1
|
Mukherjee A, Abraham S, Singh A, Balaji S, Mukunthan KS. From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies. Mol Biotechnol 2025; 67:1269-1289. [PMID: 38565775 PMCID: PMC11928429 DOI: 10.1007/s12033-024-01133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Suzanna Abraham
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Akshita Singh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - K S Mukunthan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Li Y, Zhang J. Transcriptomic and proteomic effects of gene deletion are not evolutionarily conserved. Genome Res 2025; 35:512-521. [PMID: 39965933 PMCID: PMC11960704 DOI: 10.1101/gr.280008.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Although the textbook definition of gene function is the effect for which the gene was selected and/or by which it is maintained, gene function is commonly inferred from the phenotypic effects of deleting the gene. Because some of the deletion effects are byproducts of other effects, they may not reflect the gene's selected-effect function. To evaluate the degree to which the phenotypic effects of gene deletion inform gene function, we compare the transcriptomic and proteomic effects of systematic gene deletions in budding yeast (Saccharomyces cerevisiae) with those effects in fission yeast (Schizosaccharomyces pombe). Despite evidence for functional conservation of orthologous genes, their deletions result in no more sharing of transcriptomic or proteomic effects than that from deleting nonorthologous genes. Because the wild-type mRNA and protein levels of orthologous genes are significantly correlated between the two yeasts and because transcriptomic effects of deleting the same gene strongly overlap between studies in the same S. cerevisiae strain by different laboratories, our observation cannot be explained by rapid evolution or large measurement error of gene expression. Analysis of transcriptomic and proteomic effects of gene deletions in multiple S. cerevisiae strains by the same laboratory reveals a high sensitivity of these effects to the genetic background, explaining why these effects are not evolutionarily conserved. Together, our results suggest that most transcriptomic and proteomic effects of gene deletion do not inform selected-effect function. This finding has important implications for assessing and/or understanding gene function, pleiotropy, and biological complexity.
Collapse
Affiliation(s)
- Yang Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Thankan RS, Thomas E, Weldemariam MM, Purushottamachar P, Huang W, Kane MA, Zhang Y, Ambulos N, Wang BD, Weber D, Njar VCO. Thermal proteome profiling and proteome analysis using high-definition mass spectrometry demonstrate modulation of cholesterol biosynthesis by next-generation galeterone analog VNPP433-3β in castration-resistant prostate cancer. Mol Oncol 2025. [PMID: 40007440 DOI: 10.1002/1878-0261.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Cholesterol (CHOL) homeostasis is significantly modulated in prostate cancer (PCa) suggesting an active role in PCa development and progression. Several studies indicate a strong correlation between elevated CHOL levels and increased PCa risk and severity. Inhibition of CHOL biosynthesis at different steps, including lanosterol synthase (LSS), has shown significant efficacy against both hormone-dependent and castration-resistant PCa. Earlier, we reported proteasomal degradation of androgen receptor (AR)/AR-Vs and Mnk1/2 as the primary mechanisms of action of VNPP433-3β in inhibiting PCa cell proliferation and tumor growth. Through thermal proteome profiling, comparative proteomics and cellular thermal shift assay, we identified VNPP433-3β's ancillary effect of lowering CHOL by binding to LSS and lanosterol 14-alpha demethylase, potentially inhibiting CHOL biosynthesis in PCa cells and tumors. Additionally, in conjunction with our previously reported transcriptome analysis, proteomics reveals that VNPP433-3β modulated upstream regulators and pathways critical for PCa stem cell maintenance and recurrence. The inhibition of CHOL biosynthesis by VNPP433-3β reinforces its multifaceted effects in PCa across all stages, highlighting its potential as a single-agent therapy. Achieving reduced CHOL levels aligns with better treatment outcomes, further substantiating VNPP433-3β's therapeutic potential.
Collapse
Affiliation(s)
- Retheesh S Thankan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Isoprene Pharmaceuticals, Inc., University of Maryland Baltimore BioPark, Baltimore, MD, USA
| | - Elizabeth Thomas
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mehari M Weldemariam
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Nicholas Ambulos
- Department of Microbiology and Immunology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - David Weber
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Isoprene Pharmaceuticals, Inc., University of Maryland Baltimore BioPark, Baltimore, MD, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
García-Aranda M, Onieva MÁ, Martín-García D, Quirós R, López I, Padilla-Ruiz M, Téllez T, Martínez-Gálvez B, Hortas ML, García-Galindo A, González-Gomariz J, Armañanzas R, Rivas-Ruiz F, Serrano A, Barragán-Mallofret I, Redondo M. KLRB1 expression in nasopharyngeal mucosa as a prognostic biomarker in COVID-19 patients. Sci Rep 2025; 15:3079. [PMID: 39856133 PMCID: PMC11761047 DOI: 10.1038/s41598-025-86846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The resurgence of COVID-19 and the rise in severe outcomes emphasize the need for reliable prognostic markers to guide patient care and optimize ICU and hospital resources. This study investigates the potential of nasopharyngeal swabs to identify biomarkers that predict ICU admission or death in hospitalized COVID-19 patients. We analyzed nasopharyngeal exudates from 95 hospitalized patients in 2020 using high-plex RNA quantification on the NanoString® nCounter platform. Comparative analysis identified four genes, with KLRB1 (Killer cell lectin like receptor B1) (Odds Ratio OR 0.5, 95% CI: 0.27-0.96), along with age (OR 3.3, 95% CI: 1.25-8.93) emerging as independent prognostic markers in multivariate analysis. These findings were validated using qRT-PCR in an independent cohort of 168 patients hospitalized in 2022. While univariate analysis identified a significant association between KLRB1 expression and vaccination status (p < 0.05), only low KLRB1 expression (OR 1.135, 95% CI: 1.0-1.280), and age (OR 1.033, 95% CI: 1.006-1.061) were confirmed as independent risk factors for ICU admission or death, regardless of other studied variables such as comorbidities, vaccination status, or smoking habits. Our findings suggest that KLRB1 expression could improve prognostic tools by identifying patients at higher risk upon admission. Incorporating KLRB1 into multiplex diagnostic kits alongside SARS-CoV-2 detection could streamline prognostic assessment, providing a more comprehensive and efficient approach to patient management.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain.
- Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, Malaga, 29010, Spain.
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain.
| | - María Ángeles Onieva
- Preventive Medicine Unit, Costa del Sol University Hospital, Autovía A-7, km 186, Marbella, 29603, Spain
| | - Desirée Martín-García
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain
| | - Raúl Quirós
- Internal Medicine Unit, Costa del Sol University Hospital, Autovía A-7 km 187, Marbella, 29603, Spain
| | - Inmaculada López
- Microbiology Unit, General Clinical Analysis Service, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
| | - María Padilla-Ruiz
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain
| | - Teresa Téllez
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
| | - Beatriz Martínez-Gálvez
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
| | - María Luisa Hortas
- Clinical Analysis Service, Costa del Sol University Hospital, Autovía A-7 km 187, Marbella, 29603, Spain
| | - Alberto García-Galindo
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Ismael Sánchez Bella Building, Campus Universitario, Pamplona, 31009, Spain
- TECNUN School of Engineering, University of Na- varra, Manuel Lardizabal Ibilbidea, 13, Donostia, San Sebastián, 20018, Spain
| | - José González-Gomariz
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Ismael Sánchez Bella Building, Campus Universitario, Pamplona, 31009, Spain
- TECNUN School of Engineering, University of Na- varra, Manuel Lardizabal Ibilbidea, 13, Donostia, San Sebastián, 20018, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Ismael Sánchez Bella Building, Campus Universitario, Pamplona, 31009, Spain
- TECNUN School of Engineering, University of Na- varra, Manuel Lardizabal Ibilbidea, 13, Donostia, San Sebastián, 20018, Spain
| | - Francisco Rivas-Ruiz
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain
| | - Alfonso Serrano
- Immunology & Clinical Analysis Service, Virgen de la Victoria University Hospital, Campus de Teatinos, Malaga, 29010, Spain
| | - Isabel Barragán-Mallofret
- Medical Oncology Unit Virgen de la Victoria, Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maximino Redondo
- Research and Innovation Unit, Costa del Sol University Hospital, Autovía A-7, km 187, Marbella, 29603, Spain.
- Department of Surgical Specialties, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, Malaga, 29010, Spain.
- Malaga Biomedical Research Institute (IBIMA-Plataforma BIONAND), Calle Severo Ochoa, 35. 29590, Malaga, Spain.
- RICAPPS (Network for Research on Chronicity, Primary Care and Health Promotion), Marbella, Spain.
| |
Collapse
|
5
|
Kiseleva OI, Arzumanian VA, Ikhalaynen YA, Kurbatov IY, Kryukova PA, Poverennaya EV. Multiomics of Aging and Aging-Related Diseases. Int J Mol Sci 2024; 25:13671. [PMID: 39769433 PMCID: PMC11677528 DOI: 10.3390/ijms252413671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Despite their astonishing biological diversity, surprisingly few shared traits connect all or nearly all living organisms. Aging, i.e., the progressive and irreversible decline in the function of multiple cells and tissues, is one of these fundamental features of all organisms, ranging from single-cell creatures to complex animals, alongside variability, adaptation, growth, healing, reproducibility, mobility, and, finally, death. Age is a key determinant for many pathologies, shaping the risks of incidence, severity, and treatment outcomes for cancer, neurodegeneration, heart failure, sarcopenia, atherosclerosis, osteoporosis, and many other diseases. In this review, we aim to systematically investigate the age-related features of the development of several diseases through the lens of multiomics: from genome instability and somatic mutations to pathway alterations and dysregulated metabolism.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Viktoriia A. Arzumanian
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Yuriy A. Ikhalaynen
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Polina A. Kryukova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, 119121 Moscow, Russia; (V.A.A.); (Y.A.I.); (I.Y.K.); (P.A.K.); (E.V.P.)
| |
Collapse
|
6
|
Weaver SR, Peralta-Herrera E, Torres HM, Jessen E, Bradley EW, Westendorf JJ. Phlpp1 alters the murine chondrocyte phospho-proteome during endochondral bone formation. Bone 2024; 189:117265. [PMID: 39349089 PMCID: PMC11549792 DOI: 10.1016/j.bone.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Appendicular skeletal growth and bone mass acquisition are controlled by a variety of growth factors, hormones, and mechanical forces in a dynamic process called endochondral ossification. In long bones, chondrocytes in the growth plate proliferate and undergo hypertrophy to drive bone lengthening and mineralization. Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 and 2 (Phlpp1 and Phlpp2) are serine/threonine protein phosphatases that regulate cell proliferation, survival, and maturation via Akt, PKC, Raf1, S6k, and other intracellular signaling cascades. Germline deletion of Phlpp1 suppresses bone lengthening in growth plate chondrocytes. Here, we demonstrate that Phlpp2 does not regulate endochondral ossification, and we define the molecular differences between Phlpp1 and Phlpp2 in chondrocytes. Phlpp2-/- mice were phenotypically indistinguishable from their wildtype (WT) littermates, with similar bone length, bone mass, and growth plate dynamics. Deletion of Phlpp2 had moderate effects on the chondrocyte transcriptome and proteome compared to WT cells. By contrast, Phlpp1/2-/- (double knockout) mice resembled Phlpp1-/- mice phenotypically and molecularly, as the chondrocyte phospho-proteomes of Phlpp1-/- and Phlpp1/2-/- chondrocytes had similarities and were significantly different from WT and Phlpp2-/- chondrocyte phospho-proteomes. Data integration via multiparametric analysis showed that the transcriptome explained less variation in the data as a result of Phlpp1 or Phlpp2 deletion than proteome or phospho-proteome. Alterations in cell proliferation, collagen fibril organization, and Pdpk1 and Pak1/2 signaling pathways were identified in chondrocytes lacking Phlpp1, while cell cycle processes and Akt1 and Aurka signaling pathways were altered in chondrocytes lacking Phlpp2. These data demonstrate that Phlpp1, and to a lesser extent Phlpp2, regulate multiple and complex signaling cascades across the chondrocyte transcriptome, proteome, and phospho-proteome and that multi-omic data integration can reveal novel putative kinase targets that regulate endochondral ossification.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | | | - Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Erik Jessen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Elizabeth W Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
7
|
Hesham D, Mosaab A, Amer N, Al-Shehaby N, Magdeldin S, Hassan A, Georgiev H, Elshoky H, Rady M, Aisha KA, Sabet O, El-Naggar S. Epigenetic silencing of ZIC4 unveils a potential tumor suppressor role in pediatric choroid plexus carcinoma. Sci Rep 2024; 14:21293. [PMID: 39266576 PMCID: PMC11393135 DOI: 10.1038/s41598-024-71188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Zic family member ZIC4 is a transcription factor that has been shown to be silenced in several cancers. However, understanding the regulation and function of ZIC4 in pediatric choroid plexus tumors (CPTs) remained limited. This study employed data mining and bioinformatics analysis to investigate the DNA methylation status of ZIC4 in CPTs and its correlation with patient survival. Our results unveiled ZIC4 methylation as a segregating factor, dividing CPT cohorts into two clusters, with hyper-methylation linked to adverse prognosis. Hyper-methylation of ZIC4 was confirmed in a choroid plexus carcinoma-derived cell line (CCHE-45) by bisulfite sequencing. Furthermore, our study demonstrated that demethylating agent and a histone methyltransferase inhibitor could reverse ZIC4 silencing. RNA sequencing and proteomic analysis showed that ZIC4 over-expression influenced genes and proteins involved in immune response, antigen processing and presentation, endoplasmic reticulum stress, and metabolism. Functionally, re-expressing ZIC4 negatively impacted cell proliferation and migration. Ultimately, these findings underscore ZIC4 hyper-methylation as a prognostic marker in CPTs and shed light on potential mechanisms underlying its tumor suppressor role in CPC. This insight paves the way for novel therapeutic targets in treating aggressive CPTs.
Collapse
Affiliation(s)
- Dina Hesham
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| | - Amal Mosaab
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
| | - Nada Amer
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| | - Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed Hassan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hisham Elshoky
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
- Faculty of Biotechnology, German International University, New Administrative Capital, Cairo, Egypt
| | - Khaled Abou Aisha
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| | - Ola Sabet
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Shahenda El-Naggar
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital in Egypt 57357, 1 Sekket El Emam, El Madbah El Kadeem Yard, Sayeda Zeinab, Cairo, Egypt.
| |
Collapse
|
8
|
Kiseleva OI, Arzumanian VA, Kurbatov IY, Poverennaya EV. In silico and in cellulo approaches for functional annotation of human protein splice variants. BIOMEDITSINSKAIA KHIMIIA 2024; 70:315-328. [PMID: 39324196 DOI: 10.18097/pbmc20247005315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The elegance of pre-mRNA splicing mechanisms continues to interest scientists even after over a half century, since the discovery of the fact that coding regions in genes are interrupted by non-coding sequences. The vast majority of human genes have several mRNA variants, coding structurally and functionally different protein isoforms in a tissue-specific manner and with a linkage to specific developmental stages of the organism. Alteration of splicing patterns shifts the balance of functionally distinct proteins in living systems, distorts normal molecular pathways, and may trigger the onset and progression of various pathologies. Over the past two decades, numerous studies have been conducted in various life sciences disciplines to deepen our understanding of splicing mechanisms and the extent of their impact on the functioning of living systems. This review aims to summarize experimental and computational approaches used to elucidate the functions of splice variants of a single gene based on our experience accumulated in the laboratory of interactomics of proteoforms at the Institute of Biomedical Chemistry (IBMC) and best global practices.
Collapse
Affiliation(s)
- O I Kiseleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | |
Collapse
|
9
|
Park S, Perumalsamy H, Gerelkhuu Z, Sunderraj S, Lee Y, Yoon TH. Phenotypic Landscape of Immune Cells in Sepsis: Insights from High-Dimensional Mass Cytometry. ACS Infect Dis 2024; 10:2390-2402. [PMID: 38850242 DOI: 10.1021/acsinfecdis.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Understanding the sepsis-induced immunological response can be facilitated by identifying phenotypic changes in immune cells at the single-cell level. Mass cytometry, a novel multiparametric single-cell analysis technique, offers considerable benefits in characterizing sepsis-induced phenotypic changes in peripheral blood mononuclear cells. Here, we analyzed peripheral blood mononuclear cells from 20 sepsis patients and 10 healthy donors using mass cytometry and employing 23 markers. Both manual gating and automated clustering approaches (PhenoGraph) were used for cell identification, complemented by uniform manifold approximation and projection (UMAP) for dimensionality reduction and visualization. Our study revealed that patients with sepsis exhibited a unique immune cell profile, marked by an increased presence of monocytes, B cells, and dendritic cells, alongside a reduction in natural killer (NK) cells and CD4/CD8 T cells. Notably, significant changes in the distributions of monocytes and B and CD4 T cells were observed. Clustering with PhenoGraph unveiled the subsets of each cell type and identified elevated CCR6 expression in sepsis patients' monocyte subset (PG#5), while further PhenoGraph clustering on manually gated T and B cells discovered sepsis-specific CD4 T cell subsets (CCR4low CD20low CD38low) and B cell subsets (HLA-DRlow CCR7low CCR6high), which could potentially serve as novel diagnostic markers for sepsis.
Collapse
Affiliation(s)
- Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Haribalan Perumalsamy
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Zayakhuu Gerelkhuu
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Sneha Sunderraj
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Yoon Idea Lab Co., Ltd., Seoul 04763, Republic of Korea
| |
Collapse
|
10
|
Gannesen AV, Schelkunov MI, Ziganshin RH, Ovcharova MA, Sukhacheva MV, Makarova NE, Mart'yanov SV, Loginova NA, Mosolova AM, Diuvenji EV, Nevolina ED, Plakunov VK. Proteomic and transcriptomic analyses of Cutibacterium acnes biofilms and planktonic cultures in presence of epinephrine. AIMS Microbiol 2024; 10:363-390. [PMID: 38919714 PMCID: PMC11194618 DOI: 10.3934/microbiol.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Transcriptomic and proteomic analysis were performed on 72 h biofilms of the acneic strain Cutibacterium acnes and planktonic cultures in the presence of epinephrine. Epinephrine predominantly downregulated genes associated with various transporter proteins. No correlation was found between proteomic and transcriptomic profiles. In control samples, the expression of 51 proteins differed between planktonic cultures and biofilms. Addition of 5 nM epinephrine reduced this number, and in the presence of 5 µM epinephrine, the difference in proteomic profiles between planktonic cultures and biofilms disappeared. According to the proteomic profiling, epinephrine itself was more effective in the case of C. acnes biofilms and potentially affected the tricarboxylic acid cycle (as well as alpha-ketoglutarate decarboxylase Kgd), biotin synthesis, cell division, and transport of different compounds in C. acnes cells. These findings are consistent with recent research on Micrococcus luteus, suggesting that the effects of epinephrine on actinobacteria may be universal.
Collapse
Affiliation(s)
- AV Gannesen
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - MI Schelkunov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
| | - RH Ziganshin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - MA Ovcharova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - MV Sukhacheva
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - NE Makarova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - SV Mart'yanov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - NA Loginova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - AM Mosolova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
- Russian Biotechnological University, Moscow 125080, Russia
| | - EV Diuvenji
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - ED Nevolina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - VK Plakunov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
11
|
Yang CL, Meng JY, Zhou JY, Zhang JS, Zhang CY. Integrated transcriptomic and proteomic analyses reveal the molecular mechanism underlying the thermotolerant response of Spodoptera frugiperda. Int J Biol Macromol 2024; 264:130578. [PMID: 38432264 DOI: 10.1016/j.ijbiomac.2024.130578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a highly destructive invasive pest with remarkable adaptability to extreme climatic conditions, posing a substantial global threat. Although the effects of temperature stress on the biological and ecological properties of S. frugiperda have been elucidated, the molecular mechanisms underlying its responses remain unclear. Herein, we combined transcriptomic and proteomic analyses to explore the key genes and proteins involved in thermotolerance regulation in S. frugiperda larvae at 42 °C. Overall, 1528 differentially expressed genes (DEGs) and 154 differentially expressed proteins (DEPs) were identified in S. frugiperda larvae under heat stress, including antioxidant enzymes, heat shock proteins (Hsps), cytochrome P450s, starch and sucrose metabolism genes, and insulin signaling pathway genes, indicating their involvement in heat tolerance regulation. Correlation analysis of DEGs and DEPs revealed that seven and eight had the same and opposite expression profiles, respectively. After nanocarrier-mediated RNA interference knockdown of SfHsp29, SfHsp20.4, SfCAT, and SfGST, the body weight and mortality of S. frugiperda larvae significantly decreased and increased under heat stress, respectively. This indicates that SfHsp29, SfHsp20.4, SfCAT, and SfGST play a crucial role in the thermotolerance of S. frugiperda larvae. These results provide insight into the mechanism of heat tolerance in S. frugiperda.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, China
| | - Jian-Yun Zhou
- Guiyang Tobacco Company Kaiyang Branch, Guiyang, Guizhou 550300, China
| | - Jin-Shan Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|