1
|
Xiong S, Jin J, Zhao X, Zhao Y, He Z, Guo H, Gong C, Yu J, Guo L, Liang T. Cell Cycle-Based Molecular Features via Synthetic Lethality and Non-Coding RNA Interactions in Cancer. Genes (Basel) 2025; 16:310. [PMID: 40149461 PMCID: PMC11941865 DOI: 10.3390/genes16030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The cell cycle, a critical and intricate biological process, comprises various phases, and its dysregulation plays a pivotal role in tumorigenesis and metastasis. The exploration of cell cycle-based molecular subtypes across pan-cancers, along with the application of synthetic lethality concepts, holds promise for advancing cancer therapies. METHODS A pan-cancer analysis was conducted to assess the cell cycle serves as a reliable signature for classifying molecular subtypes and to understand the potential clinical application of genes as potential drug targets based on synthetic lethality. RESULTS Molecular subtypes derived from cell cycle features in certain cancers, particularly kidney-related malignancies, exhibited distinct immune characteristics. Synthetic lethal interactions within the cell cycle pathway were common, with significant genetic interactions further identifying potential drug targets through the exploitation of genetic relationships with key driver genes. Additionally, miRNAs and lncRNAs may influence the cell cycle through miRNA:mRNA interactions and ceRNA networks, thereby enriching the genetic interaction landscape. CONCLUSIONS These findings suggest that the cell cycle pathway could serve as a promising molecular subtype signature to enhance cancer prognostication and offer potential targets for anticancer drug development through synthetic lethality.
Collapse
Affiliation(s)
- Shizheng Xiong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiaming Jin
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Xinmiao Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Yang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Zhiheng He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Chengjun Gong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
2
|
Sadeghi M, Bahrami A, Hasankhani A, Kioumarsi H, Nouralizadeh R, Abdulkareem SA, Ghafouri F, Barkema HW. Correction: Sadeghi et al. lncRNA-miRNA-mRNA ceRNA Network Involved in Sheep Prolificacy: An Integrated Approach. Genes 2022, 13, 1295. Genes (Basel) 2025; 16:299. [PMID: 40096094 PMCID: PMC11913319 DOI: 10.3390/genes16030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Environmental Health, Zahedan University of Medical Sciences, Zahedan 98, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran
| | - Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran
| | - Hamed Kioumarsi
- Department of Animal Science Research, Gilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht 43, Iran
| | - Reza Nouralizadeh
- Department of Food and Drug Control, Faculty of Pharmacy, Jundishapour University of Medical Sciences, Ahvaz 63, Iran
| | - Sarah Ali Abdulkareem
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad 10011, Iraq
| | - Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
3
|
Chen Y, Liang R, Zheng X, Fang D, Lu WW, Chen Y. Identification of ZNF652 as a Diagnostic and Therapeutic Target in Osteoarthritis Using Machine Learning. J Inflamm Res 2024; 17:10141-10161. [PMID: 39649418 PMCID: PMC11624598 DOI: 10.2147/jir.s488841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Osteoarthritis (OA) is the most common degenerative joint disease. However, its etiology remains largely unknown. Zinc Finger Protein 652 (ZNF652) is a transcription factor implicated in various biological processes. Nevertheless, its role in OA has not been elucidated. Methods The search term "osteoarthritis" was utilized to procure transcriptome data relating to OA patients and healthy people from the Gene Expression Omnibus (GEO) database. Then a screening process was initiated to identify differentially expressed genes (DEGs). The DEGs were discerned using three distinct machine learning methods. The accuracy of these DEGs in diagnosing OA was evaluated using the Receiver Operating Characteristic (ROC) Curve. A competitive endogenous RNA (ceRNA) visualization network was established to delve into potential regulatory targets. The ZNF652 expression was confirmed in the cartilage of OA rats using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB) and analyzed using an independent t-test. Results ZNF652 was identified as a DEG and exhibited the highest diagnostic value for OA according to the ROC analysis. The GO and KEGG enrichment analyses suggest that ZNF652 plays a vital role in OA development through processes including nitric oxide anabolism, macrophage proliferation, immune response, and the PI3K/Akt and the MAPK signaling pathways. The increased expression of ZNF652 in OA was validated in qRT-PCR (1.193 ± 0.005 vs 1.000 ± 0.005, p < 0.001) and WB (0.981 ± 0.055 vs 0.856 ± 0.026, p = 0.012) analysis. Conclusion ZNF652 was found to be related to OA pathogenesis and can potentially serve as a diagnostic and therapeutic target of OA. The underlying mechanism is that ZNF652 was related to nitric oxide anabolism, macrophage proliferation, various signaling pathways, and immune cells and their functions in OA. Nevertheless, the findings need to be confirmed in clinical trials and the molecular mechanism requires further study.
Collapse
Affiliation(s)
- Yeping Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Rongyuan Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xifan Zheng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Dalang Fang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Youjiang Medical College of Nationalities, Baise, Guangxi, People’s Republic of China
| | - William W Lu
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
4
|
Wang L, Shen YM, Chu X, Peng Q, Cao ZY, Cao H, Jia HY, Zhu BF, Zhang Y. Molecular Investigation and Preliminary Validation of Candidate Genes Associated with Neurological Damage in Heat Stroke. Mol Neurobiol 2024; 61:6312-6327. [PMID: 38296899 DOI: 10.1007/s12035-024-03968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Heat stroke (HS) is a severe medical condition characterized by a systemic inflammatory response that may precipitate multi-organ dysfunction, with a particular predilection for inducing profound central nervous system impairments. We aim to employ bioinformatics techniques for the retrieval and analysis of genes associated with heat stroke-induced neurological damage. We performed a comprehensive analysis of the GSE64778 dataset from the Sequence Read Archive, resulting in the identification of 1178 significantly differentially expressed genes (DEGs). We retrieved 2914 genes associated with heat stroke from the GeneCards database and 2377 genes associated with heat stroke from the Comparative Toxicogenomics Database (CTD). The intersection of the top 300 DEGs in the GSE64778 dataset intersected with the search results of GeneCards and CTD, yielding 25 final candidates for DEGs associated with heat stroke. Gene Ontology functional annotation results indicated that the target genes were mainly involved in apoptosis, stress response, and negative regulation of cellular processes and function in processes such as protein dimerization and protein binding. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed a predominant enrichment of candidate target genes within the PI3K-AKT signaling pathway. Subsequent protein-protein interaction network analysis highlighted HSP90aa1 as a central gene, indicating its pivotal role by possessing the highest number of edges among the genes enriched in the PI3K-AKT signaling pathway. Quantitative reverse transcription-polymerase chain reaction analysis performed on blood samples from patients validated the expression of Hsp90aa1 in individuals exhibiting early neurological damage in HS, consistent with the findings from the mRNA bioinformatics analysis. Additionally, the bioinformatics analysis of the upstream microRNAs (miRNAs) regulating HSP90aa1 and the target miRNAs associated with candidate long non-coding RNAs (lncRNAs) identified three lncRNAs, eight miRNAs, and one mRNA in the regulatory network. The DIANA Tools database and algorithms were employed for pathway enrichment and correlation analysis, revealing a significant association between LOC102547734 and MIR-206-3p, with the latter being identified as a target binding site Moreover, the analysis unveiled a correlation between MIR-206-3p and HSP90aa1, implicating the latter as a potential target binding site within the regulatory network.
Collapse
Affiliation(s)
- Lei Wang
- Department of Emergency Center, Second Affiliated Hospital of Nantong University, No. 6 North, Child Lane Road, Nantong, China
| | - Yi-Ming Shen
- Department of Emergency Center, Second Affiliated Hospital of Nantong University, No. 6 North, Child Lane Road, Nantong, China
| | - Xin Chu
- Department of Emergency Center, Second Affiliated Hospital of Nantong University, No. 6 North, Child Lane Road, Nantong, China
| | - Qiang Peng
- Department of Emergency Center, Second Affiliated Hospital of Nantong University, No. 6 North, Child Lane Road, Nantong, China
| | - Zhi-Yong Cao
- Department of Neurology, Second Affiliated Hospital of Nantong University, No. 6, North Child Lane Road, Nantong, China
| | - Hui Cao
- Department of Rehabilitation, Second Affiliated Hospital of Nantong University, No. 6, North Child Lane Road, Nantong, China
| | - Han-Yu Jia
- Research and Education Sector, Second Affiliated Hospital of Nantong University, No. 6, North Child Lane Road, Nantong, China
| | - Bao-Feng Zhu
- Department of Emergency Center, Second Affiliated Hospital of Nantong University, No. 6 North, Child Lane Road, Nantong, China.
| | - Yi Zhang
- Research and Education Sector, Second Affiliated Hospital of Nantong University, No. 6, North Child Lane Road, Nantong, China.
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, No. 6, North Child Lane Road, Nantong, China.
| |
Collapse
|
5
|
Qiu Y, Fan Y, Huang G, Liu J. N6-methyladenosine demethylase ALKBH5 homologous protein protects against cerebral I/R injury though suppressing SNHG3-mediated neural PANoptosis: Involvement of m6A-related macromolecules in the diseases of nervous system. Int J Biol Macromol 2024; 274:133815. [PMID: 38996894 DOI: 10.1016/j.ijbiomac.2024.133815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In order to address this gap in knowledge, the present study utilized both in vivo and in vitro models to investigate the role of the m6A demethylase ALKBH5 in protecting against cerebral I/R injury by inhibiting PANoptosis (Pytoptosis, Ppoptosis, and Necroptosis) in an m6A-dependent manner. They observed that ALKBH5, the predominant m6A demethylase, was downregulated in these models, while SNHG3 and PANoptosis-related proteins (ZBP1, AIM2, Cappase-3, Caspase-8, cleaved Caspase-1, GSDMD-N, and p-MLKL) were elevated. Additionally, both ALKBH5 overexpression and SNHG3-deficiency were found to ameliorate PANoptosis and injury induced by OGD/reperfusion and OGD/RX in both mice tissues and astrocyte cells. Further experiments demonstrated that ALKBH5 induced m6A-demethylation in SNHG3, leading to its degradation. Low expression of SNHG3, on the other hand, prevented the formation of the SNHG3-ELAVL1-ZBP1/AIM2 complex, which in turn destabilized ZBP1 and AIM2 mRNA, resulting in the downregulation of these PANoptosis-related genes. Ultimately, the rescue experiments provided evidence that ALKBH5 protected against PANoptosis in cerebral I/R injury models through the inhibition of SNHG3.This study sheds light on the intricate molecular mechanisms involved in the pathogenesis of cerebral I/R injury and highlights the potential of m6A-related genes as therapeutic targets in this condition.
Collapse
Affiliation(s)
- Yuda Qiu
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen 518033, Guangdong, China
| | - Yafei Fan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen 518033, Guangdong, China
| | - Gang Huang
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen 518033, Guangdong, China
| | - Jianfeng Liu
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen 518033, Guangdong, China.
| |
Collapse
|
6
|
Ghafouri F, Dehghanian Reyhan V, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Analysis of Transcriptome Profiles and lncRNA-miRNA-mRNA Competing Endogenous RNA Regulatory Network to Identify Biological Functional Effects of Genes and Pathways Associated with Johne's Disease in Dairy Cattle. Noncoding RNA 2024; 10:38. [PMID: 39051372 PMCID: PMC11270299 DOI: 10.3390/ncrna10040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Paratuberculosis or Johne's disease (JD), a chronic granulomatous gastroenteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes huge economic losses and reduces animal welfare in dairy cattle herds worldwide. At present, molecular mechanisms and biological functions involved in immune responses to MAP infection of dairy cattle are not clearly understood. Our purpose was to integrate transcriptomic profiles and competing endogenous RNA (ceRNA) network analyses to identify key messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of peripheral blood mononuclear cells (PBMCs) for MAP infection in dairy cattle. In total, 28 lncRNAs, 42 miRNAs, and 370 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In this regard, we identified 21 hub genes (CCL20, CCL5, CD40, CSF2, CXCL8, EIF2AK2, FOS, IL10, IL17A, IL1A, IL1B, IRF1, MX2, NFKB1, NFKBIA, PTGS2, SOCS3, TLR4, TNF, TNFAIP3, and VCAM1) involved in MAP infection. Furthermore, eight candidate subnets with eight lncRNAs, 29 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 510, 22, and 11 significantly enriched GO terms related to MAP infection in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways related to MAP infection that were enriched included the immune system process, defense response, response to cytokine, leukocyte migration, regulation of T cell activation, defense response to bacterium, NOD-like receptor, B cell receptor, TNF, NF-kappa B, IL-17, and T cell receptor signaling pathways. Contributions of transcriptome profiles from MAP-positive and MAP-negative sample groups plus a ceRNA regulatory network underlying phenotypic differences in the intensity of pathogenicity of JD provided novel insights into molecular mechanisms associated with immune system responses to MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Vahid Dehghanian Reyhan
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
| |
Collapse
|
7
|
Yingping W, Lizhi L, Haiying L, Li C, Tiantian G, Xiaoyu Z, Yingying Y, Jiahui L. The effect of LINC9137 targeting miR-140-3p-NKAIN3 signal axis on the development of goose testis sertoli cells. Poult Sci 2024; 103:103724. [PMID: 38701630 PMCID: PMC11087709 DOI: 10.1016/j.psj.2024.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
Sertoli cells (SC) are a type of important cells in the testes, which can provide transport proteins, regulatory proteins, growth factors, and other cytokines for the spermatogenic process. They participate in the regulation of the maturation and differentiation of spermatogenic cells and play an important supporting role in the migration, proliferation, and differentiation of germ cells at all levels in the testes. Previous studies found differential expression of LINC9137, miR-140-3p, and Sodium/Potassium Transporting ATPase Interacting 3 (NKAIN3) genesin high and low sperm motility goose testicular tissues. This study investigated the effects of the LINC9137-miR-140-3p-NKAIN3 signal axis on the proliferation and apoptosis of goose testicular sertoli cells at the cellular level, respectively. The results showed that through acridine orange staining, oil red O staining, Alkaline phosphatase (AKP) staining, and RT qPCR assay, it was comprehensively identified that the cultured testicular sertoli cells were purified in vitro. Through the dual luciferase activity detection test, it was found that LINC9137 has a targeted binding site with miR-140-3p and NKAIN3. In addition, this study found that overexpression of miR-140-3p significantly inhibited the expression of LINC9137 and NKAIN3 in sertoli cells, and their expression was significantly increased when miR-140-3p was interfered with. By measuring cell proliferation activity and apoptosis related gene expression, it was found that overexpression of LINC9137 decreased cell proliferation activity (P > 0.05), while the expression level of apoptosis factor Bcl2 Associated X Protein (Bax)/B-cell lymphoma-2 (Bcl2) increased (P > 0.05). On the contrary, when interfering with LINC9137, the cell proliferation activity of sertoli cells was significantly increased (P < 0.01), and the expression level of apoptosis factor Bax/Bcl2 was significantly reduced (P < 0.05); The effect of miR-140-3p on the proliferation and apoptosis of sertoli cells is opposite to that of LINC9137. Meanwhile, this study co transfected overexpressed LINC9137 and miR-140-3p plasmids into sertoli cells, and found that the effect of LINC9137 overexpression on supporting cell proliferation was weakened by miR-140-3p. This study elucidates the role and function of the LINC9137 miR-140-3p-NKAIN3 signaling axis in the development of goose testes and spermatogenesis, establishes a regulatory network related to spermatogenesis, and provides a theoretical basis for studying the genetic regulation of goose spermatogenesis.
Collapse
Affiliation(s)
- Wu Yingping
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Lu Lizhi
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Hangzhou 310021, China
| | - Li Haiying
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China.
| | - Chen Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Hangzhou 310021, China
| | - Gu Tiantian
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Hangzhou 310021, China
| | - Zhao Xiaoyu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Yao Yingying
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Li Jiahui
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| |
Collapse
|
8
|
Jaglan K, Dhaka SS, Magotra A, Patil CS, Ghanghas A. Exploring MicroRNA biogenesis, applications and bioinformatics analysis in livestock: A comprehensive review. Reprod Domest Anim 2024; 59:e14529. [PMID: 38268204 DOI: 10.1111/rda.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Small non-coding RNAs called microRNAs (miRNAs) control the expression of genes post-transcriptionally. Their correlation with commercial economic traits including milk, meat and egg production, as well as their effective role in animal productivity, fertility, embryo survival and disease resistance, make them significant in livestock research. The miRNAs exhibit distinct spatial and temporal expression patterns, offering insights into their functional roles within cells and tissues. Aberrant miRNA production can disrupt vital cellular processes and genetic networks, contributing to conditions like metabolic disorders and viral diseases. These short RNA molecules are present in extracellular fluids, displaying remarkable stability against RNA degradation enzymes and extreme environmental conditions. miRNAs preservation is facilitated through packaging in lipid vesicles or complex formation with RNA-binding proteins. Numerous studies have illuminated the roles of miRNAs in diverse physiological processes, including embryonic stem cell differentiation, haematopoietic stem cell proliferation and differentiation and the coordinated development of organ systems. The integration of miRNA profiling, next-generation sequencing and bioinformatics analysis paves the way for transformative advancements in livestock research and industry. The present review underscores the applications of miRNAs in livestock, showcasing their potential to improve breeding strategies, diagnose diseases and enhance our understanding of fundamental biological processes.
Collapse
Affiliation(s)
- Komal Jaglan
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - S S Dhaka
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - C S Patil
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amandeep Ghanghas
- Department of Livestock Production Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
9
|
Li X, Li K, Deng K, Liu Z, Huang X, Guo J, Yang F, Wang F. LncRNA12097.1 contributes to endometrial cell growth by enhancing YES1 activating β-catenin via sponging miR-145-5p. Int J Biol Macromol 2024; 256:128477. [PMID: 38035963 DOI: 10.1016/j.ijbiomac.2023.128477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Despite previous investigations elucidating the regulatory mechanisms of long non-coding RNAs (lncRNAs) in endometrial function and reproductive disorders, the precise pathways through which lncRNAs impact endometrial functions and fertility remain unclear. In this study, we performed an expression profile analysis of lncRNAs in the endometrial tissue of Hu sheep with different prolificacy, identifying 13,707 lncRNAs. We discovered a bidirectional lncRNA, designated lncRNA12097.1, exhibiting significant up-regulation exclusively in the endometrium of Hu sheep with high fecundity. Functional analyses revealed lncRNA12097.1 significantly enhanced proliferation and cell cycle progression in both endometrial epithelial cell (EEC) and stromal cells (ESC), while inhibiting apoptosis in these cell types. Mechanistically, we demonstrated a directly interaction between lncRNA12097.1 and miR-145-5p, with YES proto-oncogene 1 (YES1) being identified as a validated target of miR-145-5p. Interference with lncRNA12097.1 resulted in suppressed cell growth through down-regulation of YES1 expression, which could be rescued by miR-145-5p. Furthermore, lncRNA12097.1 functions as a competitive endogenous RNA (ceRNA) for miR-145-5p in ESCs, sequestering miR-145-5p and preventing its binding to the 3'UTR of YES1 mRNA. This interaction led to increased expression of YES1 and subsequent activation of downstream β-catenin signaling, thereby promoting ESC growth in Hu sheep. These findings provide novel molecular insights into the mechanisms underlying prolificacy in sheep.
Collapse
Affiliation(s)
- Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Jiahe Guo
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Guo R, Wang S, Guo S, Fan X, Zang H, Gao X, Jing X, Liu Z, Na Z, Zou P, Chen D. Regulatory Roles of Long Non-Coding RNAs Relevant to Antioxidant Enzymes and Immune Responses of Apis cerana Larvae Following Ascosphaera apis Invasion. Int J Mol Sci 2023; 24:14175. [PMID: 37762477 PMCID: PMC10532054 DOI: 10.3390/ijms241814175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an essential part in controlling gene expression and a variety of biological processes such as immune defense and stress-response. However, whether and how lncRNAs regulate responses of Apis cerana larvae to Ascosphaera apis invasion has remained unclear until now. Here, the identification and structural analysis of lncRNAs in the guts of A. cerana worker larvae were conducted, and the expression profile of larval lncRNAs during the A. apis infection process was then analyzed, followed by an investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in the host response. In total, 76 sense lncRNAs, 836 antisense lncRNAs, 184 intron lncRNAs, 362 bidirectional lncRNAs, and 2181 intron lncRNAs were discovered in the larval guts. Additionally, 30 known and 9 novel lncRNAs were potential precursors for 36 and 11 miRNAs, respectively. In the three comparison groups, 386, 351, and 272 DElncRNAs were respectively identified, indicating the change in the overall expression pattern of host lncRNAs following the A. apis invasion. Analysis of cis-acting effect showed that DElncRNAs in the 4-, 5-, and 6-day-old comparison groups putatively regulated 55, 30, and 20 up- and down-stream genes, respectively, which were involved in a series of crucial functional terms and pathways, such as MAPK signaling pathway, and cell process. Analysis showed that 31, 8, and 11 DElncRNAs as potential antisense lncRNAs may interact with 26, 8, and 9 sense-strand mRNAs. Moreover, investigation of the competing endogenous RNA (ceRNA) network indicated that 148, 283, and 257 DElncRNAs were putatively regulated. The expression of target genes by targeting corresponding DEmiRNAs included those associated with antioxidant enzymes and immune responses. These results suggested that DElncRNAs played a potential part in the larval guts responding to the A. apis infection through a cis-acting manner and ceRNA mechanisms. Our findings deepen our understanding of interactions between A. cerana larvae and A. apis and offer a basis for clarifying the DElncRNA-mediated mechanisms underlying the host response to fungal invasion.
Collapse
Affiliation(s)
- Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xin Jing
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhitan Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Li H, Zhang Y, Lan J, Wang S, Cai H, Meng X, Ren Y, Yang M. Identification of Differentially Expressed lncRNAs in Response to Blue Light and Expression Pattern Analysis of Populus tomentosa Hybrid Poplar 741. PLANTS (BASEL, SWITZERLAND) 2023; 12:3157. [PMID: 37687403 PMCID: PMC10490017 DOI: 10.3390/plants12173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Poplar is an important shelterbelt, timber stand, and city tree species that has been the focus of forestry research. The regulatory role of the long non-coding RNA molecule (lncRNA; length > 200 nt) has been a research hotspot in plants. In this study, seedlings of 741 poplar were irradiated with LED blue and white light, and the Illumina HiSeq 2000 sequencing platform was used to identify lncRNAs. |logFC| > 1 and p < 0.05 were considered to indicate differentially expressed lncRNAs, and nine differentially expressed lncRNAs were screened, the target genes of which were predicted, and three functionally annotated target genes were obtained. The differentially expressed lncRNAs were identified as miRNA targets. Six lncRNAs were determined to be target sites for twelve mRNAs in six miRNA families. LncRNAs and their target genes, including lncRNA MSTRG.20413.1-ptc-miR396e-5p-GRF9, were verified using quantitative real-time polymerase chain reaction analysis, and the expression patterns were analyzed. The analysis showed that the ptc-miR396e-5p expression was downregulated, while lncRNA MSTRG.20413.1 and GRF9 expression was upregulated, after blue light exposure. These results indicate that lncRNAs interact with miRNAs to regulate gene expression and affect plant growth and development.
Collapse
Affiliation(s)
- Hongyan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yiwen Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinping Lan
- Life Science Research Center, Hebei North University, Zhangjiakou 075000, China;
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Hongyu Cai
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Xin Meng
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yachao Ren
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding 071000, China; (H.L.); (Y.Z.); (S.W.); (H.C.); (X.M.); (Y.R.)
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| |
Collapse
|
12
|
Li C, Zhou M, He X, Di R, Zhang Z, Ren C, Liu Q, Chu M. Comparative proteomics of ovaries elucidated the potential targets related to ovine prolificacy. Front Vet Sci 2023; 10:1096762. [PMID: 37675075 PMCID: PMC10477366 DOI: 10.3389/fvets.2023.1096762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Small Tail Han (STH) sheep, a unique Chinese breed, is recognized for its early maturity, year-round estrus, and prolificacy. However, the molecular mechanism of its high prolificacy has not been fully elucidated. The Proteomics approach is feasible and effective to reveal the proteins involved in the complex physiological processes of any organism. Given this, we performed the protein expression profiling of ovarian tissues during the luteal phase using polytocous STH sheep (litter size ≥2, three consecutive lambings) and monotocous STH sheep (litter size =1, three consecutive lambings) (PL vs. ML), and the follicular phase using polytocous STH sheep (litter size ≥2, three consecutive lambings) and monotocous STH sheep (litter size =1, three consecutive lambings) (PF vs. MF), respectively. Parallel Reaction Monitoring (PRM) was conducted to validate the differentially abundant proteins (DAPs). The tandem mass tag (TMT) quantitative proteomic results showed that a total of 5,237 proteins were identified, of which 49 and 44 showed differential abundance in the PL vs. ML and PF vs. MF groups, respectively. Enrichments analyses indicated that the DAPs including TIA1 cytotoxic granule-associated RNA-binding protein-like 1 (TIAL1), nicotinamide phosphoribosyltransferase (NAMPT), and cellular retinoic acid-binding protein 1 (CRABP1) were enriched at the luteal phase, while TIAL1, inhibin beta-a-subunit (A2ICA4), and W5PG55 were enriched at the follicular phase, potentially mediating reproductive processes in polytocous ewes. Furthermore, six DAPs were verified using PRM, confirming the accuracy of the TMT data acquired in this study. Together, our work expanded the database of indigenous sheep breeds and provided new ovarian candidate molecular targets, which will help in the study of the genetic mechanisms of ovine prolificacy.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, China
| | - Mei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Dehghanian Reyhan V, Ghafouri F, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Comparative Transcriptome and circRNA-lncRNA-miRNA-mRNA ceRNA Regulatory Network Analyses Identify Molecular Mechanisms Associated with Intramuscular Fat Content in Beef Cattle. Animals (Basel) 2023; 13:2598. [PMID: 37627391 PMCID: PMC10451991 DOI: 10.3390/ani13162598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intramuscular fat content (IMF), one of the most important carcass traits in beef cattle, is controlled by complex regulatory factors. At present, molecular mechanisms involved in regulating IMF and fat metabolism in beef cattle are not well understood. Our objective was to integrate comparative transcriptomic and competing endogenous RNA (ceRNA) network analyses to identify candidate messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of longissimus dorsi muscle (LDM) tissue for IMF and fat metabolism of 5 beef cattle breeds (Angus, Chinese Simmental, Luxi, Nanyang, and Shandong Black). In total, 34 circRNAs, 57 lncRNAs, 15 miRNAs, and 374 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Furthermore, 7 key subnets with 16 circRNAs, 43 lncRNAs, 7 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 48, 13, and 28 significantly enriched GO terms related to IMF in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways associated with IMF and fat metabolism that were enriched included metabolic, calcium, cGMP-PKG, thyroid hormone, and oxytocin signaling pathways. Moreover, MCU, CYB5R1, and BAG3 genes were common among the 10 comparative groups defined as important candidate marker genes for fat metabolism in beef cattle. Contributions of transcriptome profiles from various beef breeds and a competing endogenous RNA (ceRNA) regulatory network underlying phenotypic differences in IMF provided novel insights into molecular mechanisms associated with meat quality.
Collapse
Affiliation(s)
- Vahid Dehghanian Reyhan
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Farzad Ghafouri
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
| |
Collapse
|
14
|
Ghafouri F, Sadeghi M, Bahrami A, Naserkheil M, Dehghanian Reyhan V, Javanmard A, Miraei-Ashtiani SR, Ghahremani S, Barkema HW, Abdollahi-Arpanahi R, Kastelic JP. Construction of a circRNA- lincRNA-lncRNA-miRNA-mRNA ceRNA regulatory network identifies genes and pathways linked to goat fertility. Front Genet 2023; 14:1195480. [PMID: 37547465 PMCID: PMC10400778 DOI: 10.3389/fgene.2023.1195480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background: There is growing interest in the genetic improvement of fertility traits in female goats. With high-throughput genotyping, single-cell RNA sequencing (scRNA-seq) is a powerful tool for measuring gene expression profiles. The primary objective was to investigate comparative transcriptome profiling of granulosa cells (GCs) of high- and low-fertility goats, using scRNA-seq. Methods: Thirty samples from Ji'ning Gray goats (n = 15 for high fertility and n = 15 for low fertility) were retrieved from publicly available scRNA-seq data. Functional enrichment analysis and a literature mining approach were applied to explore modules and hub genes related to fertility. Then, interactions between types of RNAs identified were predicted, and the ceRNA regulatory network was constructed by integrating these interactions with other gene regulatory networks (GRNs). Results and discussion: Comparative transcriptomics-related analyses identified 150 differentially expressed genes (DEGs) between high- and low-fertility groups, based on the fold change (≥5 and ≤-5) and false discovery rate (FDR <0.05). Among these genes, 80 were upregulated and 70 were downregulated. In addition, 81 mRNAs, 58 circRNAs, 8 lincRNAs, 19 lncRNAs, and 55 miRNAs were identified by literature mining. Furthermore, we identified 18 hub genes (SMAD1, SMAD2, SMAD3, SMAD4, TIMP1, ERBB2, BMP15, TGFB1, MAPK3, CTNNB1, BMPR2, AMHR2, TGFBR2, BMP4, ESR1, BMPR1B, AR, and TGFB2) involved in goat fertility. Identified biological networks and modules were mainly associated with ovary signature pathways. In addition, KEGG enrichment analysis identified regulating pluripotency of stem cells, cytokine-cytokine receptor interactions, ovarian steroidogenesis, oocyte meiosis, progesterone-mediated oocyte maturation, parathyroid and growth hormone synthesis, cortisol synthesis and secretion, and signaling pathways for prolactin, TGF-beta, Hippo, MAPK, PI3K-Akt, and FoxO. Functional annotation of identified DEGs implicated important biological pathways. These findings provided insights into the genetic basis of fertility in female goats and are an impetus to elucidate molecular ceRNA regulatory networks and functions of DEGs underlying ovarian follicular development.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Masoumeh Naserkheil
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan-si, Republic of Korea
| | - Vahid Dehghanian Reyhan
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Arash Javanmard
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Soheila Ghahremani
- Department of Animal Science, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rostam Abdollahi-Arpanahi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Zhao X, Li H, Chen X, Wu Y, Wang L, Li J. Long non-coding RNA MSTRG.5970.28 regulates proliferation and apoptosis of goose follicle granulosa cells via the miR-133a-3p/ANOS1 pathway. Poult Sci 2023; 102:102451. [PMID: 36634463 PMCID: PMC9841053 DOI: 10.1016/j.psj.2022.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
The development of follicles in the ovaries is a critical determinant of poultry egg production. There are existing studies on the follicular development patterns in poultry, but the specific regulatory mechanisms still need further study. In a previous study, we identified long non-coding RNA (lncRNA) MSTRG.5970.28, anosmin 1 (ANOS1), and its predicted target miR-133a-3p that may be associated with goose ovary development. However, the function of MSTRG.5970.28 in goose granulosa cells and its regulatory mechanisms affecting granulosa cell proliferation and apoptosis have not been reported. In the present study, MSTRG.5970.28 and miR-133a-3p overexpression and interference vectors were constructed. Combined with reverse-transcription real-time quantitative PCR (RT-qPCR), a dual luciferase activity assay, Cell Counting Kit-8 (CCK-8), and flow cytometric analysis, we investigated the role of the MSTRG.5970.28-miR-133a-3p-ANOS1 axis in goose follicular granulosa cells and the associated regulatory mechanisms. MSTRG.5970.28 was found to be localized in the cytoplasm and its expression was influenced by reproductive hormones. The targeting relationship among MSTRG.5970.28, ANOS1, and miR-133a-3p were verified by a dual luciferase activity assay. CCK-8 and apoptosis assays showed that MSTRG.5970.28 inhibited the proliferation and promoted apoptosis of goose granulosa cells. The regulatory role of miR-133a-3p on granulosa cell proliferation and apoptosis was opposite to MSTRG.5970.28. We found that the proliferative and apoptotic effects of granulosa cells caused by MSTRG.5970.28 overexpression were attenuated by miR-133a-3p. MSTRG.5970.28 functions as a competitive endogenous RNA that regulates ANOS1 expression by sponging miR-133a-3p and thus exerts regulatory functions in granulosa cells. In sum, the present study identified lncRNA MSTRG.5970.28 as associated with goose ovary development, which affects the expression of ANOS1 by targeting miR-133a-3p, thereby influencing the proliferation and apoptosis of goose granulosa cells.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yingping Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Ling Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
16
|
Epigenetic Regulation of miR-25 and Lnc107153 on Expression of Seasonal Estrus Key Gene CHGA in Sheep. BIOLOGY 2023; 12:biology12020250. [PMID: 36829527 PMCID: PMC9952879 DOI: 10.3390/biology12020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Pituitary pars tuberalis (PT) plays an important role as the transmission center in the seasonal reproduction of animals. It helps convert external photoperiod signals into intrinsic seasonal reproduction signals. In sheep PT, specific expression patterns of several genes (including short photoperiod-induced gene CHGA and long photoperiod genes EYA3 and TSHβ) under different photoperiods are crucial characteristics during this signal transduction. Recent studies have revealed the role of epigenetics in regulating the expression of seasonal reproductive key genes. Therefore, we explored whether microRNAs and LncRNAs regulated the expressions of the above key genes. Firstly, the expression of miR-25 and CHGA showed a significant negative correlation in sheep PT. Results of the dual luciferase reporter assay and miR-25 overexpression indicated that miR-25 could inhibit the expression of CHGA by specifically binding to its 3'UTR region in pituitary cells. Then, expression negative correlation and dual luciferase reporter analyses were used to screen and identify the candidate LncRNA (Lnc107153) targeted by miR-25. Finally, the results of fluorescence in situ hybridization and Lnc107153 overexpression suggested that Lnc107153 and miR-25 were involved in the epigenetic regulation of CHGA expression. However, the expressions of EYA3 and TSHβ were not regulated by miRNAs. These results will provide new insights into the epigenetic regulatory network of key genes in sheep seasonal reproduction.
Collapse
|
17
|
LncRNA TTN-AS1 exacerbates extracellular matrix accumulation via miR-493-3p/FOXP2 axis in diabetic nephropathy. J Genet 2022. [DOI: 10.1007/s12041-022-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|