1
|
Kamal KA, Shah FA, Zhao Y, Chen Z, Fu S, Zhu Z, Ren J, Liu H. Genome-wide identification of the UGT genes family in Acer rubrum and role of ArUGT52 in anthocyanin biosynthesis under cold stress. BMC PLANT BIOLOGY 2025; 25:288. [PMID: 40045206 PMCID: PMC11881464 DOI: 10.1186/s12870-024-06043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/31/2024] [Indexed: 03/09/2025]
Abstract
Acer rubrum is a widespread Acer species valued for its vibrant autumn foliage. The UGT (UDP-glycosyltransferase) gene family is integral to the biosynthesis of anthocyanins, the pigments responsible for leaf coloration. This study aimed to comprehensively identify and characterize the UGT gene family in the A. rubrum genome. The results of the phylogenetic analysis of 249 ArUGTs revealed 18 distinct subgroups. Conserved motif analysis demonstrated structural similarities within subgroups. Gene duplication analysis identified 21 tandem and 66 segmental duplication events across chromosomes. Transcriptomic data from autumn leaves of different colours and under low-temperature stress were analyzed for ArUGT expression patterns. Compared to controls, 44 UGTs were upregulated and 99 downregulated in yellow leaves, while 59 were upregulated and 84 downregulated in red leaves. Low-temperature treatments showed upregulation of 18 UGTs at 10 °C and 40 UGTs at 4 °C. Downregulation was observed in 7 UGTs at 10 °C and 33 UGTs at 4 °C. Among all UGT genes, ArUGT52 was common in highly expressed genes in both red leaf and low-temperature stress. Furthermore, the transient overexpression of ArUGT52 in tobacco plants demonstrated cytoplasmic localization and a marked increase in anthocyanin levels under cold stress. In vitro, biochemical assay results indicated that the ArUGT52 was involved in anthocyanin biosynthesis via the glucosylation of anthocyanidins. This study provides insights into the genetic mechanisms of leaf coloration and the potential of UGT manipulation for enhancing plant responses to low-temperature stress. These findings have applications in ornamental horticulture and agriculture.
Collapse
Affiliation(s)
- Khan Arif Kamal
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Yue Zhao
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Songling Fu
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhiyong Zhu
- Ningbo City College of Vocational Technology, Ningbo, 315502, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| | - Hua Liu
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
2
|
Yang Y, Wang J, Han F, Zhang J, Gao M, Zhao Y, Chen Y, Wang Y. Characterization of UGT71, a major glycosyltransferase family for triterpenoids, flavonoids and phytohormones-biosynthetic in plants. FORESTRY RESEARCH 2024; 4:e035. [PMID: 39552836 PMCID: PMC11564731 DOI: 10.48130/forres-0024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024]
Abstract
UGT catalyzes the transfer of glycosyl molecules from donors to acceptors, and the glycosylation catalyzed by them is a modification reaction essential for plant cell growth, development, and metabolic homeostasis. Members of this class of enzymes are found in all areas of life and are involved in the biosynthesis of an extensive range of glycosides. This review aims to screen and collate relevant properties of the UGT71 family in plants and their functions in plant secondary metabolites. Firstly, we conducted a retrospective analysis of information about plant UGTs, before focusing on UGT71s through glycosylation of secondary metabolites (triterpenoids, flavonoids) and glycosylation of phytohormones (ABA, SA). Consequently, they play a pivotal role in plant defence, hormone regulation, and the biosynthesis of secondary metabolites, thereby enabling plants to adapt to changing environments. Further investigation revealed that UGTs (UGT71s) can enhance the adaptive and resistant potential of plants in the context of today's deteriorating growing conditions due to climate change impacts caused by global warming. Nevertheless, further in-depth studies on the intricate interactions among UGTs in plants are required to fully exploit the potential of UGTs in protecting plants against stress.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Jia Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Fuchuan Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Jiantao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| |
Collapse
|
3
|
Khalvandi M, Aghaie P, Siosemardeh A, Hosseini SJ, Ghorbanpour M, Reiahisamani N, Amerian M. Genome-wide study of UDP-glycosyltransferases gene family in Cannabis sativa. 3 Biotech 2024; 14:183. [PMID: 39050981 PMCID: PMC11263533 DOI: 10.1007/s13205-024-04025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
The research focused on analyzing the UGT gene family in Cannabis sativa, which plays a crucial role in the plant's metabolism and glycosylation of secondary metabolites. The study identified 125 UGTs using conserved plant secondary product glycosyltransferase (PSPG) motif amino acid sequences. These UGT genes were categorized into 17 groups (A-Q) through phylogenetic analysis, showing their distribution across 10 chromosomes in C. sativa. The expansion of the CsUGT gene family was attributed to tandem and duplication events, as suggested by gene duplication analysis. Furthermore, the study found various cis-acting regulatory elements related to phytohormones and stress responses in CsUGT promoter regions. Subcellular localization analysis revealed that CsUGT is present in the cytoplasm, chloroplast, and nucleus. The study revealed that CsUGT plays a significant role in various biological processes, cellular components, and molecular functions as highlighted by Gene Ontology analysis. Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that some CsUGTs are associated with the biosynthesis of secondary metabolites. This research provides valuable insights into the genomic organization, evolutionary history, and potential regulatory mechanisms of UGT genes in C. sativa. It lays the foundation for further exploration of their specific biological roles and potential applications in the plant's metabolism and stress responses. These findings contribute to a better understanding of the UGT gene family and its relevance to the metabolic pathways in C. sativa. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04025-3.
Collapse
Affiliation(s)
- Masoumeh Khalvandi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Peyman Aghaie
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Adel Siosemardeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| | | | - Mohammadreza Amerian
- Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
4
|
Wang D, Coleman HD. The transcriptional regulation of a putative hemicellulose gene, PtrPARVUS2 in poplar. Sci Rep 2024; 14:12592. [PMID: 38824196 PMCID: PMC11144201 DOI: 10.1038/s41598-024-63408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
5
|
Shi Y, Chen Z, Shen M, Li Q, Wang S, Jiang J, Zeng W. Identification and Functional Verification of the Glycosyltransferase Gene Family Involved in Flavonoid Synthesis in Rubus chingii Hu. PLANTS (BASEL, SWITZERLAND) 2024; 13:1390. [PMID: 38794460 PMCID: PMC11125054 DOI: 10.3390/plants13101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Glycosylation is catalyzed by UDP-glycosyltransferase (UGT) and plays an important role in enriching the diversity of flavonoids. Rubus plants contain a lot of natural flavonoid glycosides, which are important plants with a homology of medicine and food. However, information about the Rubus UGT gene family is very limited. In this study, we carried out genome-wide analysis and identified the 172, 121, 130, 121 UGT genes in R. chingii, R. corchorifolius, R. idaeus, and R. occidentalis, respectively, and divided them into 18 groups. The analysis of the protein motif and gene structure showed that there were structural and functional conservations in the same group, but there were differences among different groups. Gene replication analysis showed that raspberry and dicotyledons had a higher homology. The expansion of the UGTs gene family was mainly driven by tandem replication events, and experienced purified selection during the long evolution of the raspberry. Cis-acting element analysis showed that they were related to plant growth and development, hormone regulation, and stress response. In addition, according to a comprehensive analysis of the co-expression network constructed by transcriptome data and phylogenetic homology, RchUGT169 was identified as a flavonoid glucosyltransferase. Through the transient expression in tobacco, it was verified that RchUGT169 could catalyze the conversion of kaempferol and quercetin to the corresponding flavonoid glycosides. In conclusion, this research enriched the understanding of the diversity of UGTs in Rubus and determined that RcUGT169 can catalyze flavonoids.
Collapse
Affiliation(s)
- Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Mingkai Shen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Qianfan Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Shunli Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Jingyong Jiang
- Institute of Horticulture, Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| |
Collapse
|
6
|
Yu H, Zhou J, Zhang J, He X, Peng S, Ling H, Dong Z, Lu X, Tian Y, Guan G, Tang Q, Zhong X, He Y. Functional Identification of HhUGT74AG11-A Key Glycosyltransferase Involved in Biosynthesis of Oleanane-Type Saponins in Hedera helix. Int J Mol Sci 2024; 25:4067. [PMID: 38612877 PMCID: PMC11012674 DOI: 10.3390/ijms25074067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.
Collapse
Affiliation(s)
- Han Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Jun Zhou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Jing Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Xinyi He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Siqing Peng
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Hao Ling
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Zhuang Dong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (J.Z.); (J.Z.); (X.H.); (S.P.); (H.L.); (Z.D.); (X.Z.)
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (Y.T.); (G.G.)
| |
Collapse
|
7
|
Wu Y, Liu J, Jiao B, Wang T, Sun S, Huang B. Genome-Wide Analysis of Family-1 UDP-Glycosyltransferases in Potato ( Solanum tuberosum L.): Identification, Phylogenetic Analysis and Determination of Response to Osmotic Stress. Genes (Basel) 2023; 14:2144. [PMID: 38136966 PMCID: PMC10742590 DOI: 10.3390/genes14122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Family-1 UDP-glycosyltransferases (UGTs) are the most common and functional glycosyltransferases in the plant world. UGT is closely related to plant growth and the response to abiotic stress. However, despite systematic research, our understanding of potato UGT genes is still unclear. In this study, we identified 174 potato UGT proteins based on their conserved plant secondary product glycosyltransferase (PSPG) motifs. Phylogenetic analyses were used to compare these proteins with Arabidopsis UGTs and other plant UGTs, and it was found that they could be clustered into 18 distinct groups. Patterns of intron gain/loss and intron phases within potato UGTs revealed highly conserved intron insertion events. The promoter cis-elements of these 174 UGT genes were systematically investigated. The promoter regions of these UGT genes are known to contain various classes of cis-acting compounds. These include elements that are light-responsive, phytohormone-responsive, and stress-responsive. Transcriptome data analysis established that 25, 10, 6, and 4 of these 174 UGT genes were specifically expressed in leaves, roots, stolons, and young tubers, respectively. The mannitol-treated transcriptomic data showed thirty-eight UGT genes were significantly upregulated. The quantitative real-time PCR results showed that the four genes were all responsive to osmotic stress under a 10% PEG6000 treatment. The results of our study provide a basis for clarifying the molecular mechanism of potato osmotic stress resistance and better understanding its function in the future.
Collapse
Affiliation(s)
- Yongchao Wu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Jie Liu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Baozhen Jiao
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Tingting Wang
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Sifan Sun
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Binquan Huang
- School of Agriculture, Yunnan University, Kunming 650504, China
| |
Collapse
|
8
|
Saint-Vincent PMB, Furches A, Galanie S, Teixeira Prates E, Aldridge JL, Labbe A, Zhao N, Martin MZ, Ranjan P, Jones P, Kainer D, Kalluri UC, Chen JG, Muchero W, Jacobson DA, Tschaplinski TJ. Validation of a metabolite-GWAS network for Populus trichocarpa family 1 UDP-glycosyltransferases. FRONTIERS IN PLANT SCIENCE 2023; 14:1210146. [PMID: 37546246 PMCID: PMC10402742 DOI: 10.3389/fpls.2023.1210146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 08/08/2023]
Abstract
Metabolite genome-wide association studies (mGWASs) are increasingly used to discover the genetic basis of target phenotypes in plants such as Populus trichocarpa, a biofuel feedstock and model woody plant species. Despite their growing importance in plant genetics and metabolomics, few mGWASs are experimentally validated. Here, we present a functional genomics workflow for validating mGWAS-predicted enzyme-substrate relationships. We focus on uridine diphosphate-glycosyltransferases (UGTs), a large family of enzymes that catalyze sugar transfer to a variety of plant secondary metabolites involved in defense, signaling, and lignification. Glycosylation influences physiological roles, localization within cells and tissues, and metabolic fates of these metabolites. UGTs have substantially expanded in P. trichocarpa, presenting a challenge for large-scale characterization. Using a high-throughput assay, we produced substrate acceptance profiles for 40 previously uncharacterized candidate enzymes. Assays confirmed 10 of 13 leaf mGWAS associations, and a focused metabolite screen demonstrated varying levels of substrate specificity among UGTs. A substrate binding model case study of UGT-23 rationalized observed enzyme activities and mGWAS associations, including glycosylation of trichocarpinene to produce trichocarpin, a major higher-order salicylate in P. trichocarpa. We identified UGTs putatively involved in lignan, flavonoid, salicylate, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress response that determine sustainable biomass crop production. Our results provide new support for in silico analyses and evidence-based guidance for in vivo functional characterization.
Collapse
Affiliation(s)
- Patricia M. B. Saint-Vincent
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Anna Furches
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Stephanie Galanie
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Protein Engineering, Merck & Co., Inc., Rahway, NJ, United States
| | - Erica Teixeira Prates
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jessa L. Aldridge
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Audrey Labbe
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Nan Zhao
- School of Electrical Engineering, Southeast University, Nanjing, China
| | - Madhavi Z. Martin
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Priya Ranjan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - David Kainer
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Udaya C. Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Jin-Gui Chen
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Daniel A. Jacobson
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, United States
| | - Timothy J. Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
9
|
Lukanda MM, Dramadri IO, Adjei EA, Badji A, Arusei P, Gitonga HW, Wasswa P, Edema R, Ochwo-Ssemakula M, Tukamuhabwa P, Muthuri HM, Tusiime G. Genome-Wide Association Analysis for Resistance to Coniothyrium glycines Causing Red Leaf Blotch Disease in Soybean. Genes (Basel) 2023; 14:1271. [PMID: 37372451 PMCID: PMC10298659 DOI: 10.3390/genes14061271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker-trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean.
Collapse
Affiliation(s)
- Musondolya Mathe Lukanda
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Faculté des Sciences Agronomiques, Université Catholique du Graben, Butembo P.O. Box 29, Democratic Republic of the Congo
| | - Isaac Onziga Dramadri
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Emmanuel Amponsah Adjei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Council for Scientific and Industrial Research-Savanna Agricultural Research Institute, Tamale P.O. Box TL 52, Ghana
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Perpetua Arusei
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
- Department of Biological Sciences, Moi University, Eldoret P.O. Box 3900-30100, Kenya
| | - Hellen Wairimu Gitonga
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Peter Wasswa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Richard Edema
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
- Makerere Regional Center for Crop Improvement (MaRCCI), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Mildred Ochwo-Ssemakula
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| | - Harun Murithi Muthuri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA;
- International Institute of Tropical Agriculture (IITA), ILRI, Nairobi P.O. Box 30709-00100, Kenya
| | - Geoffrey Tusiime
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (M.M.L.); (E.A.A.); (A.B.); (P.A.); (H.W.G.); (P.W.); (R.E.); (M.O.-S.); (P.T.); (G.T.)
| |
Collapse
|
10
|
Zhao L, Liu H, Peng K, Huang X. Cold-upregulated glycosyltransferase gene 1 (OsCUGT1) plays important roles in rice height and spikelet fertility. JOURNAL OF PLANT RESEARCH 2023; 136:383-396. [PMID: 36952116 DOI: 10.1007/s10265-023-01455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Glycosyltransferases (GTs) regulate many physiological processes and stress responses in plants. However, little is known about the function of GT in rice development. In this study, molecular analyses revealed that the expression of a rice GT gene (Cold-Upregulated Glycosyltransferase Gene 1, CUGT1) is developmentally controlled and stress-induced. OsCUGT1 was knocked out by using the clustered regularly interspaced short palindromic repeats (CRISPR) system to obtain the mutant oscugt1, which showed a severe dwarf and sterility phenotype. Further cytological analyses indicated that the dwarfism seen in the oscugt1 mutant might be caused by fewer and smaller cells. Histological pollen analysis suggests that the spikelet sterility in oscugt1 mutants may be caused by abnormal microsporogenesis. Moreover, multiple transgenic plants with knockdown of OsCUGT1 expression through RNA interference were obtained, which also showed obvious defects in plant height and fertility. RNA sequencing revealed that multiple biological processes associated with phenylpropanoid biosynthesis, cytokinin metabolism and pollen development are affected in the oscugt1 mutant. Overall, these results suggest that rice OsCUGT1 plays an essential role in rice development.
Collapse
Affiliation(s)
- Lanxin Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Hui Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Kangli Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhen Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|