional mechanisms to locally change PG synthesis patterns to generate diverse cell shapes. Recent work characterizing cell shape mutants of Helicobacter pylori revealed a novel mechanism for the generation of a twisted helix from a rod, including PG-modifying enzymes as well as additional proteins such as the bactofilin homolog CcmA or the membrane proteins Csd5 and Csd7. In this study, we investigate the localization and dynamics of CcmA and Csd7 using live-cell imaging. We also address the question of how these change in the presence or absence of the putative interaction partners.
Collapse
Affiliation(s)
- Sven Holtrup
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Biochemistry and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Maximilian Greger
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Biochemistry and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Benjamin Mayer
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Biochemistry and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Mara Specht
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | - Barbara Waidner
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
- Department of Biochemistry and Chemistry, Philipps University of Marburg, Marburg, Germany
- *Correspondence: Barbara Waidner,
| |
Collapse
|
9
|
Localized Production of Cell Wall Precursors May Be Critical for Regulating the Mycobacterial Cell Wall. J Bacteriol 2022; 204:e0012522. [PMID: 35543536 DOI: 10.1128/jb.00125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paper "Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a nonredundant role for RodA in mycobacteria" by Melzer et al. (E. S. Melzer, T. Kado, A. Garcia-Heredia, K. R. Gupta, et al., J Bacteriol 204:e00540-21, 2022, https://doi.org/10.1128/JB.00540-21) presents several new observations about the localization and function of cell wall enzymes in Mycobacterium smegmatis and their responses to stress. This work illustrates some important aspects of cell wall physiology in mycobacteria and also points to a new model for how peptidoglycan synthesis may be organized in pole-growing bacteria.
Collapse
|