1
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2025; 42:e15447. [PMID: 39460977 PMCID: PMC11733670 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Laura J. Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| |
Collapse
|
2
|
Syreeni A, Dahlström EH, Smyth LJ, Hill C, Mutter S, Gupta Y, Harjutsalo V, Chen Z, Natarajan R, Krolewski AS, Hirschhorn JN, Florez JC, Maxwell AP, Groop PH, McKnight AJ, Sandholm N. Blood methylation biomarkers are associated with diabetic kidney disease progression in type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.28.24318055. [PMID: 39649605 PMCID: PMC11623717 DOI: 10.1101/2024.11.28.24318055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background DNA methylation differences are associated with kidney function and diabetic kidney disease (DKD), but prospective studies are scarce. Therefore, we aimed to study DNA methylation in a prospective setting in the Finnish Diabetic Nephropathy Study type 1 diabetes (T1D) cohort. Methods We analysed baseline blood sample-derived DNA methylation (Illumina's EPIC array) of 403 individuals with normal albumin excretion rate (early progression group) and 373 individuals with severe albuminuria (late progression group) and followed-up their DKD progression defined as decrease in eGFR to <60 mL/min/1.73m2 (early DKD progression group; median follow-up 13.1 years) or end-stage kidney disease (ESKD) (late DKD progression group; median follow-up 8.4 years). We conducted two epigenome-wide association studies (EWASs) on DKD progression and sought methylation quantitative trait loci (meQTLs) for the lead CpGs to estimate genetic contribution. Results Altogether, 14 methylation sites were associated with DKD progression (P<9.4×10-8). Methylation at cg01730944 near CDKN1C and at other CpGs associated with early DKD progression were not correlated with baseline eGFR, whereas late progression CpGs were strongly associated. Importantly, 13 of 14 CpGs could be linked to a gene showing differential expression in DKD or chronic kidney disease. Higher methylation at the lead CpG cg17944885, a frequent finding in eGFR EWASs, was associated with ESKD risk (HR [95% CI] = 2.15 [1.79, 2.58]). Additionally, we replicated meQTLs for cg17944885 and identified ten novel meQTL variants for other CpGs. Furthermore, survival models including the significant CpG sites showed increased predictive performance on top of clinical risk factors. Conclusions Our EWAS on early DKD progression identified a podocyte-specific CDKN1C locus. EWAS on late progression proposed novel CpGs for ESKD risk and confirmed previously known sites for kidney function. Since DNA methylation signals could improve disease course prediction, a combination of blood-derived methylation sites could serve as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Anna Syreeni
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H. Dahlström
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura J. Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Claire Hill
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Stefan Mutter
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yogesh Gupta
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Valma Harjutsalo
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute and Beckman Research Institute of City of Hope; Duarte, CA, 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute and Beckman Research Institute of City of Hope; Duarte, CA, 91010, USA
| | - Andrzej S. Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center; Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA, 02215, USA
| | - Joel N. Hirschhorn
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Jose C. Florez
- Department of Medicine, Harvard Medical School; Boston, MA, 02215, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Alexander P. Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Per-Henrik Groop
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Amy Jayne McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Niina Sandholm
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Wei Y, Wang X, Sun Q, Shi W, Zhang W, Gao X, Li Y, Hao R, Dong X, Chen C, Cao K, Jiang W, Yang Z, Zhu Y, Lv Y, Xv D, Li J, Shi X. Associations of environmental cadmium exposure with kidney damage: Exploring mediating DNA methylation sites in Chinese adults. ENVIRONMENTAL RESEARCH 2024; 251:118667. [PMID: 38462081 DOI: 10.1016/j.envres.2024.118667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Environmental exposure is widely recognized as the primary sources of Cadmium (Cd) in the human body, and exposure to Cd is associated with kidney damage in adults. Nevertheless, the role of DNA methylation in Cd-induced kidney damage remains unclear. This study aimed to investigate the epigenome-wide association of environmental Cd-related DNA methylation changes with kidney damage. We included 300 non-smoking adults from the China in 2019. DNA methylation profiles were measured with Illumina Infinium MethylationEPIC BeadChip array. Linear mixed-effect model was employed to estimate the effects of urinary Cd with DNA methylation. Differentially methylated positions (DMPs) associated with urinary Cd were then tested for the association with kidney damage indicators. The mediation analysis was further applied to explore the potential DNA methylation based mediators. The prediction model was developed using a logistic regression model, and used 1000 bootstrap resampling for the internal validation. We identified 27 Cd-related DMPs mapped to 20 genes after the adjustment of false-discovery-rate for multiple testing among non-smoking adults. 17 DMPs were found to be associated with both urinary Cd and kidney damage, and 14 of these DMPs were newly identified within the Chinese. Mediation analysis revealed that DNA methylation of cg26907612 and cg16848624 mediated the Cd-related reduced kidney damage. In addition, ten variables were selected using the LASSO regression analysis and were utilized to develop the prediction model. It found that the nomogram model predicted the risk of kidney damage caused by environmental Cd with a corrected C-index of 0.779. Our findings revealed novel DMPs associated with both environmental Cd exposure and kidney damage among non-smoking adults, and developed an easy-to-use nomogram-illustrated model using these novel DMPs. These findings could provide a theoretical basis for formulating prevention and control strategies for kidney damage from the perspective of environmental pollution and epigenetic regulation.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, 130021, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiaochen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wanying Shi
- Department of Epidemiology and Health Statistics, and Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Ruiting Hao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiaojie Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Kangning Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Weilong Jiang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Zhengxiong Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Dongqun Xv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Juan Li
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
4
|
Bousquet A, Sanderson K, O’Shea TM, Fry RC. Accelerated Aging and the Life Course of Individuals Born Preterm. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1683. [PMID: 37892346 PMCID: PMC10605448 DOI: 10.3390/children10101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Individuals born preterm have shorter lifespans and elevated rates of chronic illness that contribute to mortality risk when compared to individuals born at term. Emerging evidence suggests that individuals born preterm or of low birthweight also exhibit physiologic and cellular biomarkers of accelerated aging. It is unclear whether, and to what extent, accelerated aging contributes to a higher risk of chronic illness and mortality among individuals born preterm. Here, we review accelerated aging phenotypes in adults born preterm and biological pathways that appear to contribute to accelerated aging. We highlight biomarkers of accelerated aging and various resiliency factors, including both pharmacologic and non-pharmacologic factors, that might buffer the propensity for accelerated aging among individuals born preterm.
Collapse
Affiliation(s)
- Audrey Bousquet
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| | - Keia Sanderson
- Department of Internal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (A.B.); (R.C.F.)
| |
Collapse
|
5
|
Kim JE, Jo MJ, Cho E, Ahn SY, Kwon YJ, Gim JA, Ko GJ. The Effect of DNA Methylation in the Development and Progression of Chronic Kidney Disease in the General Population: An Epigenome-Wide Association Study Using the Korean Genome and Epidemiology Study Database. Genes (Basel) 2023; 14:1489. [PMID: 37510393 PMCID: PMC10379047 DOI: 10.3390/genes14071489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Although knowledge of the genetic factors influencing kidney disease is increasing, epigenetic profiles, which are associated with chronic kidney disease (CKD), have not been fully elucidated. We sought to identify the DNA methylation status of CpG sites associated with reduced kidney function and examine whether the identified CpG sites are associated with CKD development. METHOD We analyzed DNA methylation patterns of 440 participants in the Korean Genome and Epidemiology Study (KoGES) with estimated glomerular filtration rates (eGFRs) ≥ 60 mL/min/1.73 m2 at baseline. CKD development was defined as a decrease in the eGFR of <60 at any time during an 8-year follow-up period ("CKD prediction" analysis). In addition, among the 440 participants, 49 participants who underwent a second methylation profiling were assessed for an association between a decline in kidney function and changes in the degree of methylation of CpG sites during the 8 years ("kidney function slope" analysis). RESULTS In the CKD prediction analysis, methylation profiles of a total of 403,129 CpG sites were evaluated at baseline in 440 participants, and increased and decreased methylation of 268 and 189 CpG sites, respectively, were significantly correlated with the development of CKD in multivariable logistic regression. During kidney function slope analysis using follow-up methylation profiles of 49 participants, the percent methylation changes in 913 CpG sites showed a linear relationship with the percent change in eGFR during 8 years. During functional enrichment analyses for significant CpG sites found in the CKD prediction and kidney function slope analyses, we found that those CpG sites represented MAPK, PI3K/Akt, and Rap1 pathways. In addition, three CpG sites from three genes, NPHS2, CHCHD4, and AHR, were found to be significant in the CKD prediction analysis and related to a decline in kidney function. CONCLUSION It is suggested that DNA methylation on specific genes is associated with the development of CKD and the deterioration of kidney function.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Min-Jee Jo
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Eunjung Cho
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Shin-Young Ahn
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Young-Joo Kwon
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jeong-An Gim
- Medical Science Research Center, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Gang-Jee Ko
- Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|