1
|
Singh HC, Tiwari V, Meena B, Tiwari A, Rana TS. Exploration of Genetic Variation and Population Structure in Bergenia ciliata for its Conservation Implications. Biochem Genet 2024:10.1007/s10528-024-10908-0. [PMID: 39223334 DOI: 10.1007/s10528-024-10908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Bergenia ciliata (Haw.) Sternb. is a perennial medicinal herb distributed in Indian Himalayan Region (IHR). A total of eight populations of B. ciliata were collected from diverse locales of IHR, and 17 EST-SSR markers were used in this study. The present study revealed moderate genetic diversity at the locus level with the mean number of alleles (Na = 7.823), mean number effective of alleles (Ne = 3.375), mean expected heterozygosity (He = 0.570), and mean Shannon's diversity index (I = 1.264). The MSR (He = 0.543, I = 1.067) and DRJ populations (He = 0.309, I = 0.519) revealed the highest and lowest genetic diversity at the population level, respectively. AMOVA analysis showed that 81.76% of genetic variation was within populations, 10.55% was among populations, and 7.69% was among the regions. In addition, a moderate to high level of differentiation was found among the populations (FST = 0.182), which could be indicative of low to moderate gene flow (Nm = 0.669) in the B. ciliata populations. UPGMA and PCoA analysis revealed that eight populations could be differentiated into two groups, while the structure analysis of the 96 individuals differentiated into three groups. The Mantel test showed a positive relationship between genetic and geographical distance. The findings of this study will provide the development of conservation and germplasm management strategies for this valuable medicinal species.
Collapse
Affiliation(s)
- Harish Chandra Singh
- Molecular Systematics Laboratory, Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001, India
- School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Vandana Tiwari
- Molecular Systematics Laboratory, Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Baleshwar Meena
- CSIR-Traditional Knowledge Digital Library, Ground Floor, 14, Satsang Vihar Marg, New Delhi, 110067, India
| | - Avinash Tiwari
- School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Tikam Singh Rana
- Molecular Systematics Laboratory, Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001, India.
- CSIR-Human Resource Development Centre, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Yadav LK, Bellis D, Smith ZC, Ony M, Hale C, Richards C, Klingeman WE, Staton ME, Granger JJ, Hadziabdic D. Genetic diversity and population structure of a rare flowering tree endemic to Appalachia, Stewartia ovata. Ecol Evol 2024; 14:e11547. [PMID: 38932967 PMCID: PMC11199121 DOI: 10.1002/ece3.11547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Stewartia ovata (cav.) Weatherby, commonly known as mountain stewartia, is an understory tree native to the southeastern United States (U.S.). This relatively rare species occurs in isolated populations in Virginia, Kentucky, Tennessee, North Carolina, South Carolina, Georgia, Alabama, and Mississippi. As a species, S. ovata has largely been overlooked, and limited information is available regarding its ecology, which presents obstacles to conservation efforts. Stewartia ovata has vibrant, large white flowers that bloom in summer with a variety of filament colors, suggesting potential horticultural traits prized by ornamental industry. However, S. ovata is relatively slow growing and, due to long seed dormancy, propagation is challenging with limited success rates. This has created a need to assess the present genetic diversity in S. ovata populations to inform potential conservation and restoration of the species. Here, we employ a genotyping-by-sequencing (GBS) approach to characterize the spatial distribution and genetic diversity of S. ovata in the southern Appalachia region of the eastern United States. A total of 4475 single nucleotide polymorphisms (SNPs) were identified across 147 individuals from 11 collection sites. Our results indicate low genetic diversity (He = 0.216), the presence of population structure (K = 2), limited differentiation (F ST = 0.039), and high gene flow (Nm = 6.16) between our subpopulations. Principal component analysis corroborated the findings of STRUCTURE, confirming the presence of two distinct S. ovata subpopulations. One subpopulation mainly contains genotypes from the Cumberland Plateau, Tennessee, while the other consists of genotypes present in the Great Smoky Mountain ranges in Tennessee, North Carolina, and portions of Nantahala, Chattahoochee-Oconee national forests in Georgia, highlighting that elevation likely plays a major role in its distribution. Our results further suggested low inbreeding coefficient (F IS = 0.070), which is expected with an outcrossing tree species. This research further provides necessary insight into extant subpopulations and has generated valuable resources needed for conservation efforts of S. ovata.
Collapse
Affiliation(s)
- L. K. Yadav
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - D. Bellis
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Z. C. Smith
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - M. Ony
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - C. Hale
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Forest and Wildlife Research CenterMississippi State UniversityMississippi StateMississippiUSA
| | - C. Richards
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
| | - W. E. Klingeman
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - M. E. Staton
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - J. J. Granger
- Forest and Wildlife Research CenterMississippi State UniversityMississippi StateMississippiUSA
| | - D. Hadziabdic
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
3
|
Singh HC, Tiwari V, Tiwari A, Rana TS. Development of EST-SSR markers in Bergenia ciliata using de novo transcriptome sequencing. Genome 2024; 67:119-124. [PMID: 38091581 DOI: 10.1139/gen-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bergenia ciliata (Haw.) Sternb. is an important herb predominantly found in the Indian Himalayan Region. It is widely used in medicines, healthcare systems, cosmetics, fodder, and ornamental purposes. The Illumina sequencing and de novo transcriptome assembly were carried out in B. ciliata to develop and identify simple sequence repeat markers. A total of 18 226 simple sequence repeats (SSRs) were identified wherein di-nucleotides were found to be abundant (47.88%), followed by mono-nucleotide (35.03%) and tri-nucleotide (15.88%) repeats. A total of 11 839 EST-SSR primers were designed, of which 96 primer pairs were commercially synthesized. Finally, 17 primer pairs revealed clear, distinct polymorphic bands, and these primers were validated with 40 diverse B. ciliata accessions. The present study revealed moderate level of genetic diversity (Ho = 0.389, He = 0.542, and PIC = 0.513). Furthermore, the transcriptome data and EST-SSR markers generated during the present investigation could be an important genetic resource for functional genomics, population studies, and conservation genetics of the genus Bergenia.
Collapse
Affiliation(s)
- Harish Chandra Singh
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
- School of Studies in Botany, Jiwaji University, Gwalior-474011, Madhya Pradesh, India
| | - Vandana Tiwari
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Avinash Tiwari
- School of Studies in Botany, Jiwaji University, Gwalior-474011, Madhya Pradesh, India
| | - Tikam S Rana
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
4
|
Transcriptomics Profiling of Acer pseudosieboldianum Molecular Mechanism against Freezing Stress. Int J Mol Sci 2022; 23:ijms232314676. [PMID: 36499002 PMCID: PMC9737005 DOI: 10.3390/ijms232314676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Low temperature is an important environmental factor that affects the growth and development of trees and leads to the introduction of failure in the genetic improvement of trees. Acer pseudosieboldianum is a tree species that is well-known for its bright red autumn leaf color. These trees are widely used in landscaping in northeast China. However, due to their poor cold resistance, introduced A. pseudosieboldianum trees suffer severe freezing injury in many introduced environments. To elucidate the physiological indicators and molecular mechanisms associated with freezing damage, we analyzed the physiological indicators and transcriptome of A. pseudosieboldianum, using kits and RNA-Seq technology. The mechanism of A. pseudosieboldianum in response to freezing stress is an important scientific question. In this study, we used the shoots of four-year-old A. pseudosieboldianum twig seedlings, and the physiological index and the transcriptome of A. pseudosieboldianum under low temperature stress were investigated. The results showed that more than 20,000 genes were detected in A. pseudosieboldianum under low temperature (4 °C) and freezing temperatures (-10 °C, -20 °C, -30 °C, and -40 °C). There were 2505, 6021, 5125, and 3191 differential genes (DEGs) between -10 °C, -20°C, -30°C, -40 °C, and CK (4 °C), respectively. Among these differential genes, 48 genes are involved in the MAPK pathway and 533 genes are involved in the glucose metabolism pathway. In addition, the important transcription factors (MYB, AP2/ERF, and WRKY) involved in freezing stress were activated under different degrees of freezing stress. A total of 10 sets of physiological indicators of A. pseudosieboldianum were examined, including the activities of five enzymes and the accumulation of five hormones. All of the physiological indicators except SOD and GSH-Px reached their maximum values at -30 °C. The enzyme activity of SOD was highest at -10 °C, and that of GSH-Px was highest at -20 °C. Our study is the first to provide a more comprehensive understanding of the differential genes (DEGs) involved in A. pseudosieboldianum under freezing stress at different temperatures at the transcriptome level. These results may help to clarify the molecular mechanism of cold tolerance of A. pseudosieboldianum and provide new insights and candidate genes for the genetic improvement of the freezing tolerance of A. pseudosieboldianum.
Collapse
|
5
|
Huang H, Ji H, Ju S, Lin W, Li J, Lv X, Lin L, Guo L, Qiu D, Yan J, Ma X. Pantranscriptome combined with phenotypic quantification reveals germplasm kinship and regulation network of bract color variation in Bougainvillea. FRONTIERS IN PLANT SCIENCE 2022; 13:1018846. [PMID: 36466294 PMCID: PMC9713818 DOI: 10.3389/fpls.2022.1018846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Bracts are the metamorphic non-flower organ in angiosperm plants. The variation of the color and shape of bracts was found to be neo-functionalized (i.e., similar to petals), garnering research interest as a pollinator attractor. Bougainvillea is known for its specialized, large, and colorful bracts, which contrast with its tiny colorless flowers. As a plant whose bracts vary greatly in terms of coloration, the molecular mechanisms for Bougainvillea bract coloration and polychroism are largely unknown. The lack of genomic information for Bougainvillea largely hinders studies into the evolution and genetic basis of bract color variation. In this study, a pan-transcriptome of bracts obtained from 18 Bougainvillea glabra accessions was employed to investigate the global population-level germplasm kinship and the gene regulation network for bract color variation. Our results showed that the bracts of B. glabra accessions have largely differentiated International Commission on Illumination (CIE) L-a-b values. Moreover, germplasm kinship detected using principal component analysis, phylogeny, and admixture analysis showed three optimal subgroups, two of them distinctly clustered, which were not directly correlated with bract color variation at the population level. Differentially expressed genes (DEGs) between accessions of high vs. low L-a-b values revealed several considerable upregulated genes related to bract color L-a-b variation. A weighted gene co-expression network was constructed, and eight co-expressed regulation modules were identified that were highly correlated with variation in bract CIE L-a-b color values. Several candidate DEGs and co-expressed hub genes (e.g., GERD, SGR, ABCA3, GST, CYP76AD1, CYP76C, and JAZ) that were tightly associated with bract color variation were eventually determined responsible for L-a-b colorations, which might be the core regulation factors contributing to the B. glabra bract color variation. This study provides valuable insights into the research on germplasm kinship, population-level pan-transcriptome expression profiles, and the molecular basis of color variation of key innovative bracts in horticultural Bougainvillea.
Collapse
Affiliation(s)
- Huaxing Huang
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China
| | - Hongli Ji
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Song Ju
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijin Guo
- International Magnesium Institute, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianyong Yan
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Wang Y, Ma X, Lu Y, Hu X, Lou L, Tong Z, Zhang J. Assessing the current genetic structure of 21 remnant populations and predicting the impacts of climate change on the geographic distribution of Phoebe sheareri in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157391. [PMID: 35850348 DOI: 10.1016/j.scitotenv.2022.157391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Phoebe sheareri is a valuable tree species known as "Golden Nanmu" and is one of the most important protected tree species in China. However, natural populations are decreasing because of climate change and anthropogenic factors. To evaluate the genetic diversity and structure of remnant populations and the impacts of climate change on the distribution of potential suitable habitats, we conducted a field investigation and sampled 21 P. sheareri natural populations to evaluate their genetic diversity and structure using simple sequence repeat (SSR) molecular markers. Then, we predicted the distribution of suitable P. sheareri habitats across China under future scenarios (RCP 2.6 and RCP 8.5) and periods (2050 and 2070) using multivariate modeling methods-the MaxEnt model. The results showed a medium level of genetic diversity and low inbreeding in the 21 P. sheareri natural populations, and genetic differentiation among populations was significant, with 21.2 % genetic variation among populations. The remnant populations of P. sheareri were grouped into four genetic clusters based on genetic structure; five environmental variables involving four temperature variables and precipitation seasonality (Bio12) might determine the distribution of P. sheareri populations. In the future, the suitable habitats of P. sheareri are manifested as northward migration, and the highly suitable habitats are expected to increase. Our results highlight the importance of conservation units in situ, giving priority to populations with higher genetic diversity (e.g., TMS, FJS, and THY populations); sampling strategies for ex situ conservation, breeding and reforestation should consider climate change, especially Bio1 (annual mean temperature) and Bio12 (annual precipitation). Overall, this study may provide useful genetic information for strategies for the protection, management, and utilization of P. sheareri.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Xiaohua Ma
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Yunfeng Lu
- The Seeding Breeding Center of Ningbo Forestry Bureau, Ningbo 315012, Zhejiang, China
| | - Xiange Hu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Luhuan Lou
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
7
|
Transcriptome Analysis and Identification of a Female-Specific SSR Marker in Pistacia chinensis Based on Illumina Paired-End RNA Sequencing. Genes (Basel) 2022; 13:genes13061024. [PMID: 35741786 PMCID: PMC9222763 DOI: 10.3390/genes13061024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023] Open
Abstract
Pistacia chinensis Bunge (P. chinensis), a dioecious plant species, has been widely found in China. The female P. chinensis plants are more important than male plants in agricultural production, as their seeds can serve as an ideal feedstock for biodiesel. However, the sex of P. chinensis plants is hard to distinguish during the seedling stage due to the scarcity of available transcriptomic and genomic information. In this work, Illumina paired-end RNA sequencing assay was conducted to unravel the transcriptomic profiles of female and male P. chinensis flower buds. In total, 50,925,088 and 51,470,578 clean reads were obtained from the female and male cDNA libraries, respectively. After quality checks and de novo assembly, a total of 83,370 unigenes with a mean length of 1.3 kb were screened. Overall, 64,539 unigenes (77.48%) could be matched in at least one of the NR, NT, Swiss-Prot, COG, KEGG, and GO databases, 71 of which were putatively related to the floral development of P. chinensis. Additionally, 21,662 simple sequence repeat (SSR) motifs were identified in 17,028 unigenes of P. chinensis, and the mononucleotide motif was the most dominant type of repeats (52.59%) in P. chinensis, followed by dinucleotide (22.29%), trinucleotide (20.15%). The most abundant repeats were AG/CT (13.97%), followed by AAC/GTT (6.75%) and AT/TA (6.10%). Based on these SSR, 983 EST-SSR primers were designed, 151 of which were randomly chosen for validation. Of these validated EST-SSR markers, 25 SSR markers were found to be polymorphic between male and female plants. One SSR marker, namelyPCSSR55, displayed excellent specificity in female plants, which could clearly distinguish between male and female P. chinensis. Altogether, our findings not only reveal that the EST-SSR marker is extremely effective in distinguishing between male and female P. chinensis but also provide a solid framework for sex determination of plant seedlings.
Collapse
|
8
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Abstract
Pinus koraiensis is a well-known precious tree species in East Asia with high economic, ornamental and ecological value. More than fifty percent of the P. koraiensis forests in the world are distributed in northeast China, a region with abundant germplasm resources. However, these natural P. koraiensis sources are in danger of genetic erosion caused by continuous climate changes, natural disturbances such as wildfire and frequent human activity. Little work has been conducted on the population genetic structure and genetic differentiation of P. koraiensis in China because of the lack of genetic information. In this study, 480 P. koraiensis individuals from 16 natural populations were sampled and genotyped. Fifteen polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers were used to evaluate genetic diversity, population structure and differentiation in P. koraiensis. Analysis of molecular variance (AMOVA) of the EST-SSR marker data showed that 33% of the total genetic variation was among populations and 67% was within populations. A high level of genetic diversity was found across the P. koraiensis populations, and the highest levels of genetic diversity were found in HH, ZH, LS and TL populations. Moreover, pairwise Fst values revealed significant genetic differentiation among populations (mean Fst = 0.177). According to the results of the STRUCTURE and Neighbor-joining (NJ) tree analyses and principal component analysis (PCA), the studied geographical populations cluster into two genetic clusters: cluster 1 from Xiaoxinganling Mountains and cluster 2 from Changbaishan Mountains. These results are consistent with the geographical distributions of the populations. The results provide new genetic information for future genome-wide association studies (GWAS), marker-assisted selection (MAS) and genomic selection (GS) in natural P. koraiensis breeding programs and can aid the development of conservation and management strategies for this valuable conifer species.
Collapse
|
10
|
De novo transcriptome sequencing of triton shell Charonia lampas sauliae: Identification of genes related to neurotoxins and discovery of genetic markers. Mar Genomics 2021; 59:100862. [PMID: 33827771 DOI: 10.1016/j.margen.2021.100862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Charonia lampas sauliae (triton snails, triton shells or tritons; Mollusca, Caenogastropoda, Littorinimorpha, Ranellidae) is a marine species with a wide distribution. In Korea, this species is listed as vulnerable and is regionally protected as an endangered species. Here, we report the first comprehensive transcriptome dataset of C. lampas sauliae obtained using the Illumina HiSeq 2500 platform. In total, 97.68% of raw read sequences were processed as clean reads. Of the 577,478 contigs obtained, 146,026 sequences were predicted to contain coding regions. About 89.34% of all annotated unigene sequences showed homologous matches to protein sequences in PANM DB (Protostome database). Further, about one-third of the unigene sequences were annotated using the UniGene, Swiss-Prot, Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. In total, 190 enzymes were predicted under key metabolic pathways under stood through Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotation. Repetitive elements such as long terminal repeats (LTRs), short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and DNA elements were enriched in the unigene sequences. Among the identified transcripts were the channel proteins, some of which were blocked by tetrodotoxin, which is thought to be synthesized by symbiotic bacteria inhabiting the shells. In addition, conotoxin superfamily peptides, such as B-conotoxin, conotoxin superfamily T and alpha-conotoxin, were identified, which may have relevance to biomedical and evolutionary research. A transcriptome-wide search for polymorphic loci identified 21,568 simple sequence repeats (SSRs) in the unigene sequences. Most SSRs were dinucleotides, among which AC/GT was the dominant SSR type. The molecular and genetic resources revealed in this study could be utilized for investigations on the fitness of the species in the marine environment and sustainability in a changing habitat.
Collapse
|
11
|
Senkoro AM, Talhinhas P, Simões F, Batista-Santos P, Shackleton CM, Voeks RA, Marques I, Ribeiro-Barros AI. The genetic legacy of fragmentation and overexploitation in the threatened medicinal African pepper-bark tree, Warburgia salutaris. Sci Rep 2020; 10:19725. [PMID: 33184322 PMCID: PMC7661512 DOI: 10.1038/s41598-020-76654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
The pepper-bark tree (Warburgia salutaris) is one of the most highly valued medicinal plant species worldwide. Native to southern Africa, this species has been extensively harvested for the bark, which is widely used in traditional health practices. Illegal harvesting coupled with habitat degradation has contributed to fragmentation of populations and a severe decline in its distribution. Even though the species is included in the IUCN Red List as Endangered, genetic data that would help conservation efforts and future re-introductions are absent. We therefore developed new molecular markers to understand patterns of genetic diversity, structure, and gene flow of W. salutaris in one of its most important areas of occurrence (Mozambique). In this study, we have shown that, despite fragmentation and overexploitation, this species maintains a relatively high level of genetic diversity supporting the existence of random mating. Two genetic groups were found corresponding to the northern and southern locations. Our study suggests that, if local extinctions occurred in Mozambique, the pepper-bark tree persisted in sufficient numbers to retain a large proportion of genetic diversity. Management plans should concentrate on maintaining this high level of genetic variability through both in and ex-situ conservation actions.
Collapse
Affiliation(s)
- Annae M Senkoro
- Department of Environmental Science, Rhodes University, Grahamstown, 6140, South Africa.,Departmento de Ciências Biológicas, Universidade Eduardo Mondlane CP 257, Maputo, Moçambique
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Fernanda Simões
- Instituto Nacional de Investigação Agrária E Veterinária, Av. da República, Quinta Marquês, Edificio Sede, 2780-157, Oeiras, Portugal
| | - Paula Batista-Santos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Charlie M Shackleton
- Department of Environmental Science, Rhodes University, Grahamstown, 6140, South Africa
| | - Robert A Voeks
- Department of Geography and the Environment, California State University, 800 N State College Blvd, FullertonFullerton, CA, 92831, USA
| | - Isabel Marques
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - Ana I Ribeiro-Barros
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| |
Collapse
|
12
|
Motahari B, Shabanian N, Rahmani MS, Mohammad-Hasani F. Genetic diversity and genetic structure of Acer monspessulanum L. across Zagros forests of Iran using molecular markers. Gene 2020; 769:145245. [PMID: 33069803 DOI: 10.1016/j.gene.2020.145245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022]
Abstract
Acer monspessulanum L. is an important tree species found in the temperate Zagros forests of Iran. Despite its importance, the long-term persistence of its small and fragmented populations is jeopardised by genetic erosion and hence, monitoring its genetic resource and variability is practically required for providing conservation measures of the species germplasm in Zagros woodland ecosystem. The present study aimed to provide the first data on genetic diversity and genetic differentiation pattern of 19 natural populations comprising 240 individuals of A. monspessulanum across its growing area in Zagros forests using three molecular tools including inter-simple sequence repeats (ISSR), start codon targeted (SCoT), and simple sequence repeat (SSR). In total, ISSR and SCoT primers generated a total of 141 and 121 clear and scorable bands for analysis with the polymorphism rate of 90.50 and 90.02% and a mean of 10.85 and 11 fragments per marker, respectively. In addition, 73 alleles were achieved using 10 polymorphic SSR loci from the studied accessions with 100% polymorphism, ranging between 5 and 10 alleles per locus. Average percentage of polymorphic alleles per population for ISSR, SCoT, and SSR data was 84.02%, 83%, and 100%, respectively, and generally, Nei's gene diversity (H) and Shannon's index of diversity (I) values for all populations demonstrated moderate to high levels of genetic diversity (H = 0.267-0.707; I = 0.38-1.38). The AMOVA results of the three marker systems attributed higher genetic variation to individuals within in each population than among populations. Furthermore, overall GST value for all populations detected the moderate to high levels of genetic differentiation, indicating a limited gene flow occurrence among the populations. STRUCTURE analysis (K = 5) clustered the populations into four to five distinct groups, in accordance with geographical distances. These results could represent an important contribution for effective germplasm characterization and could be eventually used in in situ or ex situ conservation of A. monspessulanum genetic resources.
Collapse
Affiliation(s)
- Behnaz Motahari
- Laboratory of Forest Tree Genetics, Department of Forestry, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-1-5175, Iran
| | - Naghi Shabanian
- Department of Forestry, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-1-5175, Iran; The Center for Research and Development of Northern Zagros Forests, University of Kurdistan, Baneh 220, Iran.
| | - Mohammad-Shafie Rahmani
- Laboratory of Forest Tree Genetics, Department of Forestry, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-1-5175, Iran.
| | - Farshad Mohammad-Hasani
- Laboratory of Forest Tree Genetics, Department of Forestry, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-1-5175, Iran
| |
Collapse
|
13
|
Liu D, Zhang L, Wang J, Ma Y. Conservation Genomics of a Threatened Rhododendron: Contrasting Patterns of Population Structure Revealed From Neutral and Selected SNPs. Front Genet 2020; 11:757. [PMID: 33101354 PMCID: PMC7500208 DOI: 10.3389/fgene.2020.00757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Though it is well-acknowledged that next generation sequencing (NGS) technologies can provide further insights into plant conservation management than traditional molecular markers, studies employing NGS to address conservation genomics and subsequent conservation strategies for threatened plants are still rare. Rhododendron is the largest genus of woody plants in China, and many species are threatened, however, to date there has been no conservation genetic research using NGS in this genus. In the present study, we investigated the conservation genetics of R. cyanocarpum, a threatened species endemic to the Cangshan Mountains in Yunnan, China, using a double digest restriction-site-associated DNA-sequencing (ddRAD-seq) approach. Due to the availability of sufficient SNPs, we were able to distinguish between neutral and putatively selected SNPs and were able to further investigate the genetic diversity, population structure, and differentiation in R. cyanocarpum, as well as make an estimation of its demographic history. A total of 6,584 SNPs were obtained, of which 5,729 were neutral (detected using Tajima’s D). In terms of the 5,729 neutral SNPs, R. cyanocarpum had a higher genetic diversity (π = 0.0702 ± 0.0017, He = 0.0675 ± 0.0016) than other plant species assessed using Rad-seq methods, while population differentiation (Fst from 0.0314 to 0.0452) was weak. Interestingly, contrasting patterns of population structure were revealed from all neutral and selected SNPs, with distinct genetic clusters forming for all SNPs and neutral SNPs, but no distinct subgroups for selected ones. Moreover, we were able to detect changes in effective population size (Ne) of R. cyanocarpum from 150,000 years ago, including a bottleneck event ca. 60,000 years ago, followed by recovery of Ne over a short period, and a subsequent gradual decline in Ne to date. Implications for conserving R. cyanocarpum based on these main results are then discussed.
Collapse
Affiliation(s)
- Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lu Zhang
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming, China
| | - Jihua Wang
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Ye H, Wu J, Wang Z, Hou H, Gao Y, Han W, Ru W, Sun G, Wang Y. Population genetic variation characterization of the boreal tree Acer ginnala in Northern China. Sci Rep 2020; 10:13515. [PMID: 32782277 PMCID: PMC7419535 DOI: 10.1038/s41598-020-70444-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Genetic diversity and differentiation are revealed particularly through spatio-temporal environmental heterogeneity. Acer ginnala, as a deciduous shrub/small tree, is a foundation species in many terrestrial ecosystems of Northern China. Owing to its increased use as an economic resource, this species has been in the vulnerability. Therefore, the elucidations of the genetic differentiation and influence of environmental factors on A. ginnala are very critical for its management and future utilization strategies. In this study, high genetic diversity and differentiation occurred in A. ginnala, which might be resulted from its pollination mechanism and species characteristics. Compared with the species level, relatively low genetic diversity was detected at the population level that might be the cause for its vulnerability. There was no significant relationship between genetic and geographical distances, while a significant correlation existed between genetic and environmental distances. Among nineteen climate variables, Annual Mean Temperature (bio1), Mean Diurnal Range (bio2), Isothermality (bio3), Temperature Seasonality (bio4), Precipitation of Wettest Month (bio13), Precipitation Seasonality (bio15), and Precipitation of Warmest Quarter (bio18) could explain the substantial levels of genetic variation (> 40%) in this species. The A. ginnala populations were isolated into multi-subpopulations by the heterogeneous climate conditions, which subsequently promoted the genetic divergence. Climatic heterogeneity played an important role in the pattern of genetic differentiation and population distribution of A. ginnala across a relatively wide range in Northern China. These would provide some clues for the conservation and management of this vulnerable species.
Collapse
Affiliation(s)
- Hang Ye
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Jiahui Wu
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China.,Changzhi University, Changzhi, 046011, Shanxi, China
| | - Zhi Wang
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Huimin Hou
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Yue Gao
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Wei Han
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Wenming Ru
- Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS, B3H3C3, Canada.
| | - Yiling Wang
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China.
| |
Collapse
|
15
|
Vu DD, Shah SNM, Pham MP, Bui VT, Nguyen MT, Nguyen TPT. De novo assembly and Transcriptome characterization of an endemic species of Vietnam, Panax vietnamensis Ha et Grushv., including the development of EST-SSR markers for population genetics. BMC PLANT BIOLOGY 2020; 20:358. [PMID: 32727354 PMCID: PMC7391578 DOI: 10.1186/s12870-020-02571-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/23/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Understanding the genetic diversity in endangered species that occur inforest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population are unknown due to lack of efficient molecular markers. RESULTS In this study, we employed Illumina HiSeq™ 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). Raw reads total of 23,741,783 was obtained and then assembled, from which the generated unigenes were 89,271 (average length = 598.3191 nt). The 31,686 unigenes were annotated in different databases i.e. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Nucleotide Collection (NR/NT) and Swiss-Prot for functional annotation. Further, 11,343 EST-SSRs were detected. From 7774 primer pairs, 101 were selected for polymorphism validation, in which; 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used for population structure and diversity analyses. The obtained results revealed high levels of genetic diversity in populations, the average observed and expected heterozygosity were HO = 0.422 and HE = 0.479, respectively. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of the bottleneck in all populations. Genetic differentiation between populations was moderate (FST = 0.133) and indicating slightly high level of gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. Our results shows two genetic clusters related to geographical distances. CONCLUSION Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.
Collapse
Affiliation(s)
- Dinh Duy Vu
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Syed Noor Muhammad Shah
- Department of Horticulture, Faculty of Agriculture, Gomal University Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | - Mai Phuong Pham
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Van Thang Bui
- College of Forestry Biotechnology, Vietnam National University of Forestry, Xuan Mai, Hanoi, Vietnam
| | - Minh Tam Nguyen
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Trang Nguyen
- Institute of Ecology and Biological Resource, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, , Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
16
|
Li Z, Yuan Y, Meng M, Hu P, Wang Y. De novo transcriptome of the whole-body of the gastropod mollusk Philomycus bilineatus, a pest with medical potential in China. J Appl Genet 2020; 61:439-449. [PMID: 32557200 DOI: 10.1007/s13353-020-00566-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/18/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022]
Abstract
Philomycus bilineatus is a highly common gastropod mollusk pest in China and is also utilized to treat infectious diseases. However, no genomic resources are available for this non-model species. In the present study, the transcriptomic analysis of P. bilineatus was completed. After sequencing using the next generation sequencing technology, 9.11 Gb of clean reads were obtained, which led to the assembly and annotation of 145,523 transcripts and 125,690 unigenes. Unigenes were functionally classified using Gene Ontology (GO), euKaryotic Ortholog Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 27,554 unigenes were assigned into 55 GO terms, 13,989 unigenes were differentiated into 26 KOG categories, and 16,368 unigenes were assigned to 229 KEGG pathways. Furthermore, 16,614 simple sequence repeats (SSRs), 38 olfactory genes, and 40 antimicrobial peptide/protein genes were identified. The transcriptome profile of P. bilineatus will provide a valuable genomic resource for further study, will promote the development of new pest management strategies through interference of chemosensory communication, and will support potential medicinal uses of this species.
Collapse
Affiliation(s)
- Zhongjie Li
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China.
| | - Yaping Yuan
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Miaomiao Meng
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Ping Hu
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Yong Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| |
Collapse
|
17
|
Hina F, Yisilam G, Wang S, Li P, Fu C. De novo Transcriptome Assembly, Gene Annotation and SSR Marker Development in the Moon Seed Genus Menispermum (Menispermaceae). Front Genet 2020; 11:380. [PMID: 32457795 PMCID: PMC7227793 DOI: 10.3389/fgene.2020.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
The moonseed genus Menispermum L. (Menispermaceae) is disjunctly distributed in East Asia and eastern North America. Although Menispermum has important medicinal value, genetic and genomic information is scarce, with very few available molecular markers. In the current study, we used Illumina transcriptome sequencing and de novo assembly of the two Menispermum species to obtain in-depth genetic knowledge. From de novo assembly, 53,712 and 78,921 unigenes were generated for M. canadense and M. dauricum, with 37,527 (69.87%) and 55,211 (69.96%) showing significant similarities against the six functional databases, respectively. Moreover, 521 polymorphic EST-SSRs were identified. Of them, 23 polymorphic EST-SSR markers were selected to investigate the population genetic diversity within the genus. The newly developed EST-SSR markers also revealed high transferability among the three examined Menispermaceae species. Overall, we provide the very first transcriptomic analyses of this important medicinal genus. In addition, the novel microsatellite markers developed here will aid future studies on the population genetics and phylogeographic patterns of Menispermum at the intercontinental geographical scale.
Collapse
Affiliation(s)
- Faiza Hina
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Gulbar Yisilam
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shenyi Wang
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Pan Li
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chengxin Fu
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Li X, Liu X, Wei J, Li Y, Tigabu M, Zhao X. Development and Transferability of EST-SSR Markers for Pinus koraiensis from Cold-Stressed Transcriptome through Illumina Sequencing. Genes (Basel) 2020; 11:genes11050500. [PMID: 32370137 PMCID: PMC7291311 DOI: 10.3390/genes11050500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Pinus koraiensis has significant economic and ecological value in Northeast China. However, due to the lack of suitable molecular markers, only a few available microsatellite markers were developed for further population genetics studies. In this study, for the first time we developed expressed sequence tag-simple sequence repeat (EST-SSR) markers from the cold-stressed transcriptome of P. koraiensis using Illumina Sequencing. We identified a total of 7,235 EST-SSRs from 97,376 sequences, and we tested their transferability among seven related Pinus species. The results showed that trinucleotides were the most abundant type of repeat (1287, 18.74%) excluding mononucleotides, followed by dinucleotides (1284, 18.7%) and tetranucleotides (72, 1.05%). The most dominant dinucleotides and trinucleotide repeat motifs were AT/AT (535, 7.79%) and AAT/ATT (103, 1.5%). The observed heterozygosity (Ho) and expected heterozygosity (He) ranged from 0.002 to 0.986 and 0.017 to 0.743, respectively, and the polymorphism information content (PIC) values and number of alleles (Na) varied from 0.029 to 0.794 and 2 to 23, respectively. A total of 8 natural P. koraiensis populations were divided into two main genetic clusters. Furthermore, nine of twenty polymorphic primer pairs were successfully amplified in seven Pinus species, and at least 80% of the successful P. koraiensis EST-SSR primers could be amplified in more than four species (16, 80%). Combined results for the development of EST-SSR markers in P. koraiensis and transferability among related species would contribute to improved studies on the genetic diversity and population structure in P. koraiensis and phylogenetic relationships among Pinus species. They would also provide a significant source for quantitative trait locus analysis.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (X.L.); (J.W.); (Y.L.)
| | - Xiaoting Liu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (X.L.); (J.W.); (Y.L.)
| | - Jiatong Wei
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (X.L.); (J.W.); (Y.L.)
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (X.L.); (J.W.); (Y.L.)
| | - Mulualem Tigabu
- Southern Swedish Forest Research Center, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (X.L.); (J.W.); (Y.L.)
- Correspondence: ; Tel.: +86-451-8219-2225
| |
Collapse
|
19
|
Chai M, Ye H, Wang Z, Zhou Y, Wu J, Gao Y, Han W, Zang E, Zhang H, Ru W, Sun G, Wang Y. Genetic Divergence and Relationship Among Opisthopappus Species Identified by Development of EST-SSR Markers. Front Genet 2020; 11:177. [PMID: 32194635 PMCID: PMC7065708 DOI: 10.3389/fgene.2020.00177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Opisthopappus Shih is an endemic and endangered genus restricted to the Taihang Mountains that has important ornamental and economic value. According to the Flora Reipublicae Popularis Sinicae (FRPS, Chinese version), this genus contains two species (Opisthopappus longilobus and Opisthopappus taihangensis), whereas in the Flora of China (English version) only one species O. taihangensis is present. The interspecific phylogenetic relationship remains unclear and undefined, which might primarily be due to the lack of specific molecular markers for phylogenetic analysis. For this study, 2644 expressed sequence tag-simple sequence repeats (EST-SSRs) from 33,974 unigenes using a de novo transcript assembly of Opisthopappus were identified with a distribution frequency of 7.78% total unigenes. Thereinto, mononucleotides (1200, 45.39%) were the dominant repeat motif, followed by trinucleotides (992, 37.52%), and dinucleotides (410, 15.51%). The most dominant trinucleotide repeat motif was ACC/GGT (207, 20.87%). Based on the identified EST-SSRs, 245 among 1444 designed EST-SSR primers were selected for the development of potential molecular markers. Among these markers, 63 pairs of primers (25.71%) generated clear and reproducible bands with expected sizes. Eventually, 11 primer pairs successfully amplified all individuals from the studied populations. Through the EST-SSR markers, a high level of genetic diversity was detected between Opisthopappus populations. A significant genetic differentiation between the O. longilobus and O. taihangensis populations was found. All studied populations were divided into two clusters by UPGMA, NJ, STRUCTURE, and PCoA. These results fully supported the view of the FRPS, namely, that O. longilobus and O. taihangensis should be regarded as two distinct species. Our study demonstrated that transcriptome sequences, as a valuable tool for the quick and cost-effective development of molecular markers, was helpful toward obtaining comprehensive EST-SSR markers that could contribute to an in-depth assessment of the genetic and phylogenetic relationships between Opisthopappus species.
Collapse
Affiliation(s)
- Min Chai
- School of Life Sciences, Shanxi Normal University, Linfen, China
| | - Hang Ye
- School of Life Sciences, Shanxi Normal University, Linfen, China
| | - Zhi Wang
- School of Life Sciences, Shanxi Normal University, Linfen, China
| | - Yuancheng Zhou
- Triticeae Research Institute, Shanxi Academy of Agricultural Science, Linfen, China
| | - Jiahui Wu
- School of Life Sciences, Shanxi Normal University, Linfen, China.,Changzhi University, Changzhi, China
| | - Yue Gao
- School of Life Sciences, Shanxi Normal University, Linfen, China
| | - Wei Han
- School of Life Sciences, Shanxi Normal University, Linfen, China
| | - En Zang
- School of Life Sciences, Shanxi Normal University, Linfen, China
| | - Hao Zhang
- School of Life Sciences, Shanxi Normal University, Linfen, China
| | | | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS, Canada
| | - Yling Wang
- School of Life Sciences, Shanxi Normal University, Linfen, China
| |
Collapse
|
20
|
Genetic Improvement of Pinus koraiensis in China: Current Situation and Future Prospects. FORESTS 2020. [DOI: 10.3390/f11020148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pinus koraiensis (Sieb.et Zucc) is an economically and ecologically important tree species, naturally distributed in northeastern China. Conservation efforts and genetic improvement for this species began in the 1960s and 1980s, with the establishment of several primary seed orchards based on range-wide provenance evaluations. The original breeding objective was to improve growth and wood yield, but during the recent decade, it was redefined to include other traits, such as an enhancement of wood properties, seed oil content, cone yield, and the development of elite provenance with families, clones, and varieties with good tolerance to biotic and abiotic stresses. However, improvement processes are slow due to a long breeding cycle, and the number of improved varieties is still low. In this review, we summarize the recent progress in the selective improvement of P. koraiensis varieties, such as elite provenance, family, and clones, using various breeding procedures. We collate information on advances in the improvement of P. koraiensis, based on conventional breeding and molecular marker-assisted breeding methods; identify gaps in our understanding of the tree improvement processes; and propose future research directions, which will provide new insight for subsequent genetic breeding research on P. koraiensis.
Collapse
|
21
|
Genetic Diversity and Population Genetic Structure of Cinnamomum camphora in South China Revealed by EST-SSR Markers. FORESTS 2019. [DOI: 10.3390/f10111019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cinnamomum camphora is a valuable broad-leaf tree indigenous to South China and East Asia and has been widely cultivated and utilized by humans since ancient times. However, owing to its overutilization for essential oil extraction, the Transplanting Big Trees into Cities Program, and over deforestation to make furniture, its wild populations have been detrimentally affected and are declining rapidly. In the present study, the genetic diversity and population structure of 180 trees sampled from 41 populations in South China were investigated with 22 expressed sequence tag-simple sequence repeat (EST-SSR) markers. In total, 61 alleles were harbored across 180 individuals, and medium genetic diversity level was inferred from the observed heterozygosity (Ho), expected heterozygosity (He), and Nei’ gene diversity (GD), which were 0.45, 0.44, and 0.44, respectively. Among the 41 wild populations, C. camphora had an average of 44 alleles, 2.02 effective alleles, and He ranging from 0.30 (SC) to 0.61 (HK). Analysis of molecular variance (AMOVA) showed that 17% of the variation among populations and the average pairwise genetic differentiation coefficient (FST) between populations was 0.162, indicating relatively low genetic population differentiations. Structure analysis suggested two groups for the 180 individuals, which was consistent with the principal coordinate analysis (PCoA) and unweighted pair-group method with arithmetic means (UPGMA). Populations grouped to cluster I were nearly all distributed in Jiangxi Province (except population XS in Zhejiang Province), and cluster II mainly comprised populations from other regions, indicating a significant geographical distribution. Moreover, the Mantel test showed that this geographical distance was significantly correlated with genetic distance. The findings of this research will assist in future C. camphora conservation management and breeding programs.
Collapse
|
22
|
Genetic Diversity and Population Structure Analysis of Dalbergia Odorifera Germplasm and Development of a Core Collection Using Microsatellite Markers. Genes (Basel) 2019; 10:genes10040281. [PMID: 30959931 PMCID: PMC6523640 DOI: 10.3390/genes10040281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
Dalbergia odorifera T. Chen (Fabaceae) is a woody tree species indigenous to Hainan Island in China. Due to its high medicinal and commercial value, this tree species has been planted over 3500 ha2 in southern China. There is an urgent need for improvement of the D. odorifera germplasm, however, limited information on germplasm collection, conservation, and assessment of genetic resources is available. Therefore, we have built a database of 251 individuals collected across the whole of southern China, which included 42 wild trees and 210 cultivated trees, with the following objectives. (1) Evaluate genetic diversity and population structure of the database using 19 microsatellite markers and (2) develop a core collection for improvement and breeding programs. Totally, the 19 microsatellite markers harbored 77 alleles across the database with the polymorphic information content (PIC) ranging from 0.03 to 0.66. Medium genetic diversity level was inferred by Nei’s gene diversity (0.38), Shannon’s information index (0.65), and observed (0.33) and expected heterozygosity (0.38). Structure analysis showed that four was the optimum cluster size using the model-based Bayesian procedure, and the 251 D. odorifera individuals were grouped into five populations including four pure ones (RP1-4) and one mixed one (MIX) based on their maximum membership coefficients. Among these populations, the expected heterozygosity varied from 0.30 (RP3) to 0.38 (RP4). Analysis of molecular variance (AMOVA) showed 11% genetic variation existed among populations, and moderate population differentiation was inferred by the matrix of pairwise Fst (genetic differentiation among populations), which was in the range of 0.031 to 0.095. Moreover, a core collection of 31 D. odorifera individuals including six wild and 25 cultivated trees was developed, which was only 12.4% of the database but conserved the whole genetic diversity. The results of this study provided additional insight into the genetic structure of the large D. odorifera germplasm, and the core collection will be useful for the efficient and sustainable utilization of genetic resources, as well as efficient improvement in breeding programs.
Collapse
|
23
|
Genetic Diversity of the Endangered Dalbergia odorifera Revealed by SSR Markers. FORESTS 2019. [DOI: 10.3390/f10030225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dalbergia odorifera T. Chen (Fabaceae) is a semi-deciduous tree species indigenous to Hainan Island in China. Due to its precious heartwood “Hualimu (Chinese)” and Chinese medicinal components “Jiangxiang”, D. odorifera is seriously threatened of long-term overexploitation and has been listed on the IUCN (International Union for Conservation of Nature’s) red list since 1998. Therefore, the elucidation of its genetic diversity is imperative for conservation and breeding purposes. In this study, we evaluated the genetic diversity of 42 wild D. odorifera trees from seven populations covering its whole native distribution. In total, 19 SSR (simple sequence repeat) markers harbored 54 alleles across the 42 samples, and the medium genetic diversity level was inferred by Nei’s gene diversity (0.36), observed (0.28) and expected heterozygosity (0.37). Among the seven wild populations, the expected heterozygosity (He) varied from 0.31 (HNQS) to 0.40 (HNCJ). The analysis of molecular variance (AMOVA) showed that only 3% genetic variation existed among populations. Moderate population differentiations among the investigated populations were indicated by pairwise Fst (0.042–0.115). Structure analysis suggested two clusters for the 42 samples. Moreover, the seven populations were clearly distinguished into two clusters from both the principal coordinate analysis (PCoA) and neighbor-joining (NJ) analysis. Populations from Haikou city (HNHK), Baisha autonomous county (HNBS), Ledong autonomous county (HNLD), and Dongfang city (HNDF) comprised cluster I, while cluster II comprised the populations from Wenchang city and Sansha city (HNQS), Changjiang autonomous county (HNCJ), and Wuzhisan city (HNWZS). The findings of this study provide a preliminary genetic basis for the conservation, management, and restoration of this endemic species.
Collapse
|
24
|
Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, Sahebi M, Azizi P. De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci Rep 2019; 9:3047. [PMID: 30816255 PMCID: PMC6395698 DOI: 10.1038/s41598-019-39944-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/06/2019] [Indexed: 11/24/2022] Open
Abstract
Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - M Y Rafii
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jennifer Ann Harikrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Stefaan P O Werbrouck
- Laboratory of Applied Science In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, University Ghent, Valentin Vaerwyckweg 1, BE-9000, Gent, Belgium
| | - Chee How Teo
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|