1
|
Balasubramanian VK, Rivas-Ubach A, Winkler T, Mitchell H, Moran J, Ahkami AH. Modulation of polar auxin transport identifies the molecular determinants of source-sink carbon relationships and sink strength in poplar. TREE PHYSIOLOGY 2024; 44:82-101. [PMID: 37265358 PMCID: PMC11898627 DOI: 10.1093/treephys/tpad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Source-to-sink carbon (C) allocation driven by the sink strength, i.e., the ability of a sink organ to import C, plays a central role in tissue growth and biomass productivity. However, molecular drivers of sink strength have not been thoroughly characterized in trees. Auxin, as a major plant phytohormone, regulates the mobilization of photoassimilates in source tissues and elevates the translocation of carbohydrates toward sink organs, including roots. In this study, we used an 'auxin-stimulated carbon sink' approach to understand the molecular processes involved in the long-distance source-sink C allocation in poplar. Poplar cuttings were foliar sprayed with polar auxin transport modulators, including auxin enhancers (AE) (i.e., IBA and IAA) and auxin inhibitor (AI) (i.e., NPA), followed by a comprehensive analysis of leaf, stem and root tissues using biomass evaluation, phenotyping, C isotope labeling, metabolomics and transcriptomics approaches. Auxin modulators altered root dry weight and branching pattern, and AE increased photosynthetically fixed C allocation from leaf to root tissues. The transcriptome analysis identified highly expressed genes in root tissue under AE condition including transcripts encoding polygalacturonase and β-amylase that could increase the sink size and activity. Metabolic analyses showed a shift in overall metabolism including an altered relative abundance levels of galactinol, and an opposite trend in citrate levels in root tissue under AE and AI conditions. In conclusion, we postulate a model suggesting that the source-sink C relationships in poplar could be fueled by mobile sugar alcohols, starch metabolism-derived sugars and TCA-cycle intermediates as key molecular drivers of sink strength.
Collapse
Affiliation(s)
- Vimal K Balasubramanian
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Albert Rivas-Ubach
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
- Department of Ecology and Forest Genetics, Forest Sciences Institute (ICIFOR), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid 28805, Spain
| | - Tanya Winkler
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Hugh Mitchell
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - James Moran
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
- Departments of Integrative Biology and Plant, Soil and Microbial Sciences, Michigan State University (MSU), East Lansing, MI 48824, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
- Adjoint Faculty, School of Biological Science (SBS), Washington State University (WSU), Pullman, WA 99163, USA
| |
Collapse
|
2
|
Uddin S, Munir MZ, Larriba E, Pérez-Pérez JM, Gull S, Pervaiz T, Mahmood U, Mahmood Z, Sun Y, Li Y. Temporal profiling of physiological, histological, and transcriptomic dissection during auxin-induced adventitious root formation in tetraploid Robinia pseudoacacia micro-cuttings. PLANTA 2024; 259:66. [PMID: 38332379 DOI: 10.1007/s00425-024-04341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
MAIN CONCLUSION Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.
Collapse
Affiliation(s)
- Saleem Uddin
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Muhammad Zeeshan Munir
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | - Sadia Gull
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 22963, USA
| | - Umer Mahmood
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Zahid Mahmood
- Crop Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
3
|
Uddin S, Munir MZ, Gull S, Khan AH, Khan A, Khan D, Khan MA, Wu Y, Sun Y, Li Y. Transcriptome Profiling Reveals Role of MicroRNAs and Their Targeted Genes during Adventitious Root Formation in Dark-Pretreated Micro-Shoot Cuttings of Tetraploid Robinia pseudoacacia L. Genes (Basel) 2022; 13:441. [PMID: 35327995 PMCID: PMC8950900 DOI: 10.3390/genes13030441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Tetraploid Robinia pseudoacacia L. is a difficult-to-root species, and is vegetatively propagated through stem cuttings. Limited information is available regarding the adventitious root (AR) formation of dark-pretreated micro-shoot cuttings. Moreover, the role of specific miRNAs and their targeted genes during dark-pretreated AR formation under in vitro conditions has never been revealed. The dark pretreatment has successfully promoted and stimulated adventitious rooting signaling-related genes in tissue-cultured stem cuttings with the application of auxin (0.2 mg L-1 IBA). Histological analysis was performed for AR formation at 0, 12, 36, 48, and 72 h after excision (HAE) of the cuttings. The first histological events were observed at 36 HAE in the dark-pretreated cuttings; however, no cellular activities were observed in the control cuttings. In addition, the present study aimed to uncover the role of differentially expressed (DE) microRNAs (miRNAs) and their targeted genes during adventitious root formation using the lower portion (1-1.5 cm) of tetraploid R. pseudoacacia L. micro-shoot cuttings. The samples were analyzed using Illumina high-throughput sequencing technology for the identification of miRNAs at the mentioned time points. Seven DE miRNA libraries were constructed and sequenced. The DE number of 81, 162, 153, 154, 41, 9, and 77 miRNAs were upregulated, whereas 67, 98, 84, 116, 19, 16, and 93 miRNAs were downregulated in the following comparisons of the libraries: 0-vs-12, 0-vs-36, 0-vs-48, 0-vs-72, 12-vs-36, 36-vs-48, and 48-vs-72, respectively. Furthermore, we depicted an association between ten miRNAs (novel-m0778-3p, miR6135e.2-5p, miR477-3p, miR4416c-5p, miR946d, miR398b, miR389a-3p, novel m0068-5p, novel-m0650-3p, and novel-m0560-3p) and important target genes (auxin response factor-3, gretchen hagen-9, scarecrow-like-1, squamosa promoter-binding protein-like-12, small auxin upregulated RNA-70, binding protein-9, vacuolar invertase-1, starch synthase-3, sucrose synthase-3, probable starch synthase-3, cell wall invertase-4, and trehalose phosphatase synthase-5), all of which play a role in plant hormone signaling and starch and sucrose metabolism pathways. The quantitative polymerase chain reaction (qRT-PCR) was used to validate the relative expression of these miRNAs and their targeted genes. These results provide novel insights and a foundation for further studies to elucidate the molecular factors and processes controlling AR formation in woody plants.
Collapse
Affiliation(s)
- Saleem Uddin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| | - Muhammad Zeeshan Munir
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China;
| | - Sadia Gull
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aimal Khan
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dilawar Khan
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Muhammad Asif Khan
- Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Yue Wu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| | - Yuhan Sun
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design (BAICFTBMD), Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.U.); (Y.W.); (Y.S.)
| |
Collapse
|
4
|
Differences in Environmental and Hormonal Regulation of Growth Responses in Two Highly Productive Hybrid Populus Genotypes. FORESTS 2022. [DOI: 10.3390/f13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phenotypic plasticity, in response to adverse conditions, determines plant productivity and survival. The aim of this study was to test if two highly productive Populus genotypes, characterised by different in vitro etiolation patterns, differ also in their responses to hormones gibberellin (GA) and abscisic acid (ABA), and to a GA biosynthesis inhibitor paclobutrazol (PBZ). The experiments on shoot cultures of ‘Hybrida 275′ (abbr. H275; Populus maximowiczii × P. trichocarpa) and IBL 91/78 (Populus tremula × P. alba) were conducted by either modulating the physical in vitro environment or by adding specific chemicals to the nutrient medium. Our results revealed two main sets of differences between the studied genotypes in environmental and hormonal regulation of growth responses. First, the genotype H275 responded to darkness with PBZ-inhibitable shoot elongation; in contrast, the elongation of IBL 91/78 shoots was not affected either by darkness or PBZ treatment. Secondly, the explants of H275 were unable to recover their growth if it was inhibited with ABA; in contrast, those of IBL 91/78 recovered so well after the temporal inhibition by ABA that, when rooted subsequently, they developed longer shoots and roots than without a previous ABA treatment. Our results indicate that GA catabolism and repressive signalling provide an important pathway to control growth and physiological adaptation in response to immediate or impending adverse conditions. These observations can help breeders define robust criteria for identifying genotypes with high resistance and productivity and highlight where genotypes exhibit susceptibility to stress.
Collapse
|
5
|
Kumar S, Huang X, Li G, Ji Q, Zhou K, Zhu G, Ke W, Hou H, Zhu H, Yang J. Comparative Transcriptomic Analysis Provides Novel Insights into the Blanched Stem of Oenanthe javanica. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112484. [PMID: 34834849 PMCID: PMC8625949 DOI: 10.3390/plants10112484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In the agricultural field, blanching is a technique used to obtain tender, sweet, and delicious water dropwort stems by blocking sunlight. The physiological and nutritional parameters of blanched water dropwort have been previously investigated. However, the molecular mechanism of blanching remains unclear. In the present study, we investigated transcriptomic variations for different blanching periods in the stem of water dropwort (pre, mid, post-blanching, and control). The results showed that many genes in pathways, such as photosynthesis, carbon fixation, and phytohormone signal transduction as well as transcription factors (TFs) were significantly dysregulated. Blanched stems of water dropwort showed the higher number of downregulated genes in pathways, such as photosynthesis, antenna protein, carbon fixation in photosynthetic organisms, and porphyrin and chlorophyll metabolism, which ultimately affect the photosynthesis in water dropwort. The genes of hormone signal transduction pathways (ethylene, jasmonic acid, brassinosteroid, and indole-3-acetic acid) showed upregulation in the post-blanched water dropwort plants. Overall, a higher number of genes coding for TFs, such as ERF, BHLH, MYB, zinc-finger, bZIP, and WRKY were overexpressed in blanched samples in comparison with the control. These genes and pathways participate in inducing the length, developmental processes, pale color, and stress tolerance of the blanched stem. Overall, the genes responsive to blanching, which were identified in this study, provide an effective foundation for further studies on the molecular mechanisms of blanching and photosynthesis regulations in water dropwort and other species.
Collapse
Affiliation(s)
- Sunjeet Kumar
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou 570228, China;
| | - Xinfang Huang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Ji
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Kai Zhou
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou 570228, China;
| | - Weidong Ke
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglian Zhu
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (X.H.); (Q.J.); (K.Z.); (W.K.)
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (S.K.); (G.L.); (H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Díaz-Sala C. Adventitious Root Formation in Tree Species. PLANTS 2021; 10:plants10030486. [PMID: 33807512 PMCID: PMC7998457 DOI: 10.3390/plants10030486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Carmen Díaz-Sala
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
7
|
Pizarro A, Díaz-Sala C. Expression Levels of Genes Encoding Proteins Involved in the Cell Wall-Plasma Membrane-Cytoskeleton Continuum Are Associated With the Maturation-Related Adventitious Rooting Competence of Pine Stem Cuttings. FRONTIERS IN PLANT SCIENCE 2021; 12:783783. [PMID: 35126413 PMCID: PMC8810826 DOI: 10.3389/fpls.2021.783783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/17/2021] [Indexed: 05/04/2023]
Abstract
Stem cutting recalcitrance to adventitious root formation is a major limitation for the clonal propagation or micropropagation of elite genotypes of many forest tree species, especially at the adult stage of development. The interaction between the cell wall-plasma membrane and cytoskeleton may be involved in the maturation-related decline of adventitious root formation. Here, pine homologs of several genes encoding proteins involved in the cell wall-plasma membrane-cytoskeleton continuum were identified, and the expression levels of 70 selected genes belonging to the aforementioned group and four genes encoding auxin carrier proteins were analyzed during adventitious root formation in rooting-competent and non-competent cuttings of Pinus radiata. Variations in the expression levels of specific genes encoding cell wall components and cytoskeleton-related proteins were detected in rooting-competent and non-competent cuttings in response to wounding and auxin treatments. However, the major correlation of gene expression with competence for adventitious root formation was detected in a family of genes encoding proteins involved in sensing the cell wall and membrane disturbances, such as specific receptor-like kinases (RLKs) belonging to the lectin-type RLKs, wall-associated kinases, Catharanthus roseus RLK1-like kinases and leucine-rich repeat RLKs, as well as downstream regulators of the small guanosine triphosphate (GTP)-binding protein family. The expression of these genes was more affected by organ and age than by auxin and time of induction.
Collapse
|
8
|
Díaz-Sala C. A Perspective on Adventitious Root Formation in Tree Species. PLANTS 2020; 9:plants9121789. [PMID: 33348577 PMCID: PMC7766270 DOI: 10.3390/plants9121789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Adventitious root formation is an organogenic process, regulated at several levels, that is crucial for the successful vegetative propagation of numerous plants. In many tree species, recalcitrance to adventitious root formation is a major limitation in the clonal propagation of elite germplasms. Information on the mechanisms underlying the competence for adventitious root formation is still limited. Therefore, increasing our understanding of the mechanisms that enable differentiated somatic cells to switch their fates and develop into root meristematic cells, especially those involved in cell developmental aging and maturation, is a priority in adventitious root-related research. The dynamic cell wall-cytoskeleton, along with soluble factors, such as cellular signals or transcriptional regulators, may be involved in adult cell responses to intrinsic or extrinsic factors, resulting in maintenance, induction of root meristematic cell formation, or entrance into another differentiating pathway.
Collapse
Affiliation(s)
- Carmen Díaz-Sala
- Department of Life Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Wang B, Zhang Y, Dong N, Chen Y, Zhang Y, Hao Y, Qi J. Comparative transcriptome analyses provide novel insights into etiolated shoot development of walnut (Juglans regia L.). PLANTA 2020; 252:74. [PMID: 33025156 DOI: 10.1007/s00425-020-03455-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
In general, genes promoting IAA, CTK GA and ethylene biosynthesis were upregulated, while genes participating in ABA, chlorophyll and starch biosynthesis pathways performed opposite tendency during etiolation. Etiolation as a method for rejuvenation plays an important role in the vegetative propagation of woody plants. However, the molecular mechanism of etiolated shoot development remains unclear. In this study, we investigated changes at different etiolation stages of Juglans regia. The histology and transcriptome of J. regia were analysed using etiolated stems, which were treated in darkness for 30, 60, 90 days. The results showed that the ratios of pith (Pi) diameter/stem diameter (D), cortex (Co) width/D, and phloem (Ph) width/D increased, while the ratio of xylem (Xy) width/D decreased after etiolation, and the difference in these ratios between etiolated stems and the control was more significant at 60 days than 90 days. Differentially expressed genes (DEGs) were significantly enriched in pathways such as plant hormone biosynthesis and signal transduction, chlorophyll biosynthesis and degradation, and starch and sucrose metabolism. The difference in the contents of indole-3-acetic acid (IAA), abscisic acid (ABA), sugar and chlorophyll between etiolated stems and the control increased with increasing treatment duration; in contrast, the concentrations of gibberellin (GA), zeatin (ZT), and starch, as well as the difference between the etiolated stems and control were lowest at 60 days among the three stages. On the whole, the positive effect of etiolation on the rejuvenation of walnut stems changed as the treatment period increased. The present investigation lays a foundation for future studies on the effect of etiolation on rejuvenation and for promoting the efficiency of vegetative propagation.
Collapse
Affiliation(s)
- Beibei Wang
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yan Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Ningguang Dong
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yonghao Chen
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yunqi Zhang
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Yanbin Hao
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
| | - Jianxun Qi
- Beijing Academy of Forestry and Pomology Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China.
| |
Collapse
|
10
|
da Costa CT, Gaeta ML, de Araujo Mariath JE, Offringa R, Fett-Neto AG. Comparative adventitious root development in pre-etiolated and flooded Arabidopsis hypocotyls exposed to different auxins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:161-168. [PMID: 29604522 DOI: 10.1016/j.plaphy.2018.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/06/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Adventitious roots (ARs) emerge from stems, leaves or hypocotyls, being strategic for clonal propagation. ARs may develop spontaneously, upon environmental stress or hormonal treatment. Auxins strongly influence AR development (ARD), depending on concentration and kind. However, the role of different types of auxin is rarely compared at the molecular level. Rooting triggered by light exposure and flooding was examined in intact etiolated Arabidopsis thaliana hypocotyls treated with distinct auxin types. Morphological aspects, rooting-related gene expression profiles, and IAA immunolocalization were recorded. NAA and 2,4-D effects were highly dose-dependent; at higher concentrations NAA inhibited root growth and 2,4-D promoted callus formation. NAA yielded the highest number of roots, but inhibited elongation. IAA increased the number of roots with less interference in elongation, yielding the best overall rooting response. IAA was localized close to the tissues of root origin. Auxin stimulated ARD was marked by increased expression of PIN1 and GH3.3. NAA treatment induced expression of CYCB1, GH3.6 and ARF8. These NAA-specific responses may be associated with the development of numerous shorter roots. In contrast, expression of the auxin action inhibitor IAA28 was induced by IAA. Increased PIN1 expression indicated the relevance of auxin efflux transport for focusing in target cells, whereas GH3.3 suggested tight control of auxin homeostasis. IAA28 increased expression during IAA-induced ARD differs from what was previously reported for lateral root development, pointing to yet another possible difference in the molecular programs of these two developmental processes.
Collapse
Affiliation(s)
- Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Marcos Letaif Gaeta
- Plant Anatomy Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Jorge Ernesto de Araujo Mariath
- Plant Anatomy Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Remko Offringa
- Department of Molecular and Developmental Genetics, Institute Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 CB Leiden, The Netherlands
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|