1
|
Cavalcanti L, Francati S, Ferraguti G, Fanfarillo F, Peluso D, Barbato C, Greco A, Minni A, Petrella C. Lipocalin-2, Matrix Metalloproteinase-9, and MMP-9/NGAL Complex in Upper Aerodigestive Tract Carcinomas: A Pilot Study. Cells 2025; 14:506. [PMID: 40214460 PMCID: PMC11988122 DOI: 10.3390/cells14070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Upper aerodigestive tract (UADT) carcinomas have a high and rapidly increasing incidence, particularly in industrialized countries. The identification of diagnostic and prognostic biomarkers remains a key objective in oncological research. However, conflicting data have been reported regarding Lipocalin-2 (LCN-2 or NGAL), Matrix Metalloproteinase-9 (MMP-9), and the MMP-9/NGAL complex in UADT carcinomas. For this reason, the primary aim of this study was to investigate the involvement and modulation of the LCN-2 system in UADT cancer by selecting patients at first diagnosis and excluding any pharmacological or interventional treatments that could act as confounding factors. In this clinical retrospective pilot study, we investigated LCN-2 and MMP-9 tissue gene expression, as well as circulating levels of LCN-2, MMP-9, and the MMP-9/NGAL complex. Our findings revealed a downregulation of LCN-2 and an upregulation of MMP-9 gene expression in tumor tissues compared to healthy counterparts. A similar trend was observed in circulating levels, with decreased LCN-2 and increased MMP-9 in cancer patients compared to healthy controls. Additionally, serum levels of the MMP-9/NGAL complex were significantly elevated in UADT cancer patients relative to controls. Our study suggests a potentially distinct role for the free form of LCN-2 and its conjugated form (MMP-9/NGAL complex) in UADT tumors. These findings not only provide new insights into the molecular mechanisms underlying tumor progression but also highlight the potential clinical relevance of these biomarkers. The differential expression patterns observed suggest that the LCN-2 and MMP-9/NGAL complex could serve as valuable tools for improving early diagnosis, monitoring disease progression, and potentially guiding therapeutic strategies. Further research is needed to validate their utility in clinical settings and to explore their prognostic and predictive value in personalized treatment approaches.
Collapse
Affiliation(s)
- Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.F.); (G.F.); (F.F.)
| | - Daniele Peluso
- PhD School of Applied Medical-Surgical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy;
- Department of Biology, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), 00161 Roma, Italy;
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00161 Roma, Italy; (L.C.); (A.G.); (A.M.)
- Division of Otolaryngology-Head and Neck Surgery, San Camillo de Lellis Hospital, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), 00161 Roma, Italy;
| |
Collapse
|
2
|
Wang X, Wang L, Lin H, Zhu Y, Huang D, Lai M, Xi X, Huang J, Zhang W, Zhong T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol 2024; 14:1303335. [PMID: 38333685 PMCID: PMC10850354 DOI: 10.3389/fonc.2024.1303335] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vehicles (EVs) have received significant attention in recent times as emerging biomarkers and subjects of transformational studies. The three main branches of liquid biopsy have evolved from the three primary tumor liquid biopsy detection targets-CTC, ctDNA, and EVs-each with distinct benefits. CTCs are derived from circulating cancer cells from the original tumor or metastases and may display global features of the tumor. ctDNA has been extensively analyzed and has been used to aid in the diagnosis, treatment, and prognosis of neoplastic diseases. EVs contain tumor-derived material such as DNA, RNA, proteins, lipids, sugar structures, and metabolites. The three provide different detection contents but have strong complementarity to a certain extent. Even though they have already been employed in several clinical trials, the clinical utility of three biomarkers is still being studied, with promising initial findings. This review thoroughly overviews established and emerging technologies for the isolation, characterization, and content detection of CTC, ctDNA, and EVs. Also discussed were the most recent developments in the study of potential liquid biopsy biomarkers for cancer diagnosis, therapeutic monitoring, and prognosis prediction. These included CTC, ctDNA, and EVs. Finally, the potential and challenges of employing liquid biopsy based on CTC, ctDNA, and EVs for precision medicine were evaluated.
Collapse
Affiliation(s)
- Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Lijuan Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Haihong Lin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yifan Zhu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|