1
|
Jain N, Eyre TA, Winfree KB, Bhandari NR, Khanal M, Sugihara T, Chen Y, Abada P, Patel K. Real-world outcomes after discontinuation of covalent BTK inhibitor-based therapy in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma 2025:1-13. [PMID: 40122053 DOI: 10.1080/10428194.2025.2482132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
This study described real-world treatment patterns and outcomes among patients with CLL/SLL in the post-cBTKi setting. Included were patients who received at least one cBTKi and subsequent line of therapy (LOT) within the Flatiron Health nationwide electronic health record-derived de-identified database (FHD; N = 1,479) and Optum's de-identified Clinformatics® Data Mart Database (CDM; N = 1,020). Frequently observed post-cBTKi treatments in both databases included cBTKi monotherapy (23-30%), anti-CD20 mab monotherapy (∼10%), BCL2i monotherapy (∼9%), BCL2i + anti-CD20 mab (∼9%), cBTKi + BCL2i (∼3%), and cBTKi + anti-CD20 mab (5-7%). From start of immediate LOT following cBTKi discontinuation, median time-to-treatment-discontinuation ranged across databases between 6 and 9 months; median time-to-next-treatment and median overall survival ranged between 18-23 months and 36-57 months, respectively. Observed heterogeneity in treatment patterns and outcomes in two cohorts of patients with CLL/SLL suggests lack of clarity in clinical evidence for treatment choice, and there remains a need for treatment options that deliver improved outcomes in the post-cBTKi setting.
Collapse
Affiliation(s)
- Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Toby A Eyre
- Churchill Cancer Center, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | | | - Manoj Khanal
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Tomoko Sugihara
- FSP Biometrics, Syneos Health, Morrisville, North Carolina, USA
| | - Yongmei Chen
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Krish Patel
- Swedish Cancer Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Golestan A, Zareinejad M, Ramezani A. Comprehensive biomarker profiles in hematological malignancies: improving diagnosis, prognosis, and treatment. Biomark Med 2025; 19:223-238. [PMID: 40015744 PMCID: PMC11916375 DOI: 10.1080/17520363.2025.2471745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Hematological malignancies present substantial challenges in clinical practice due to their heterogeneity and complex biological profiles. In these diseases, biomarkers - measurable indicators of biological states - are indispensable for diagnosis, prognosis, and therapeutic decision-making. Emerging biomarkers are significantly improving outcomes in hematological cancers by enhancing early detection, refining prognostic assessments, enabling personalized treatment approaches, and optimizing overall patient management. This progress translates into better clinical outcomes and more effective strategies to treat and manage malignancies. The field of biomarker discovery has developed from basic morphological and cytogenetic markers to advanced molecular techniques, including polymerase chain reaction (PCR) and next-generation sequencing (NGS), which have significantly enhanced diagnostic accuracy and led to the development of targeted therapies. Additionally, the recent advent of technologies like mass spectrometry and single-cell RNA sequencing enables comprehensive molecular profiling and reveals novel biomarkers that were previously undetectable. Our aim in this manuscript is to provide a comprehensive overview of recent and novel immunohematological biomarkers, their diagnostic and therapeutic applications, and the future directions of this field.
Collapse
Affiliation(s)
- Ali Golestan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammadrasul Zareinejad
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
3
|
Joseph RE, Wales TE, Jayne S, Britton RG, Fulton DB, Engen JR, Dyer MJS, Andreotti AH. Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia. eLife 2024; 13:RP95488. [PMID: 39728925 DOI: 10.7554/elife.95488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Robert G Britton
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| |
Collapse
|
4
|
Alanazi MA, Kwa FAA, Omar MMA, Antonipillai J, Jackson DE. Efficacy and challenges involving combination therapies in CLL. Drug Discov Today 2024; 29:104243. [PMID: 39551090 DOI: 10.1016/j.drudis.2024.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Chronic lymphocytic leukemia (CLL), a malignant tumour, is characterized by expansion of mature monoclonal B lymphocytes expressing CD23 and CD5 in secondary lymphocytic organs, blood, and bone marrow. Here, we provide an in-depth review of CLL, emphasizing its pathophysiology, cytogenic changes, and treatment strategies, particularly the efficacy and challenges of treatments, such as Bruton tyrosine kinase (BTK) inhibitors, B cell lymphoma 2 (BCL2) inhibitors, and phosphatidylinositol 3-kinase (PI3K) inhibitors, as well as the need to understand their role in managing disease progression, chemoresistance, and intolerance. In addition, we explore efficacy based on patient response and comparison between monotherapy and combination therapy. We also highlight the need for innovative strategies to overcome treatment resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Majed A Alanazi
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia; Ministry of Education, Riyadh, Saudi Arabia
| | - Faith A A Kwa
- Faculty of Health, Arts & Design, Swinburne University, Melbourne, VIC, Australia
| | - Musab M A Omar
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia; Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Juliana Antonipillai
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Denise E Jackson
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
6
|
Stanchina MD, Montoya S, Danilov AV, Castillo JJ, Alencar AJ, Chavez JC, Cheah CY, Chiattone C, Wang Y, Thompson M, Ghia P, Taylor J, Alderuccio JP. Navigating the changing landscape of BTK-targeted therapies for B cell lymphomas and chronic lymphocytic leukaemia. Nat Rev Clin Oncol 2024; 21:867-887. [PMID: 39487228 DOI: 10.1038/s41571-024-00956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
The B cell receptor (BCR) signalling pathway has an integral role in the pathogenesis of many B cell malignancies, including chronic lymphocytic leukaemia, mantle cell lymphoma, diffuse large B cell lymphoma and Waldenström macroglobulinaemia. Bruton tyrosine kinase (BTK) is a key node mediating signal transduction downstream of the BCR. The advent of BTK inhibitors has revolutionized the treatment landscape of B cell malignancies, with these agents often replacing highly intensive and toxic chemoimmunotherapy regimens as the standard of care. In this Review, we discuss the pivotal trials that have led to the approval of various covalent BTK inhibitors, the current treatment indications for these agents and mechanisms of resistance. In addition, we discuss novel BTK-targeted therapies, including covalent, as well as non-covalent, BTK inhibitors, BTK degraders and combination doublet and triplet regimens, to provide insights on the best current treatment paradigms in the frontline setting and at disease relapse.
Collapse
Affiliation(s)
- Michele D Stanchina
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Skye Montoya
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexey V Danilov
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alvaro J Alencar
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chan Y Cheah
- Division of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Linear Clinical Research, Nedlands, Western Australia, Australia
| | - Carlos Chiattone
- Hematology and Oncology Discipline, Hospital Samaritano-Higienópolis, São Paulo, Brazil
| | - Yucai Wang
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Meghan Thompson
- Leukaemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Ghia
- Division of Experimental Oncology, IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Justin Taylor
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo Alderuccio
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Robak T, Witkowska M, Wolska-Washer A, Robak P. BCL-2 and BTK inhibitors for chronic lymphocytic leukemia: current treatments and overcoming resistance. Expert Rev Hematol 2024; 17:781-796. [PMID: 39359174 DOI: 10.1080/17474086.2024.2410003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION In the last decade, BTK inhibitors and the BCL-2 inhibitor venetoclax have replaced immunochemotherapy in the treatment of CLL. AREAS COVERED This review describes the use of BTK inhibitors and BCL2 inhibitors in the treatment of naive and relapsed or refractory CLL, with particular attention to the mechanisms of resistance. It also addresses the management of double-refractory patients, and the discovery of novel drugs. The corpus of papers was obtained by a search of the PubMed and Google Scholar databases for articles in English. EXPERT OPINION Covalent BTK inhibitors and venetoclax are commonly recommended for previously-untreated and relapsed/refractory CLL. However, resistance to both drug classes can develop over time. As such, double-refractory patients are difficult to manage and novel approaches are urgently needed.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Magdalena Witkowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Paweł Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
8
|
Ehlen QT, Jahn J, Rizk RC, Best TM. Comparative Analysis of Osteoarthritis Therapeutics: A Justification for Harnessing Retrospective Strategies via an Inverted Pyramid Model Approach. Biomedicines 2024; 12:2469. [PMID: 39595035 PMCID: PMC11592385 DOI: 10.3390/biomedicines12112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
In this review, we seek to explore two distinct approaches to the clinical management of OA: a prospective approach, addressing primarily one's genetic predisposition to OA and generating early intervention options, and the retrospective approach, aimed at halting or reversing OA progression post-symptom onset. The clinical management of OA remains challenging, largely due to the limited availability of preventative treatments and failure of existing therapies to modify or reverse the underlying pathophysiology. The prospective approach involves the identification of genetic markers associated with OA and utilizes in vitro and in vivo models to characterize the underlying disease mechanism. Further, this approach focuses on identifying genetic predispositions and unique molecular subtypes of OA to develop individualized treatment plans based on patient genotypes. While the current literature investigating this strategy has been notable, this approach faces substantial challenges, such as extensive time burdens and utilization of extensive genetic testing that may not be economically feasible. Additionally, there is questionable justification for such extensive investigations, given OA's relatively low mortality rates and burden when contrasted with diseases like specific forms of cancer, which rely heavily on the prospective approach. Alternatively, the retrospective approach primarily focuses on intervention following symptom onset and aims to utilize novel therapeutics to slow or reverse the inflammatory cascade typically seen in disease progression. These treatments, like Hippo pathway inhibitors, have shown initial promise in halting OA progression and alleviating OA symptomology by modulating cellular processes to preserve articular cartilage. In comparison to the prospective approach, the retrospective strategy is likely more cost-effective, more widely applicable, and does not necessitate thorough and invasive genetic screening. However, this approach must still be weighed against the typical natural history of disease progression, which frequently results in total knee arthroplasty and unacceptable outcomes for 15-20% of patients. From a comparative analysis of these two approaches, this review argues that the retrospective strategy, with ideally lower time and economic burden and greater accessibility, offers a more reasonable and effective solution in the context of OA management. Using a similar approach to other management of chronic diseases, we suggest an "Inverted Pyramid" model algorithm, a structured research and development regimen that prioritizes generating widely effective therapies first, with subsequent refinement of treatments based on the development of patient resistance to these therapies. We argue that this strategy may reduce the need for total knee arthroplasty while improving patient outcomes and accessibility.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
| | - Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
| | - Ryan C. Rizk
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.C.R.); (T.M.B.)
- Department of Orthopedics, University of Miami, Miami, FL 33124, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33124, USA
| |
Collapse
|
9
|
Joseph RE, Wales TE, Jayne S, Britton RG, Fulton DB, Engen JR, Dyer MJS, Andreotti AH. Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572223. [PMID: 38187560 PMCID: PMC10769265 DOI: 10.1101/2023.12.18.572223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph, R.E., et al., 2020, https://doi.org/10.7554/eLife.60470 ). Here we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
Collapse
|
10
|
Kong C, Wu M, Lu Q, Ke B, Xie J, Li A. PI3K/AKT confers intrinsic and acquired resistance to pirtobrutinib in chronic lymphocytic leukemia. Leuk Res 2024; 144:107548. [PMID: 39018782 DOI: 10.1016/j.leukres.2024.107548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Pirtobrutinib, a non-covalent Bruton's tyrosine kinase (BTK) inhibitor, has been approved as the first agent to overcome resistance to covalent BTK inhibitors (such as ibrutinib, acalabrutinib, and zanubrutinib). However, the mechanisms of pirtobrutinib resistance in chronic lymphocytic leukemia (CLL) remain poorly understood. METHODS To investigate pirtobrutinib resistance, we established resistant cell models using BTK knock-out via CRISPR-Cas9 or chronic exposure to pirtobrutinib in MEC-1 cells. These models mimicked intrinsic or acquired resistance, respectively. We then analyzed differential protein expression between wild-type (WT) and resistant MEC-1 cells using Revers Phase Protein microArray (RPPA) and confirmed the findings through Western Blot. Additionally, we evaluated potential drugs to overcome pirtobrutinib resistance by conducting cell proliferation assays, apoptosis studies, and animal experiments using both sensitive and resistant cells. RESULTS MEC-1 cells developed resistance to pirtobrutinib either through BTK knock-out or prolonged drug exposure over three months. RPPA analysis revealed significant activation of proteins related to the PI3K/AKT pathway, including AKT and S6, in the resistant cells. Western Blot confirmed increased phosphorylation of AKT and S6 in pirtobrutinib-resistant MEC-1 cells. Notably, both the PI3K inhibitor (CAL101) and the AKT inhibitor (MK2206) effectively reduced cell proliferation and induced apoptosis in the resistant cells. The anti-tumor efficacy of these drugs was mediated by inhibiting the PI3K/AKT pathway. In vivo animal studies further supported the potential of targeting PI3K/AKT to overcome both intrinsic and acquired resistance to pirtobrutinib. CONCLUSION The PI3K/AKT pathway plays a crucial role in both intrinsic and acquired resistance to pirtobrutinib in CLL. Therapeutically targeting this pathway may offer a promising strategy to overcome pirtobrutinib resistance.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/drug effects
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Mice
- Phosphatidylinositol 3-Kinases/metabolism
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Pyrimidines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Xenograft Model Antitumor Assays
- Piperidines/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Signal Transduction/drug effects
- Pyrazoles/pharmacology
Collapse
Affiliation(s)
- Chunfang Kong
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Mei Wu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Qilin Lu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Bo Ke
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Jianhui Xie
- Medical College of Nanchang University, Nanchang 330006, China
| | - Anna Li
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| |
Collapse
|
11
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
12
|
Wong RL, Choi MY, Wang HY, Kipps TJ. Mutation in Bruton Tyrosine Kinase (BTK) A428D confers resistance To BTK-degrader therapy in chronic lymphocytic leukemia. Leukemia 2024; 38:1818-1821. [PMID: 39048721 PMCID: PMC11286506 DOI: 10.1038/s41375-024-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Targeting BTK has profoundly changed the face of CLL treatment over the past decade. Iterative advances in the cat and mouse game of resistance and redesign have moved BTK inhibitors from covalent to non-covalent and now targeted protein degraders. However, contrary to the presumption that protein degraders may be impervious to mutations in BTK, we now present clinical evidence that a mutation in the kinase domain of BTK, namely A428D, can confer disease resistance to a BTK degrader currently in clinical trials, that is BGB-16673. Modeling of a BTK A428D mutation places a negatively charged aspartic acid in place of the hydrophobic side chain of alanine within the binding pocket of another BTK-degrader in clinical development, namely NX-2127, suggesting that CLL cells with BTK A428D also may be resistant to NX-2127, as they already are known to be with either non-covalent or covalent inhibitors of BTK. Consequently, the two BTK degraders furthest advanced in clinical trials potentially may select for CLL cells with BTK A428D that are resistant to all approved BTKi's.
Collapse
Affiliation(s)
- Richard L Wong
- Division of Laboratory and Genomic Medicine, Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Y Choi
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, UC San Diego, La Jolla, CA, 92093, USA
| | - Huan-You Wang
- Division of Laboratory and Genomic Medicine, Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Thomas J Kipps
- Center for Novel Therapeutics, Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, UC San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Mehra S, Nicholls M, Taylor J. The Evolving Role of Bruton's Tyrosine Kinase Inhibitors in B Cell Lymphomas. Int J Mol Sci 2024; 25:7516. [PMID: 39062757 PMCID: PMC11276629 DOI: 10.3390/ijms25147516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase crucial for B cell development and function, acts downstream of the B cell receptor (BCR) in the BCR pathway. Other kinases involved downstream of the BCR besides BTK such as Syk, Lyn, PI3K, and Mitogen-activated protein (MAP) kinases also play roles in relaying signals from the BCR to provide pro-survival, activation, and proliferation cues. BTK signaling is implicated in various B-cell lymphomas such as mantle cell lymphoma, Waldenström Macroglobulinemia, follicular lymphoma, and diffuse large B cell lymphoma, leading to the development of transformative treatments like ibrutinib, the first-in-class covalent BTK inhibitor, and pirtobrutinib, the first-in-class noncovalent BTK inhibitor. However, kinase-deficient mutations C481F, C481Y, C481R, and L528W in the BTK gene confer resistance to both covalent and non-covalent BTK inhibitors, facilitating B cell survival and lymphomagenesis despite kinase inactivation. Further studies have revealed BTK's non-catalytic scaffolding function, mediating the assembly and activation of proteins including Toll-like receptor 9 (TLR9), vascular cell adhesion protein 1 (VCAM-1), hematopoietic cell kinase (HCK), and integrin-linked kinase (ILK). This non-enzymatic role promotes cell survival and proliferation independently of kinase activity. Understanding BTK's dual roles unveils opportunities for therapeutics targeting its scaffolding function, promising advancements in disrupting lymphomagenesis and refining B cell lymphoma treatments.
Collapse
Affiliation(s)
- Shefali Mehra
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Miah Nicholls
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33146, USA;
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
14
|
Wiśniewski K, Puła B. A Review of Resistance Mechanisms to Bruton's Kinase Inhibitors in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:5246. [PMID: 38791284 PMCID: PMC11120758 DOI: 10.3390/ijms25105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Bruton's Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi.
Collapse
Affiliation(s)
- Kamil Wiśniewski
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | | |
Collapse
|
15
|
Davis RE, Westin JR. Degradation trumps mutations in cancer. Science 2024; 383:480-481. [PMID: 38301021 DOI: 10.1126/science.adn4945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Redirecting targeted proteins for degradation can overcome acquired drug resistance.
Collapse
Affiliation(s)
- R Eric Davis
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Jason R Westin
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|