1
|
Luo M, Li X, Zhang J, Miao Y, Liu D. The C3H gene PtZFP2-like in Pinellia ternata acts as a positive regulator of the resistance to soft rot caused by Pectobacterium carotovorum. PHYSIOLOGIA PLANTARUM 2025; 177:e70121. [PMID: 39968839 PMCID: PMC11837237 DOI: 10.1111/ppl.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Pinellia ternata (Thunb.) Breit is a member of the Araceae family and is globally distributed. The dry tuber has been used as a traditional Chinese medicine for over 2,000 years. With agricultural development, the harm of soft rot to P. ternata is an increasing problem. The lack of germplasm resources resistant to soft rot leads to less research on resistance mechanisms. In our study, we screened disease-resistant P. ternata P-1 and disease-susceptible P. ternata P-4 for the first time. Then, the infection of soft rot for 0, 24, and 48 hours was performed, and a de novo transcriptome analysis explored key genes associated with soft rot resistance. A total of 260,169 unigenes were identified and differentially expressed gene analysis was conducted. In total, 33 C3H-type ZFP genes were differentially expressed under Pectobacterium carotovorum infection. Transient expression of ZFP2-like (Cluster-5189.85444) resulted in a twofold increase at 24 hour post infection (hpi) and a threefold increase at 48 hpi in P-1 with soft rot infection, but no significant difference at P-4 enhanced the resistance of Nicotiana benthamiana to soft rot. Stable overexpression in P. ternata with a 2 ~ 11-fold increase in gene expression and reduced the lesion size from 6 mm to 2 ~ 4 mm at 24 hpi, demonstrating increased resistance to P. carotovorum. These findings indicated the ZFP2-like gene plays a pivotal role in soft rot resistance, enriches genetic data on disease resistance in P. ternata, and contributes to breed selection and improvement.
Collapse
Affiliation(s)
- Ming Luo
- School of PharmacyHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhanChina
| | - Xinyao Li
- School of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Jingyi Zhang
- School of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Yuhuan Miao
- School of PharmacyHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhanChina
| | - Dahui Liu
- School of PharmacyHubei University of Chinese MedicineWuhanChina
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhanChina
| |
Collapse
|
2
|
Bao P, Sun J, Qu G, Yan M, Cheng S, Ma W, Wang J, Hu R. Identification and expression analysis of CCCH gene family and screening of key low temperature stress response gene CbuC3H24 and CbuC3H58 in Catalpa bungei. BMC Genomics 2024; 25:779. [PMID: 39128988 PMCID: PMC11318309 DOI: 10.1186/s12864-024-10690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Catalpa bungei, a tree indigenous to China, is renowned for its superior timber quality and as an ornamental in horticulture. To promote the cultivation of C. bungei in cold regions and expand its distribution, enhancing its cold tolerance is essential. The CCCH gene family is widely involved in plant growth, development, and expression under stress conditions, including low-temperature stress. However, a comprehensive identification and analysis of these genes have not yet been conducted. This study aims to identify key cold-tolerance-related genes within the CCCH gene family of C. bungei, providing the necessary theoretical support for its expansion in cold regions. In this study, 61 CCCH genes within C. bungei were identified and characterized. Phylogenetic assessment divided these genes into 9 subfamilies, with 55 members mapped across 16 chromosomes. The analysis of gene structures and protein motifs indicated that members within the same subfamily shared similar exon/intron distribution and motif patterns, supporting the phylogenetic classification. Collinearity analysis suggested that segmental duplications have played a significant role in the expansion of the C. bungei CCCH gene family. Notably, RNA sequencing analysis under 4 °C cold stress conditions identified CbuC3H24 and CbuC3H58 as exhibiting the most significant responses, highlighting their importance within the CCCH zinc finger family in response to cold stress. The findings of this study lay a theoretical foundation for further exploring the mechanisms of cold tolerance in C. bungei, providing crucial insights for its cultivation in cold regions.
Collapse
Affiliation(s)
- Pingan Bao
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, Chinese Academy of Forestry, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Beijing, 102300, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jingshuang Sun
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, Chinese Academy of Forestry, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Beijing, 102300, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Maolin Yan
- Inner Mongolia Academy of Forestry, Hohhot, 010010, China
| | - Shiping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Henan, 467000, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ruiyang Hu
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, Chinese Academy of Forestry, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Beijing, 102300, China.
| |
Collapse
|
3
|
Wang D, Qiu Z, Xu T, Yao S, Chen M, Li Q, Agassin RH, Ji K. Transcriptomic Identification of Potential C2H2 Zinc Finger Protein Transcription Factors in Pinus massoniana in Response to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:8361. [PMID: 39125930 PMCID: PMC11312842 DOI: 10.3390/ijms25158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Biotic and abiotic stresses have already seriously restricted the growth and development of Pinus massoniana, thereby influencing the quality and yield of its wood and turpentine. Recent studies have shown that C2H2 zinc finger protein transcription factors play an important role in biotic and abiotic stress response. However, the members and expression patterns of C2H2 TFs in response to stresses in P. massoniana have not been performed. In this paper, 57 C2H2 zinc finger proteins of P. massoniana were identified and divided into five subgroups according to a phylogenetic analysis. In addition, six Q-type PmC2H2-ZFPs containing the plant-specific motif 'QALGGH' were selected for further study under different stresses. The findings demonstrated that PmC2H2-ZFPs exhibit responsiveness towards various abiotic stresses, including drought, NaCl, ABA, PEG, H2O2, etc., as well as biotic stress caused by the pine wood nematode. In addition, PmC2H2-4 and PmC2H2-20 were nuclear localization proteins, and PmC2H2-20 was a transcriptional activator. PmC2H2-20 was selected as a potential transcriptional regulator in response to various stresses in P. massoniana. These findings laid a foundation for further study on the role of PmC2H2-ZFPs in stress tolerance.
Collapse
Affiliation(s)
- Dengbao Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zimo Qiu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Xu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Meijing Chen
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianzi Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Romaric Hippolyte Agassin
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Wang D, Qiu Z, Xu T, Yao S, Zhang M, Cheng X, Zhao Y, Ji K. Identification and Expression Patterns of WOX Transcription Factors under Abiotic Stresses in Pinus massoniana. Int J Mol Sci 2024; 25:1627. [PMID: 38338907 PMCID: PMC10855728 DOI: 10.3390/ijms25031627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) play a crucial role in regulating plant development and responding to various abiotic stresses. However, the members and functions of WOX proteins in Pinus massoniana remain unclear. In this study, a total of 11 WOX genes were identified, and bioinformatics methods were used for preliminary identification and analysis. The phylogenetic tree revealed that most PmWOXs were distributed in ancient and WUS clades, with only one member found in the intermediate clade. We selected four highly conserved WOX genes within plants for further expression analysis. These genes exhibited expressions across almost all tissues, while PmWOX2, PmWOX3, and PmWOX4 showed high expression levels in the callus, suggesting their potential involvement in specific functions during callus development. Expression patterns under different abiotic stresses indicated that PmWOXs could participate in resisting multiple stresses in P. massoniana. The identification and preliminary analysis of PmWOXs lay the foundation for further research on analyzing the resistance molecular mechanism of P. massoniana to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.Z.); (X.C.); (Y.Z.)
| |
Collapse
|
5
|
Deng Z, Yang Z, Liu X, Dai X, Zhang J, Deng K. Genome-Wide Identification and Expression Analysis of C3H Zinc Finger Family in Potato ( Solanum tuberosum L.). Int J Mol Sci 2023; 24:12888. [PMID: 37629069 PMCID: PMC10454627 DOI: 10.3390/ijms241612888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Transcription factors containing a CCCH structure (C3H) play important roles in plant growth and development, and their stress response, but research on the C3H gene family in potato has not been reported yet. In this study, we used bioinformatics to identify 50 C3H genes in potato and named them StC3H-1 to StC3H-50 according to their location on chromosomes, and we analyzed their physical and chemical properties, chromosome location, phylogenetic relationship, gene structure, collinearity relationship, and cis-regulatory element. The gene expression pattern analysis showed that many StC3H genes are involved in potato growth and development, and their response to diverse environmental stresses. Furthermore, RT-qPCR data showed that the expression of many StC3H genes was induced by high temperatures, indicating that StC3H genes may play important roles in potato response to heat stress. In addition, Some StC3H genes were predominantly expressed in the stolon and developing tubers, suggesting that these StC3H genes may be involved in the regulation of tuber development. Together, these results provide new information on StC3H genes and will be helpful for further revealing the function of StC3H genes in the heat stress response and tuber development in potato.
Collapse
Affiliation(s)
- Zeyi Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Zhijiang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xinyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
6
|
Xin Y, Huang R, Xu M, Xu L. Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress. Int J Mol Sci 2023; 24:11334. [PMID: 37511094 PMCID: PMC10379125 DOI: 10.3390/ijms241411334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The NAC (NAM-ATAF1/2-CUC) transcription factor family is one of the largest plant-specific transcription factor families, playing an important role in plant growth and development and abiotic stress response. As a short-rotation woody plant, Salix integra (S. integra) has high lead (Pb) phytoremediation potential. To understand the role of NAC in S. integra Pb tolerance, 53 SiNAC transcripts were identified using third-generation and next-generation transcriptomic data from S. integra exposed to Pb stress, and a phylogenetic analysis revealed 11 subfamilies. A sequence alignment showed that multiple subfamilies represented by TIP and ATAF had a gene that produced more than one transcript under Pb stress, and different transcripts had different responses to Pb. By analyzing the expression profiles of SiNACs at 9 Pb stress time points, 41 of 53 SiNACs were found to be significantly responsive to Pb. Short time-series expression miner (STEM) analysis revealed that 41 SiNACs had two significant Pb positive response patterns (early and late), both containing 10 SiNACs. The SiNACs with the most significant Pb response were mainly from the ATAF and NAP subfamilies. Therefore, 4 and 3 SiNACs from the ATAF and NAP subfamilies, respectively, were selected as candidate Pb-responsive SiNACs for further structural and functional analysis. The RT-qPCR results of 7 transcripts also confirmed the different Pb response patterns of the ATAF and NAP subfamilies. SiNAC004 and SiNAC120, which were randomly selected from two subfamilies, were confirmed to be nuclear localization proteins by subcellular localization experiments. Functional prediction analysis of the associated transcripts of seven candidate SiNACs showed that the target pathways of ATAF subfamily SiNACs were "sulfur metabolism" and "glutathione metabolism", and the target pathways of NAP subfamily SiNACs were "ribosome" and "phenylpropanoid biosynthesis". This study not only identified two NAC subfamilies with different Pb response patterns but also identified Pb-responsive SiNACs that could provide a basis for subsequent gene function verification.
Collapse
Affiliation(s)
- Yue Xin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifang Huang
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Li'an Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|