1
|
Song N, Yang K, Li Y. Constructing shared genetic architecture between bioavailable testosterone and luminal A breast cancer in female. Breast Cancer 2025:10.1007/s12282-025-01696-5. [PMID: 40178748 DOI: 10.1007/s12282-025-01696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Observational studies have showed a strong association between bioavailable testosterone (BT) and breast cancer. However, the role of genetic factors in their comorbidity remains unknown. METHODS Using large genome-wide association study (GWAS) data, we employed linkage disequilibrium score regression (LDSC) to identify the breast cancer subtype most genetically correlated with BT. We then constructed the shared genetic architecture between BT and this subtype by: (1) applied Heritability Estimation from Summary Statistics for local genetic correlations and stratified-LDSC for partitioned heritability; (2) performed a cross-trait GWAS meta-analysis to find novel single-nucleotide polymorphism (SNP) and validated through colocalization; (3) conducted both cross-tissue and single-tissue transcriptome-wide association studies (TWAS) and validated the candidate genes through Mendelian randomization (MR); (4) investigated SNP-heritability enrichment at the gene set, tissue, and cell levels using Multi-marker Analysis of GenoMic Annotation. RESULTS Luminal A breast cancer (Luminal ABC) was selected as it is a common subtype of breast cancer and demonstrates a superior genetic correlation with BT. We identified strong local correlations in 132 distinct genomic regions and confirmed shared SNPs including rs1432679 and rs7175852. TWAS highlighted two pleiotropic genes, MICALL1 and TRIOBP, with TRIOBP validated by MR. We also found six shared pathways and luminal cells in mammary gland pregnancy shared between BT and Luminal ABC. For tissue-specific enrichment, BT was mainly found in the liver and adrenal gland, whereas Luminal ABC was found in the minor salivary gland. CONCLUSIONS This study sheds light on the genetic architecture of BT and Luminal ABC and suggests new avenues for research and therapy.
Collapse
Affiliation(s)
- Ningning Song
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
| | - Kuan Yang
- Department of Cardiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Chen Y, Dong Y, Wei S, Gao X, Li W, Zhao P. Genomic Integration of Hepatitis B Virus Into Human Hepatocytes in Early Childhood Cirrhosis. Liver Int 2025; 45:e70080. [PMID: 40130949 DOI: 10.1111/liv.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) remains a major global health problem. HBV DNA can be integrated into the human chromosomes. The integration in young cirrhotic chronic hepatitis B children has not been explored. This study aims to investigate HBV DNA integration in early childhood cirrhosis. METHODS Biopsy liver specimens from cirrhotic and matched non-cirrhotic chronic hepatitis B children were collected. HBV DNA integration was detected through targeted HBV DNA fragment capture sequencing. RESULTS Twenty cirrhotic and 20 non-cirrhotic children with chronic hepatitis B were included in the study. The cirrhotic group included 14 males and 6 females, and the non-cirrhotic group included 13 males and 7 females. Compared to non-cirrhotic children, cirrhotic children had lower serum HBsAg quantification (p = 0.001). The median number of HBV integrants in the cirrhotic group was 59 and that in the non-cirrhotic group was 98. No significant difference existed between the two groups (p = 0.529). In the multivariate linear regression analysis, serum HBV DNA level was correlated with the number of HBV integrants (p < 0.001, R2 = 0.322). Six differential intragenic high-frequency viral integration sites in cirrhotic children were revealed, all of which have protein-coding functions. CONCLUSION Several frequently integrated genes were observed in early childhood cirrhosis. Detailed associations between genetic alterations induced by HBV integration and early childhood cirrhosis need further exploration.
Collapse
Affiliation(s)
- Ying Chen
- Department of Clinical Laboratory, 962nd Hospital of PLA Joint Logistic Support Force, Harbin, Heilongjiang Province, China
| | - Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Gao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
- Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
3
|
Krause S, Torok D, Bagdy G, Juhasz G, Gonda X. Genome-wide by trait interaction analyses with neuroticism reveal chronic pain-associated depression as a distinct genetic subtype. Transl Psychiatry 2025; 15:108. [PMID: 40157903 PMCID: PMC11954882 DOI: 10.1038/s41398-025-03331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
The frequent co-occurrence of chronic pain (CP) and depression is a well-known phenomenon, supported by both the high prevalence of major depression among CP patients and studies describing a substantial genetic correlation between the two phenotypes. Neuroticism, a trait characterised by maladaptive stress responses and a tendency to experience negative emotions, has been linked to both depression and the experience of pain. This study aimed to determine whether depression associated with CP represents a genetically distinct subtype and to explore the role of neuroticism in modulating genetic susceptibility to depression. To address these questions, we performed genome-wide association analyses for current depression utilising the UK Biobank dataset, followed by genome-wide by trait interaction analyses to assess the interaction effect of neuroticism, and polygenic risk score analyses to compare predictions. Our findings suggest that CP-related depression is a valid subtype of depression. In association with current depression, we identified a total of 49 novel genetic risk polymorphisms meeting the genome-wide significance threshold, including variants involved in synaptic plasticity and transcriptional regulation. Additionally, our results support that neuroticism has a prominent role in modulating the genetic risk of current depression independently of CP, which highlights the importance of considering personality traits and stress factors in understanding the genetic background of complex and heterogeneous phenotypes like depression.
Collapse
Grants
- National Research, Development and Innovation Office, Hungary (2019-2.1.7-ERA-NET-2020-00005), under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (Grant: 2017-1.2.1-NKP-2017-00002; NAP2022-I-4/2022); KTIA_13_NAPA-II/14; KTIA_NAP_13-1-2013- 0001; KTIA_NAP_13-2- 2015-0001; NAP2022-I-4/2022; by the Ministry of Innovation and Technology of Hungary, Development and Innovation Fund, under TKP2021-EGA-25
- Sandor Krause was supported by the ÚNKP-23-3-I-SE-73 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.
- Dora Torok is supported by EKÖP-2024-68.
- Gyorgy Bagdy was supported by the Hungarian Brain Research Program (Grant: 2017-1.2.1-NKP-2017-00002; NAP2022-I-4/2022); KTIA_13_NAPA-II/14; KTIA_NAP_13-1-2013- 0001; KTIA_NAP_13-2- 2015-0001; NAP2022-I-4/2022; by the Ministry of Innovation and Technology of Hungary, Development and Innovation Fund, under TKP2021-EGA-25.
- Gabriella Juhasz was supported by the National Research, Development and Innovation Office, Hungary (2019-2.1.7-ERA-NET-2020-00005), under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (Grant: 2017-1.2.1-NKP-2017-00002; NAP2022-I-4/2022); KTIA_13_NAPA-II/14; KTIA_NAP_13-1-2013- 0001; KTIA_NAP_13-2- 2015-0001; NAP2022-I-4/2022; by the Ministry of Innovation and Technology of Hungary, Development and Innovation Fund, under TKP2021-EGA-25.
Collapse
Affiliation(s)
- Sandor Krause
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary.
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
- Department of Clinical Psychology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Byrne RAJ, Nimmo J, Torvell M, Carpanini SM, Daskoulidou N, Hughes TR, Noble LV, Veteleanu A, Watkins LM, Zelek WM, O'Donovan MC, Morgan BP. The schizophrenia-associated gene CSMD1 encodes a complement classical pathway inhibitor predominantly expressed by astrocytes and at synapses in mice and humans. Brain Behav Immun 2025; 127:287-302. [PMID: 40112933 DOI: 10.1016/j.bbi.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
CUB and sushi multiple domains 1 (CSMD1) is predominantly expressed in brain and robustly associated with schizophrenia risk; however, understanding of which cells express CSMD1 in brain and how it impacts risk is lacking. CSMD1 encodes a large transmembrane protein including fifteen tandem short consensus repeats (SCRs), resembling complement C3 convertase regulators. CSMD1 complement regulatory activity has been reported and mapped to SCR17-21. We expressed two SCR domains of CSMD1, SCR17-21 and SCR23-26, and characterised their complement regulatory activity using a panel of functional assays testing convertase and terminal pathway inhibition. Both domains inhibited the classical pathway C3 convertase by acting as factor I cofactors; neither domain caused any inhibition in alternative or terminal pathway assays. Novel anti-CSMD1 monoclonal antibodies cross-reactive with human and mouse CSMD1 were generated that detected endogenous CSMD1 in human and rodent brain; immunostaining showed predominantly astrocyte and synaptic localisation of CSMD1, the latter confirmed using isolated synapses. Using iPSC-derived cells, astrocyte expression was confirmed and expression on cortical neurons demonstrated. We show that CSMD1 is a classical pathway-specific complement regulator expressed predominantly on astrocytes, neurons, and synapses in human and mouse brain. These findings will help reveal the mechanism by which CSMD1 impacts schizophrenia risk.
Collapse
Affiliation(s)
- Robert A J Byrne
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK.
| | - Jacqui Nimmo
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Megan Torvell
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Sarah M Carpanini
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Lucy V Noble
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Aurora Veteleanu
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Lewis M Watkins
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK
| | - Michael C O'Donovan
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK
| | - Bryan Paul Morgan
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; UK Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales CF24 4HQ, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, Wales CF14 4XN, UK.
| |
Collapse
|
5
|
Srivastava J, Ovcharenko I. Regulatory Plasticity of the Human Genome. Mol Biol Evol 2025; 42:msaf050. [PMID: 40056383 PMCID: PMC11934273 DOI: 10.1093/molbev/msaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 03/10/2025] Open
Abstract
Evolutionary turnover in noncoding regions has driven phenotypic divergence during past speciation events and continues to facilitate environmental adaptation through variants. We used a deep learning model to identify the substrates of regulatory turnover using genome-wide mutations mimicking three evolutionary pathways: recent history (human-chimp substitutions), modern population (human population variation), and mutational susceptibility (random mutations). We observed enhancer turnover in approximately 6% of the whole genome, with more than 80% of the novel activity arising from repurposing of enhancers between cell types. Frequency of turnover in a cell type is remarkably similar across the three pathways, despite only ∼19% overlap in the source regions. The majority of turnover loci were found to be localized within 100 kb of a gene, with the highest turnover occurring near neurodevelopmental genes including CNTNAP2, NPAS3, and AUTS2. Flanking enhancers of these genes undergo high turnover irrespective of the mutational model pathway, suggesting a high plasticity in neurocognitive evolution. Based on susceptibility to random mutations, these enhancers were identified as vulnerable by nature and feature a higher abundance of cell type-specific transcription factor binding sites. Our findings suggest that enhancer repurposing within vulnerable loci drives regulatory innovation while keeping the core regulatory networks intact.
Collapse
Affiliation(s)
- Jaya Srivastava
- Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Ovcharenko
- Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Vízkeleti L, Papp O, Doma V, Gil J, Markó-Varga G, Kovács SA, Győrffy B, Kárpáti S, Tímár J. Identification of genetic fingerprint of type I interferon therapy in visceral metastases of melanoma. Sci Rep 2024; 14:26540. [PMID: 39489756 PMCID: PMC11532416 DOI: 10.1038/s41598-024-77285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Malignant melanoma is a difficult-to-treat skin cancer with increasing incidence worldwide. Although type-I interferon (IFN) is no longer part of guidelines, several melanoma patients are treated with type-I interferon (IFN) at some point of the disease, potentially affecting its genetic progression. We run genome-wide copy number variation (CNV) analysis on previously type-I IFN-treated (n = 17) and control (n = 11) visceral metastases of melanoma patients. Results were completed with data from the TCGA and MM500 databases. We identified metastasis- and brain metastasis-specific gene signatures mostly affected by CN gains. Some cases were genetically resistant to IFN showing characteristic gene alterations (e.g. ABCA4 or ZEB2 gain and alterations of DNA repair genes). Analysis of a previously identified type-I IFN resistance gene set indicates that only a proportion of these genes was exclusive for the IFN-treated metastases reflecting a possible selective genomic pressure of endogenous IFNs during progression. Our data suggest that previous type-I IFN treatment and/or endogenous IFN production by immune response affect genomic progression of melanoma which may have clinical relevance, potentially influence immune checkpoint regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
| | - Orsolya Papp
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
- Turbine Simulated Cell Technologies, Budapest, 1027, Hungary
| | - Viktória Doma
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
- Department of Dermatology, Venerology and Dermato-Oncology, Faculty of Medicine, Semmelweis University, 1085, Budapest, Hungary
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 223 63, Lund, Sweden
| | - György Markó-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 223 63, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- 1St Department of Surgery, Tokyo Medical University, Tokyo, 160-8582, Japan
| | - Szonja A Kovács
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venerology and Dermato-Oncology, Faculty of Medicine, Semmelweis University, 1085, Budapest, Hungary
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary.
| |
Collapse
|
7
|
Rayford A, Gärtner F, Ramnefjell MP, Lorens JB, Micklem DR, Aanerud M, Engelsen AST. AXL expression reflects tumor-immune cell dynamics impacting outcome in non-small cell lung cancer patients treated with immune checkpoint inhibitor monotherapy. Front Immunol 2024; 15:1444007. [PMID: 39238637 PMCID: PMC11375292 DOI: 10.3389/fimmu.2024.1444007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction AXL receptor expression is proposed to confer immune-checkpoint inhibitor (ICI)-resistance in non-small cell lung cancer (NSCLC) patients. We sought to interrogate AXL expression in conjunction with mutational and tumor-microenvironmental features to uncover predictive mechanisms of resistance in ICI-treated NSCLC patients. Methods Tumor samples from 111 NSCLC patients treated with ICI-monotherapy were analyzed by immunohistochemistry for tumor- and immune-AXL expression. Subsets of patients were analyzed by whole-exome sequencing (n = 44) and imaging mass cytometry (n = 14). Results were related to ICI-outcome measurements. Results Tumor-cell AXL expression correlated with aggressive phenotypic features including reduced OS in patients treated with ICIs (P = 0.04) after chemotherapy progression, but conversely associated with improved disease control (P = 0.045) in ICI-treated, PD-L1 high first-line patients. AXL+ immune-cell infiltration correlated with total immune-cell infiltration and improved overall outcomes (PFS: P = 0.044, OS: P = 0.054). Tumor-cell AXL-upregulation showed enrichment in mutations associated with PD-L1-upregulation and ICI-response such as MUC4 and ZNF469, as well as adverse mutations including CSMD1 and LRP1B which associated with an immune-suppressed tumor phenotype and poor ICI prognosis particularly within chemotherapy-treated patients. Tumor mutational burden had no effect on ICI-outcomes and was associated with a lack of tumor-infiltrating immune cells. Spatial-immunophenotyping provided evidence that tumor-cell AXL-upregulation and adverse mutations modulate the tumor microenvironment in favor of infiltrating, activated neutrophils over anti-tumor immune-subsets including CD4 and CD8 T-cells. Conclusion Tumor-cell AXL-upregulation correlated with distinct oncotypes and microenvironmental immune-profiles that define chemotherapy-induced mechanisms of ICI-resistance, which suggests the combination of AXL inhibitors with current chemoimmunotherapy regimens can benefit NSCLC patients.
Collapse
Affiliation(s)
- Austin Rayford
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Fabian Gärtner
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Maria P. Ramnefjell
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine and Centre for Cancer Biomarkers, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - James B. Lorens
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | | | - Marianne Aanerud
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Agnete S. T. Engelsen
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Medicine and Centre for Cancer Biomarkers, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Faggion S, Bonfatti V, Carnier P. Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs. Animals (Basel) 2024; 14:1983. [PMID: 38998095 PMCID: PMC11240668 DOI: 10.3390/ani14131983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Dissecting the genetics of production traits in livestock is of outmost importance, both to understand biological mechanisms underlying those traits and to facilitate the design of selection programs incorporating that information. For the pig industry, traits related to curing are key for protected designation of origin productions. In particular, appropriate ham weight loss after dry-curing ensures high quality of the final product and avoids economic losses. In this study, we analyzed data (N = 410) of ham weight loss after approximately 20 months of dry-curing. The animals used for ham production were purebred pigs belonging to a commercial line. A genome-wide association study (GWAS) of 29,844 SNP markers revealed the polygenic nature of the trait: 221 loci explaining a small percentage of the variance (0.3-1.65%) were identified on almost all Sus scrofa chromosomes. Post-GWAS analyses revealed 32 windows located within regulatory regions and 94 windows located in intronic regions of specific genes. In total, 30 candidate genes encoding receptors and enzymes associated with ham weight loss (MTHFD1L, DUSP8), proteolysis (SPARCL1, MYH8), drip loss (TNNI2), growth (CDCA3, LSP1, CSMD1, AP2A2, TSPAN4), and fat metabolism (AGPAT4, IGF2R, PTDSS2, HRAS, TALDO1, BRSK2, TNNI2, SYT8, GTF2I, GTF2IRD1, LPCAT3, ATN1, GNB3, CMIP, SORCS2, CCSER1, SPP1) were detected.
Collapse
Affiliation(s)
- Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Padova, Italy
| | - Valentina Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Padova, Italy
| | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Padova, Italy
| |
Collapse
|
9
|
Tuysuz EC, Mourati E, Rosberg R, Moskal A, Gialeli C, Johansson E, Governa V, Belting M, Pietras A, Blom AM. Tumor suppressor role of the complement inhibitor CSMD1 and its role in TNF-induced neuroinflammation in gliomas. J Exp Clin Cancer Res 2024; 43:98. [PMID: 38561856 PMCID: PMC10986120 DOI: 10.1186/s13046-024-03019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated. METHODS Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data. RESULTS The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated. CONCLUSIONS Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.
Collapse
Affiliation(s)
- Emre Can Tuysuz
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Eleni Mourati
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Aleksandra Moskal
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Chrysostomi Gialeli
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
- Department of Clinical Sciences, Cardiovascular Research Translational Studies, Lund University, Malmö, Sweden
| | - Elinn Johansson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Valeria Governa
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Alexander Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden.
| |
Collapse
|
10
|
Formicola D, Podda I, Pantaleo M, Andreucci E, Lopergolo D, Giglio S, Santorelli FM, Chilosi A. Evidence for a Pathogenic Role of CSMD1 in Childhood Apraxia of Speech. Neuropediatrics 2023; 54:407-411. [PMID: 37549685 DOI: 10.1055/s-0043-1771033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Childhood apraxia of speech (CAS) is a pediatric motor speech disorder. The genetic etiology of this complex neurological condition is not yet well understood, although some genes have been linked to it. We describe the case of a boy with a severe and persistent motor speech disorder, consistent with CAS, and a coexisting language impairment.Whole exome sequencing in our case revealed a de novo and splicing mutation in the CSMD1 gene.
Collapse
Affiliation(s)
- Daniela Formicola
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Irina Podda
- Parole al Centro Studio di Logopedia, Genoa, Italy
| | - Marilena Pantaleo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Elena Andreucci
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Diego Lopergolo
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sabrina Giglio
- Department of Medical Sciences and Public Health, Medical Genetics Unit, University of Cagliari, Cagliari, Italy
| | - Filippo Maria Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS "Stella Maris Foundation" Scientific Institute, Pisa, Italy
| | - Anna Chilosi
- Department of Developmental Neuroscience, IRCCS "Stella Maris Foundation" Scientific Institute, Pisa, Italy
| |
Collapse
|
11
|
Chung IH, Huang YS, Fang TH, Chen CH. Whole Genome Sequencing Revealed Inherited Rare Oligogenic Variants Contributing to Schizophrenia and Major Depressive Disorder in Two Families. Int J Mol Sci 2023; 24:11777. [PMID: 37511534 PMCID: PMC10380944 DOI: 10.3390/ijms241411777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Schizophrenia and affective disorder are two major complex mental disorders with high heritability. Evidence shows that rare variants with significant clinical impacts contribute to the genetic liability of these two disorders. Also, rare variants associated with schizophrenia and affective disorders are highly personalized; each patient may carry different variants. We used whole genome sequencing analysis to study the genetic basis of two families with schizophrenia and major depressive disorder. We did not detect de novo, autosomal dominant, or recessive pathogenic or likely pathogenic variants associated with psychiatric disorders in these two families. Nevertheless, we identified multiple rare inherited variants with unknown significance in the probands. In family 1, with singleton schizophrenia, we detected four rare variants in genes implicated in schizophrenia, including p.Arg1627Trp of LAMA2, p.Pro1338Ser of CSMD1, p.Arg691Gly of TLR4, and Arg182X of AGTR2. The p.Arg691Gly of TLR4 was inherited from the father, while the other three were inherited from the mother. In family 2, with two affected sisters diagnosed with major depressive disorder, we detected three rare variants shared by the two sisters in three genes implicated in affective disorders, including p.Ala4551Gly of FAT1, p.Val231Leu of HOMER3, and p.Ile185Met of GPM6B. These three rare variants were assumed to be inherited from their parents. Prompted by these findings, we suggest that these rare inherited variants may interact with each other and lead to psychiatric conditions in these two families. Our observations support the conclusion that inherited rare variants may contribute to the heritability of psychiatric disorders.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
- Department of Psychiatry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Hsuan Fang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
12
|
Veremeyko T, Jiang R, He M, Ponomarev ED. Complement C4-deficient mice have a high mortality rate during PTZ-induced epileptic seizures, which correlates with cognitive problems and the deficiency in the expression of Egr1 and other immediate early genes. Front Cell Neurosci 2023; 17:1170031. [PMID: 37234916 PMCID: PMC10206007 DOI: 10.3389/fncel.2023.1170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Complement system plays an important role in the immune defense against pathogens; however, recent studies demonstrated an important role of complement subunits C1q, C4, and C3 in normal functions of the central nervous system (CNS) such as non-functional synapse elimination (synapse pruning), and during various neurologic pathologies. Humans have two forms of C4 protein encoded by C4A and C4B genes that share 99.5% homology, while mice have only one C4B gene that is functionally active in the complement cascade. Overexpression of the human C4A gene was shown to contribute to the development of schizophrenia by mediating extensive synapse pruning through the activation C1q-C4-C3 pathway, while C4B deficiency or low levels of C4B expression were shown to relate to the development of schizophrenia and autism spectrum disorders possibly via other mechanisms not related to synapse elimination. To investigate the potential role of C4B in neuronal functions not related to synapse pruning, we compared wildtype (WT) mice with C3- and C4B- deficient animals for their susceptibility to pentylenetetrazole (PTZ)- induced epileptic seizures. We found that C4B (but not C3)-deficient mice were highly susceptible to convulsant and subconvulsant doses of PTZ when compared to WT controls. Further gene expression analysis revealed that in contrast to WT or C3-deficient animals, C4B-deficient mice failed to upregulate expressions of multiple immediate early genes (IEGs) Egrs1-4, c-Fos, c-Jus, FosB, Npas4, and Nur77 during epileptic seizures. Moreover, C4B-deficient mice had low levels of baseline expression of Egr1 on mRNA and protein levels, which was correlated with the cognitive problems of these animals. C4-deficient animals also failed to upregulate several genes downstream of IEGs such as BDNF and pro-inflammatory cytokines IL-1β, IL-6, and TNF. Taken together, our study demonstrates a new role of C4B in the regulation of expression of IEGs and their downstream targets during CNS insults such as epileptic seizures.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Mingliang He
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Eugene D. Ponomarev
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|