1
|
Zhang Z, Hu W, Yu A, Bi H, Wang J, Wang X, Kuang H, Wang M. Physicochemical properties, health benefits, and applications of the polysaccharides from Rosa rugosa Thunb.: A review. Int J Biol Macromol 2024; 282:136975. [PMID: 39476919 DOI: 10.1016/j.ijbiomac.2024.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Rosa rugosa Thunb. (R. rugosa) has been used as food and medicine and not just as ornamental plant for nearly a thousand years, its nutritional and medicinal value have been recognized by people. It contains a variety of biological active ingredients that are beneficial to the human body. R. rugosa polysaccharides are also one of the main bioactive ingredients, which have many health benefits such as anti-diabetes, antioxidation, anti-inflammation, anti-tumour, moisture-preserving and anti-alcoholic liver disease. This review summarizes the extraction, purification, structural characteristics, health benefits, and structure-activity relationships of R. rugosa polysaccharides. In addition, current and potential applications of R. rugosa polysaccharides are analyzed and supplemented, hoping to provide some valuable insights for further research and development of functional food additives, nutritional supplements, additives for daily chemical products, and even pharmaceuticals.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haizheng Bi
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jingyuan Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Xingyu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
2
|
Yin X, Yang H, Ding K, Luo Y, Deng W, Liao J, Pan Y, Jiang B, Yong X, Jia Y. PfERF106, a novel key transcription factor regulating the biosynthesis of floral terpenoids in Primula forbesii Franch. BMC PLANT BIOLOGY 2024; 24:851. [PMID: 39256664 PMCID: PMC11385529 DOI: 10.1186/s12870-024-05567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Flowers can be a source of essential oils used in the manufacture of substances with high economic value. The ethylene response factor (ERF) gene family plays a key role in regulating secondary metabolite biosynthesis in plants. However, until now, little has been known about the involvement of ERF transcription factors (TFs) in floral terpenoid biosynthesis. RESULTS In this study, an aromatic plant, Primula forbesii Franch., was used as research material to explore the key regulatory effects of PfERF106 on the biosynthesis of terpenoids. PfERF106, which encodes an IXb group ERF transcription factor, exhibited a consistent expression trend in the flowers of P. forbesii and was transcriptionally induced by exogenous ethylene. Transient silencing of PfERF106 in P. forbesii significantly decreased the relative contents of key floral terpenes, including (z)-β-ocimene, sabinene, β-pinene, γ-terpinene, linalool, eremophilene, α-ionone, and α-terpineol. In contrast, constitutive overexpression of PfERF106 in transgenic tobacco significantly increased the relative contents of key floral terpenes, including cis-3-hexen-1-ol, linalool, caryophyllene, cembrene, and sclareol. RNA sequencing of petals of PfERF106-silenced plants and empty-vector control plants revealed 52,711 expressed unigenes and 9,060 differentially expressed genes (DEGs). KEGG annotation analysis revealed that the DEGs were enriched for involvement in secondary metabolic biosynthetic pathways, including monoterpene and diterpene synthesis. Notably, 10 downregulated DEGs were determined to be the downstream target genes of PfERF106 affecting the biosynthesis of terpenoids in P. forbesii. CONCLUSION This study characterized the key positive regulatory effects of PfERF106 on the biosynthesis of terpenoids, indicating high-quality genetic resources for aroma improvement in P. forbesii. Thus, this study advances the artificial and precise directional regulation of metabolic engineering of aromatic substances.
Collapse
Affiliation(s)
- Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongchen Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Ding
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wanqing Deng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianwei Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
4
|
Li X, Tieman D, Alseekh S, Fernie AR, Klee HJ. Natural variations in the Sl-AKR9 aldo/keto reductase gene impact fruit flavor volatile and sugar contents. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1134-1150. [PMID: 37243881 DOI: 10.1111/tpj.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
The unique flavors of different fruits depend upon complex blends of soluble sugars, organic acids, and volatile organic compounds. 2-Phenylethanol and phenylacetaldehyde are major contributors to flavor in many foods, including tomato. In the tomato fruit, glucose, and fructose are the chemicals that most positively contribute to human flavor preferences. We identified a gene encoding a tomato aldo/keto reductase, Sl-AKR9, that is associated with phenylacetaldehyde and 2-phenylethanol contents in fruits. Two distinct haplotypes were identified; one encodes a chloroplast-targeted protein while the other encodes a transit peptide-less protein that accumulates in the cytoplasm. Sl-AKR9 effectively catalyzes reduction of phenylacetaldehyde to 2-phenylethanol. The enzyme can also metabolize sugar-derived reactive carbonyls, including glyceraldehyde and methylglyoxal. CRISPR-Cas9-induced loss-of-function mutations in Sl-AKR9 significantly increased phenylacetaldehyde and lowered 2-phenylethanol content in ripe fruit. Reduced fruit weight and increased soluble solids, glucose, and fructose contents were observed in the loss-of-function fruits. These results reveal a previously unidentified mechanism affecting two flavor-associated phenylalanine-derived volatile organic compounds, sugar content, and fruit weight. Modern varieties of tomato almost universally contain the haplotype associated with larger fruit, lower sugar content, and lower phenylacetaldehyde and 2-phenylethanol, likely leading to flavor deterioration in modern varieties.
Collapse
Affiliation(s)
- Xiang Li
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Denise Tieman
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Harry J Klee
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
5
|
Wang X, Su DF, Jablonski NG, Ji X, Kelley J, Flynn LJ, Deng T. Earliest giant panda false thumb suggests conflicting demands for locomotion and feeding. Sci Rep 2022; 12:10538. [PMID: 35773284 PMCID: PMC9246853 DOI: 10.1038/s41598-022-13402-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Of the many peculiarities that enable the giant panda (Ailuropoda melanoleuca), a member of the order Carnivora, to adapt to life as a dedicated bamboo feeder, its extra “thumb” is arguably the most celebrated yet enigmatic. In addition to the normal five digits in the hands of most mammals, the giant panda has a greatly enlarged wrist bone, the radial sesamoid, that acts as a sixth digit, an opposable “thumb” for manipulating bamboo. We report the earliest enlarged radial sesamoid, already a functional opposable “thumb,” in the ancestral panda Ailurarctos from the late Miocene site of Shuitangba in Yunnan Province, China. However, since the late Miocene, the “thumb” has not enlarged further because it must be balanced with the constraints of weight bearing while walking in a plantigrade posture. This morphological adaptation in panda evolution thus reflects a dual function of the radial sesamoid for both bamboo manipulation and weight distribution. The latter constraint could be the main reason why the panda’s false thumb never evolved into a full digit. This crude “thumb” suggests that the origin of the panda’s dedicated bamboo diet goes back to as early as 6–7 Ma.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA. .,Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.
| | - Denise F Su
- Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85281, USA
| | - Nina G Jablonski
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xueping Ji
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.,Yunnan Institute of Cultural Relics and Archaeology, 15-1, Chunmingli, Chunyuan Xiaoqu, Kunming, 650118, Yunnan, China
| | - Jay Kelley
- Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85281, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lawrence J Flynn
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Tao Deng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| |
Collapse
|
6
|
Sarma C, Mummaleti G, Sivanandham V, Kalakandan S, Rawson A, Anandharaj A. Anthology of palm sap: The global status, nutritional composition, health benefits & value added products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Sheng L, Zang S, Wang J, Wei T, Xu Y, Feng L. Overexpression of a Rosa rugosa Thunb. NUDX gene enhances biosynthesis of scent volatiles in petunia. PeerJ 2021; 9:e11098. [PMID: 33859875 PMCID: PMC8020868 DOI: 10.7717/peerj.11098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Rosa rugosa is an important natural perfume plant in China. Rose essential oil is known as ‘liquid gold’ and has high economic and health values. Monoterpenes are the main fragrant components of R. rugosa flower and essential oil. In this study, a member of the hydrolase gene family RrNUDX1 was cloned from Chinese traditional R. rugosa ‘Tang Hong’. Combined analysis of RrNUDX1 gene expression and the aroma components in different development stages and different parts of flower organ, we found that the main aroma component content was consistent with the gene expression pattern. The RrNUDX1 overexpressed Petunia hybrida was acquired via Agrobacterium-mediated genetic transformation systems. The blades of the transgenic petunias became wider and its growth vigor became strong with stronger fragrance. Gas chromatography with mass spectrometry analysis showed that the contents of the main aroma components of the transgenic petunias including methyl benzoate significantly increased. These findings indicate that the RrNUDX1 gene plays a role in enhancing the fragrance of petunia flowers, and they could lay an important foundation for the homeotic transformation of RrNUDX1 in R. rugosa for cultivating new R. rugosa varieties of high-yield and -quality essential oil.
Collapse
Affiliation(s)
- Lixia Sheng
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Shu Zang
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Jianwen Wang
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Tiantian Wei
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Yong Xu
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Liguo Feng
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Tian S, Liang X, Chen J, Zeng W, Zhou J, Du G. Enhancement of 2-phenylethanol production by a wild-type Wickerhamomyces anomalus strain isolated from rice wine. BIORESOURCE TECHNOLOGY 2020; 318:124257. [PMID: 33096442 DOI: 10.1016/j.biortech.2020.124257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
2-Phenylethanol (2-PE) is an important high-grade aromatic alcohol, which is widely used in the cosmetics, perfumery and food industries. However, 2-PE is mainly synthesized using a chemical route, which produces environmental pollution and harmful by-products. Screening of high-yielding wild-type strains has become an important goal for the future biosynthesis of 2-PE. In this study, a wild-type Wickerhamomyces anomalus was isolated from rice wine fermented mash. By optimizing the initial glucose and l-phenylalanine concentrations, 2630.7 mg/L of 2-PE was obtained in shaking flasks. The conditions of initial glucose and l-phenylalanine concentration, pH, and inoculation amount were optimized for 2-PE production with W. anomalus. Finally, based on the optimal conditions, the 2-PE titer reached 4,727.3 mg/L by a single-dose fed-batch strategy in a 5-L bioreactor. The results showed that the ability was expanded to harness the Ehrlich pathway for the production of high-value aromatics in aroma-producing yeast species.
Collapse
Affiliation(s)
- Shufang Tian
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaolin Liang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Günther J, Lackus ND, Schmidt A, Huber M, Stödtler HJ, Reichelt M, Gershenzon J, Köllner TG. Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar. PLANT PHYSIOLOGY 2019; 180:767-782. [PMID: 30846485 PMCID: PMC6548255 DOI: 10.1104/pp.19.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 05/23/2023]
Abstract
Upon herbivory, the tree species western balsam poplar (Populus trichocarpa) produces a variety of Phe-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-d-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic l-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in Escherichia coli and Nicotiana benthamiana showed that all five AADC/AAS genes identified in the P trichocarpa genome encode active enzymes. However, only two genes, PtAADC1 and PtAAS1, were significantly upregulated after leaf herbivory. Despite a sequence similarity of ∼96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted Phe into 2-phenylethylamine and 2-phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative AADC/AAS gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNA interference -mediated-downregulation of AADC1 in gray poplar (Populus × canescens) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside, whereas the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two P trichocarpa short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside in planta, whereas PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.
Collapse
Affiliation(s)
- Jan Günther
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meret Huber
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|