1
|
Tang Y, Feng S, Yao K, Cheung SW, Wang K, Zhou X, Xiang L. Exogenous electron generation techniques for biomedical applications: Bridging fundamentals and clinical practice. Biomaterials 2025; 317:123083. [PMID: 39798242 DOI: 10.1016/j.biomaterials.2025.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Endogenous bioelectrical signals are quite crucial in biological development, governing processes such as regeneration and disease progression. Exogenous stimulation, which mimics endogenous bioelectrical signals, has demonstrated significant potential to modulate complex biological processes. Consequently, increasing scientific efforts have focused on developing methods to generate exogenous electrons for biological applications, primarily relying on piezoelectric, acoustoelectric, optoelectronic, magnetoelectric, and thermoelectric principles. Given the expanding body of literature on this topic, a systematic and comprehensive review is essential to foster a deeper understanding and facilitate clinical applications of these techniques. This review synthesizes and compares these methods for generating exogenous electrical signals, their underlying principles (e.g., semiconductor deformation, photoexcitation, vibration and relaxation, and charge separation), biological mechanisms, potential clinical applications, and device designs, highlighting their advantages and limitations. By offering a comprehensive perspective on the critical role of exogenous electrons in biological systems, elucidating the principles of various electron-generation techniques, and exploring possible pathways for developing medical devices utilizing exogenous electrons, this review aims to advance the field and support therapeutic innovation.
Collapse
Affiliation(s)
- Yufei Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shuqi Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Keyi Yao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Sze Wing Cheung
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Lee CU, Hesley GK, Pierson TA, Higgins RL, Urban MW. Breast ultrasound knobology and the knobology of twinkling for marker detection. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:28. [PMID: 39534581 PMCID: PMC11557156 DOI: 10.21037/tbcr-24-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Breast ultrasound utilizes various scanning techniques to acquire optimal images for diagnostic evaluation. During interventional procedures, such as ultrasound-guided biopsies or preoperative localizations, knowledgeable and purposeful scanning adjustments are critical for successfully identifying the targeted mass or biopsy marker or clip. While most ultrasound scanning parameters are similar across different vendors, detailed descriptions specifically addressing the scanning parameters-often referred to as "knobology"- for breast ultrasound is at best limited in the literature. This review highlights ten key operator-controlled adjustments (including transducer selection, beam focusing, power, depth, gain and time gain compensation, harmonic imaging, spatial compounding, dynamic range, beam steering, and color Doppler) that significantly influence image quality in breast ultrasound. Each adjustment is accompanied by an "In practice" section providing examples and practical tips on implementation. The last topic discusses color Doppler which is generally used in breast ultrasound for evaluating the vascularity of a finding. Color Doppler, or more specifically, color Doppler twinkling, can be leveraged as a technique to detect certain breast biopsy markers that are challenging to detect by conventional B-mode ultrasound. While the cause of color Doppler twinkling is still under active investigation, twinkling is a clinically well-known, compelling ultrasound feature typically described with kidney stones. A step-by-step guide on how to use color Doppler twinkling to detect these markers is provided.
Collapse
Affiliation(s)
- Christine U. Lee
- Department of Radiology, Division of Breast Imaging and Intervention, Mayo Clinic, Rochester, MN, USA
| | - Gina K. Hesley
- Department of Radiology, Division of Breast Imaging and Intervention, Mayo Clinic, Rochester, MN, USA
| | - Taylor A. Pierson
- Department of Radiology, Division of Breast Imaging and Intervention, Mayo Clinic, Rochester, MN, USA
| | - Rebecca L. Higgins
- Department of Radiology, Division of Breast Imaging and Intervention, Mayo Clinic, Rochester, MN, USA
| | - Matthew W. Urban
- Department of Radiology, Division of Radiology Research, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Wang J, Zhao S, Yi J, Sun Y, Agrawal M, Oelze ML, Li K, Moore JS, Chen YS. Injectable Mechanophore Nanoparticles for Deep-Tissue Mechanochemical Dynamic Therapy. ACS NANO 2024. [PMID: 39250826 DOI: 10.1021/acsnano.4c04090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Photodynamic therapy (PDT) and sonodynamic therapy (SDT), using nonionizing light and ultrasound to generate reactive oxygen species, offer promising localized treatments for cancers. However, the effectiveness of PDT is hampered by inadequate tissue penetration, and SDT largely relies on pyrolysis and sonoluminescence, which may cause tissue injury and imprecise targeting. To address these issues, we have proposed a mechanochemical dynamic therapy (MDT) that uses free radicals generated from mechanophore-embedded polymers under mechanical stress to produce reactive oxygen species for cancer treatment. Yet, their application in vivo is constrained by the bulk form of the polymer and the need for high ultrasound intensities for activation. In this study, we developed injectable, nanoscale mechanophore particles with enhanced ultrasound sensitivity by leveraging a core-shell structure comprising silica nanoparticles (NPs) whose interfaces are linked to polymer brushes by an azo mechanophore moiety. Upon focused ultrasound (FUS) treatment, this injectable NP generates reactive oxygen species (ROS), demonstrating promising results in both an in vitro 4T1 cell model and an in vivo mouse model of orthotopic breast cancers. This research offers an alternative therapy technique, integrating force-responsive azo mechanophores and FUS under biocompatible conditions.
Collapse
Affiliation(s)
- Jian Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shensheng Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junxi Yi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yunyan Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Megha Agrawal
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - King Li
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yun-Sheng Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Shaik MI, Rahman SHA, Yusri AS, Ismail-Fitry MR, Kumar NSS, Sarbon NM. A review on the processing technique, physicochemical, and bioactive properties of marine collagen. J Food Sci 2024; 89:5205-5229. [PMID: 39126690 DOI: 10.1111/1750-3841.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Collagens are conventionally derived from bovine and porcine sources. However, these sources were commonly associated with infectious diseases such as bovine spongiform encephalopathy, foot and mouth disease, autoimmune and allergic reactions, and religious constraints. The significant amount of collagen available in marine species, especially fish skins, scales, fins, and bones, shows that marine species can be a potential alternative source to mammalian collagen. Therefore, this review aims to give a clearer outlook on the processing techniques of marine collagen and its physicochemical and bioactive properties as a potential alternative to mammalian collagen. The two most suitable extraction methods for marine collagen are pepsin-soluble extraction and ultrasound-assisted extraction. Additionally, marine collagen's physicochemical and bioactive properties, such as antioxidants, wound healing, tissue engineering, and cosmetic biomaterial have been thoroughly discussed in this review. PRACTICAL APPLICATION: Collagen extracted from marine sources showed its potential in physicochemical and bioactive properties, including antioxidants and wound-healing capabilities, as an alternative to mammalian collagen. The significant amount of collagen found in marine species, particularly in fish skins, scales, bones, and sea cucumbers, suggests that marine sources could be a viable alternative to land mammal collagen due to their abundance and accessibility. The ultrasound-assisted extraction technique has improved the extracted marine collagen's physicochemical and bioactivity properties and quality properties.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Siti Hajar Abdul Rahman
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anis Syafiqah Yusri
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nune Satya Sampath Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Shi L, Mastracchio C, Saytashev I, Ye M. Low frequency ultrasound elicits broad cortical responses inhibited by ketamine in mice. COMMUNICATIONS ENGINEERING 2024; 3:120. [PMID: 39192002 DOI: 10.1038/s44172-024-00269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The neuromodulatory effects of >250 kHz ultrasound have been well-demonstrated, but the impact of lower-frequency ultrasound, which can transmit better through air and the skull, on the brain is unclear. This study investigates the biological impact of 40 kHz pulsed ultrasound on the brain using calcium imaging and electrophysiology in mice. Our findings reveal burst duration-dependent neural responses in somatosensory and auditory cortices, resembling responses to 12 kHz audible tone, in vivo. In vitro brain slice experiments show no neural responses to 300 kPa 40 kHz ultrasound, implying indirect network effects. Ketamine fully blocks neural responses to ultrasound in both cortices but only partially affects 12 kHz audible tone responses in the somatosensory cortex and has no impact on auditory cortex 12 kHz responses. This suggests that low-frequency ultrasound's cortical effects rely heavily on NMDA receptors and may involve mechanisms beyond indirect auditory cortex activation. This research uncovers potential low-frequency ultrasound effects and mechanisms in the brain, offering a path for future neuromodulation.
Collapse
Affiliation(s)
- Linli Shi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Christina Mastracchio
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Ilyas Saytashev
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
6
|
Imani IM, Kim HS, Shin J, Lee D, Park J, Vaidya A, Kim C, Baik JM, Zhang YS, Kang H, Hur S, Song H. Advanced Ultrasound Energy Transfer Technologies using Metamaterial Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401494. [PMID: 38889336 PMCID: PMC11336982 DOI: 10.1002/advs.202401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Indexed: 06/20/2024]
Abstract
Wireless energy transfer (WET) based on ultrasound-driven generators with enormous beneficial functions, is technologically in progress by the valuation of ultrasonic metamaterials (UMMs) in science and engineering domains. Indeed, novel metamaterial structures can develop the efficiency of mechanical and physical features of ultrasound energy receivers (US-ETs), including ultrasound-driven piezoelectric and triboelectric nanogenerators (US-PENGs and US-TENGs) for advantageous applications. This review article first summarizes the fundamentals, classification, and design engineering of UMMs after introducing ultrasound energy for WET technology. In addition to addressing using UMMs, the topical progress of innovative UMMs in US-ETs is conceptually presented. Moreover, the advanced approaches of metamaterials are reported in the categorized applications of US-PENGs and US-TENGs. Finally, some current perspectives and encounters of UMMs in US-ETs are offered. With this objective in mind, this review explores the potential revolution of reliable integrated energy transfer systems through the transformation of metamaterials into ultrasound-driven active mediums for generators.
Collapse
Affiliation(s)
- Iman M. Imani
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Hyun Soo Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Joonchul Shin
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Dong‐Gyu Lee
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jiwon Park
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Anish Vaidya
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Chowon Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jeong Min Baik
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital Harvard Medical SchoolCambridgeMA02139USA
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Hyun‐Cheol Song
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- KIST‐SKKU Carbon‐Neutral Research CenterSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
7
|
Malashin I, Tynchenko V, Martysyuk D, Shchipakov N, Krysko N, Degtyarev M, Nelyub V, Gantimurov A, Borodulin A, Galinovsky A. Assessment of Anisotropic Acoustic Properties in Additively Manufactured Materials: Experimental, Computational, and Deep Learning Approaches. SENSORS (BASEL, SWITZERLAND) 2024; 24:4488. [PMID: 39065884 PMCID: PMC11280887 DOI: 10.3390/s24144488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The influence of acoustic anisotropy on ultrasonic testing reliability poses a challenge in evaluating products from additive technologies (AT). This study investigates how elasticity constants of anisotropic materials affect defect signal amplitudes in AT products. Experimental measurements on AT samples were conducted to determine elasticity constants. Using Computational Modeling and Simulation Software (CIVA), simulations explored echo signal changes across ultrasound propagation directions. The parameters A13 (the ratio between the velocities of ultrasonic transverse waves with vertical and horizontal polarizations at a 45-degree angle to the growth direction), A3 (the ratio for waves at a 90-degree angle), and Ag (the modulus of the difference between A13 and A3) were derived from wave velocity relationships and used to characterize acoustic anisotropy. Comparative analysis revealed a strong correlation (0.97) between the proposed anisotropy coefficient Ag and the amplitude changes. Threshold values of Ag were introduced to classify anisotropic materials based on observed amplitude changes in defect echo signals. In addition, a method leveraging deep learning to predict Ag based on data from other anisotropy constants through genetic algorithm (GA)-optimized neural network (NN) architectures is proposed, offering an approach that can reduce the computational costs associated with calculating such constants.
Collapse
Affiliation(s)
- Ivan Malashin
- Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Vadim Tynchenko
- Bauman Moscow State Technical University, Moscow 105005, Russia
| | | | | | - Nikolay Krysko
- Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Maxim Degtyarev
- Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Vladimir Nelyub
- Bauman Moscow State Technical University, Moscow 105005, Russia
- Far Eastern Federal University, Vladivostok 690922, Russia
| | | | | | | |
Collapse
|
8
|
Chaubey A, Pratap T, Preetiva B, Patel M, Singsit JS, Pittman CU, Mohan D. Definitive Review of Nanobiochar. ACS OMEGA 2024; 9:12331-12379. [PMID: 38524436 PMCID: PMC10955718 DOI: 10.1021/acsomega.3c07804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Nanobiochar is an advanced nanosized biochar with enhanced properties and wide applicability for a variety of modern-day applications. Nanobiochar can be developed easily from bulk biochar through top-down approaches including ball-milling, centrifugation, sonication, and hydrothermal synthesis. Nanobiochar can also be modified or engineered to obtain "engineered nanobiochar" or biochar nanocomposites with enhanced properties and applications. Nanobiochar provides many fold enhancements in surface area (0.4-97-times), pore size (0.1-5.3-times), total pore volume (0.5-48.5-times), and surface functionalities over bulk biochars. These enhancements have given increased contaminant sorption in both aqueous and soil media. Further, nanobiochar has also shown catalytic properties and applications in sensors, additive/fillers, targeted drug delivery, enzyme immobilization, polymer production, etc. The advantages and disadvantages of nanobiochar over bulk biochar are summarized herein, in detail. The processes and mechanisms involved in nanobiochar synthesis and contaminants sorption over nanobiochar are summarized. Finally, future directions and recommendations are suggested.
Collapse
Affiliation(s)
| | - Tej Pratap
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manvendra Patel
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jonathan S. Singsit
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Charles U. Pittman
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
9
|
Tran Vo TM, Potiyaraj P, del Val P, Kobayashi T. Ultrasound-Triggered Amoxicillin Release from Chitosan/Ethylene Glycol Diglycidyl Ether/Amoxicillin Hydrogels Having a Covalently Bonded Network. ACS OMEGA 2024; 9:585-597. [PMID: 38222581 PMCID: PMC10785092 DOI: 10.1021/acsomega.3c06213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
An antibiotic release system triggered by ultrasound (US) was investigated using chitosan (CS)/ethylene glycol diglycidyl ether (EGDE) hydrogel carriers with amoxicillin (Amox) drug. Different CS concentrations of 1.5, 2, 2.5, and 3 wt % were gelled with EGDE and Amox was entrapped in the hydrogel carrier; the accelerated release was observed as triggered by 43 kHz US exposure at different US output powers ranging from 0 to 35 W. Among these CS hydrogel systems, the degree of accelerated Amox release depended on the CS concentration for the hydrogelation and the matrix with 2 wt % CS exhibited efficient Amox release at 35 W US power with around 19 μg/mL. The drug released with time was fitted with Higuchi and Korsmeyer-Peppas models, and the enhancement was caused by US aiding drug diffusion within the hydrogel matrix by a non-Fickian diffusion mechanism. The US effect on the viscoelasticity of the hydrogel matrix indicated that the matrix became somewhat softened by the US exposure to the dense hydrogels for 2.5 and 3% CS/EGDE, while the degree of softening was slightly marked in the CS/EGDE hydrogels prepared with 1.5 and 2% CS concentration. Such US softening also aided drug diffusion within the hydrogel matrix, suggesting an enhanced Amox release.
Collapse
Affiliation(s)
- Tu Minh Tran Vo
- Department
of Energy and Environmental Science, Nagaoka
University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- Department
of Materials Science, Chulalongkorn University,
Faculty of Science, Pathum Wan, Bangkok 10330, Thailand
| | - Pranut Potiyaraj
- Department
of Materials Science, Chulalongkorn University,
Faculty of Science, Pathum Wan, Bangkok 10330, Thailand
| | - Patricia del Val
- Department
of Mechanics, Design and Industrial Management, University of Deusto, Unibertsitate Etorb., 24, Bilbo, Bizkaia 48007, Spain
| | - Takaomi Kobayashi
- Department
of Energy and Environmental Science, Nagaoka
University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- Department
of Science of Technology Innovation, Nagaoka
University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
10
|
Careta O, Nicolenco A, Perdikos F, Blanquer A, Ibañez E, Pellicer E, Stefani C, Sepúlveda B, Nogués J, Sort J, Nogués C. Enhanced Proliferation and Differentiation of Human Osteoblasts by Remotely Controlled Magnetic-Field-Induced Electric Stimulation Using Flexible Substrates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58054-58066. [PMID: 38051712 PMCID: PMC10739596 DOI: 10.1021/acsami.3c09428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
With the progressive aging of the population, bone fractures are an increasing major health concern. Diverse strategies are being studied to reduce the recovery times using nonaggressive treatments. Electrical stimulation (either endogenous or externally applied electric pulses) has been found to be effective in accelerating bone cell proliferation and differentiation. However, the direct insertion of electrodes into tissues can cause undesirable inflammation or infection reactions. As an alternative, magnetoelectric heterostructures (wherein magnetic fields are applied to induce electric polarization) could be used to achieve electric stimulation without the need for implanted electrodes. Here, we develop a magnetoelectric platform based on flexible kapton/FeGa/P(VDF-TrFE) (flexible substrate/magnetostrictive layer/ferroelectric layer) heterostructures for remote magnetic-field-induced electric field stimulation of human osteoblast cells. We show that the use of flexible supports overcomes the clamping effects that typically occur when analogous magnetoelectric structures are grown onto rigid substrates (which preclude strain transfer from the magnetostrictive to the ferroelectric layers). The study of the diverse proliferation and differentiation markers evidence that in all the stages of bone formation (cell proliferation, extracellular matrix maturation, and mineralization), the electrical stimulation of the cells results in a remarkably better performance. The results pave the way for novel strategies for remote cell stimulation based on flexible platforms not only in bone regeneration but also in many other applications where electrical cell stimulation may be beneficial (e.g., neurological diseases or skin regeneration).
Collapse
Affiliation(s)
- Oriol Careta
- Departament
de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
| | - Aliona Nicolenco
- Departament
de Física, Universitat Autònoma
de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
- CIDETEC,
Parque Científico y Tecnológico de Gipuzkoa, Paseo Miramón, 191, San Sebastián 20014, Spain
| | - Filippos Perdikos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona E-08193, Spain
| | - Andreu Blanquer
- Departament
de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
| | - Elena Ibañez
- Departament
de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
| | - Eva Pellicer
- Departament
de Física, Universitat Autònoma
de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
| | - Christina Stefani
- Departament
de Física, Universitat Autònoma
de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
| | - Borja Sepúlveda
- Instituto
de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona E-08193, Spain
| | - Josep Nogués
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona E-08193, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona E-08010, Spain
| | - Jordi Sort
- Departament
de Física, Universitat Autònoma
de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona E-08010, Spain
| | - Carme Nogués
- Departament
de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès E-08193, Spain
| |
Collapse
|
11
|
Moses JC, Adibi S, Wickramasinghe N, Nguyen L, Angelova M, Islam SMS. Non-invasive blood glucose monitoring technology in diabetes management: review. Mhealth 2023; 10:9. [PMID: 38323150 PMCID: PMC10839510 DOI: 10.21037/mhealth-23-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/07/2023] [Indexed: 02/08/2024] Open
Abstract
Diabetes is one of the leading non-communicable diseases globally, adversely impacting an individual's quality of life and adding a considerable burden to the healthcare systems. The necessity for frequent blood glucose (BG) monitoring and the inconveniences associated with self-monitoring of BG, such as pain and discomfort, has motivated the development of non-invasive BG approaches. However, the current research progress is slow, and only a few BG self-monitoring devices have made considerable progress. Hence, we evaluate the available non-invasive glucose monitoring technologies validated against BG recordings to provide future research direction to design, develop, and deploy self-monitoring of BG with integrated emerging technologies. We searched five databases, Embase, MEDLINE, Proquest, Scopus, and Web of Science, to assess the non-invasive technology's scope in the diabetes management paradigm published from 2000 to 2020. A total of three approaches to non-invasive screening, including saliva, skin, and breath, were identified and discussed. We observed a statistical relationship between BG measurements obtained from non-invasive methods and standard clinical measures. Opportunities exist for future research to advance research progress and facilitate early technology adoption for healthcare practice. The results promise clinical validity; however, formulating regulatory guidelines could foresee the deployment of approved non-invasive BG monitoring technologies in healthcare practice. Further, research prospects are there to design, develop, and deploy integrated diabetes management systems with mobile technologies, data analytics, and the internet of things (IoT) to deliver a personalised monitoring system.
Collapse
Affiliation(s)
- Jeban Chandir Moses
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
| | - Sasan Adibi
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
| | - Nilmini Wickramasinghe
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Lemai Nguyen
- Department of Information Systems and Business Analytics, Deakin Business School, Deakin University, Melbourne, VIC, Australia
| | - Maia Angelova
- School of Information Technology, Deakin University, Melbourne, VIC, Australia
- Aston Digital Futures Institute, College of Physical Sciences and Engineering, Aston University, Birmingham, UK
| | | |
Collapse
|
12
|
Wang X, Xu X, Yang Z, Xu X, Han S, Zhang H. Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomater Sci 2023; 11:7489-7511. [PMID: 37873617 DOI: 10.1039/d3bm00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sonodynamic therapy (SDT) is an emerging treatment method. In comparison with photodynamic therapy (PDT), SDT exhibits deep penetration, high cell membrane permeability, and free exposure to light capacity. Unfortunately, owing to inappropriate ultrasound parameter selection, poor targeting of sonosensitizers, and the complex tumor environment, SDT is frequently ineffective. In this review, we describe the approaches for selecting ultrasound parameters and how to develop sonosensitizers to increase targeting and improve adverse tumor microenvironments. Furthermore, the potential of combining SDT with other treatment methods, such as chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy, is discussed to further increase the treatment efficiency of SDT.
Collapse
Affiliation(s)
- Xiangting Wang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhe Yang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xuanshou Xu
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Heng Zhang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| |
Collapse
|
13
|
Siebenmorgen C, Poortinga A, van Rijn P. Sono-processes: Emerging systems and their applicability within the (bio-)medical field. ULTRASONICS SONOCHEMISTRY 2023; 100:106630. [PMID: 37826890 PMCID: PMC10582584 DOI: 10.1016/j.ultsonch.2023.106630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Sonochemistry, although established in various fields, is still an emerging field finding new effects of ultrasound on chemical systems and are of particular interest for the biomedical field. This interdisciplinary area of research explores the use of acoustic waves with frequencies ranging from 20 kHz to 1 MHz to induce physical and chemical changes. By subjecting liquids to ultrasonic waves, sonochemistry has demonstrated the ability to accelerate reaction rates, alter chemical reaction pathways, and change physical properties of the system while operating under mild reaction conditions. It has found its way into diverse industries including food processing, pharmaceuticals, material science, and environmental remediation. This review provides an overview of the principles, advancements, and applications of sonochemistry with a particular focus on the domain of (bio-)medicine. Despite the numerous benefits sonochemistry has to offer, most of the research in the (bio-)medical field remains in the laboratory stage. Translation of these systems into clinical practice is complex as parameters used for medical ultrasound are limited and toxic side effects must be minimized in order to meet regulatory approval. However, directing attention towards the applicability of the system in clinical practice from the early stages of research holds significant potential to further amplify the role of sonochemistry in clinical applications.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Albert Poortinga
- Technical University Eindhoven, Department of Mechanical Engineering, Gemini Zuid, de Zaale, Eindhoven 5600 MB, The Netherlands.
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
14
|
Deng Y, Paskert A, Zhang Z, Wittkowski R, Ahmed D. An acoustically controlled helical microrobot. SCIENCE ADVANCES 2023; 9:eadh5260. [PMID: 37729400 PMCID: PMC10511192 DOI: 10.1126/sciadv.adh5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
As a next-generation toolkit, microrobots can transform a wide range of fields, including micromanufacturing, electronics, microfluidics, tissue engineering, and medicine. While still in their infancy, acoustically actuated microrobots are becoming increasingly attractive. However, the interaction of acoustics with microstructure geometry is poorly understood, and its study is necessary for developing next-generation acoustically powered microrobots. We present an acoustically driven helical microrobot with a length of 350 μm and a diameter of 100 μm that is capable of locomotion using a fin-like double-helix microstructure. This microrobot responds to sound stimuli at ~12 to 19 kHz and mimics the spiral motion of natural microswimmers such as spirochetes. The asymmetric double helix interacts with the incident acoustic field, inducing a propulsion torque that causes the microrobot to rotate around its long axis. Moreover, our microrobot has the unique feature of its directionality being switchable by simply tuning the acoustic frequency. We demonstrate this locomotion in 2D and 3D artificial vasculatures using a single sound source.
Collapse
Affiliation(s)
- Yong Deng
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon CH-8803, Switzerland
| | - Adrian Paskert
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Zhiyuan Zhang
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon CH-8803, Switzerland
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon CH-8803, Switzerland
| |
Collapse
|
15
|
Hohlmann B, Broessner P, Phlippen L, Rohde T, Radermacher K. Knee Bone Models From Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1054-1063. [PMID: 37347629 DOI: 10.1109/tuffc.2023.3286287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The number of total knee arthroplasties performed worldwide is on the rise. Patient-specific planning and implants may improve surgical outcomes but require 3-D models of the bones involved. Ultrasound (US) may become a cheap and nonharmful imaging modality if the shortcomings of segmentation techniques in terms of automation, accuracy, and robustness are overcome; furthermore, any kind of US-based bone reconstruction must involve some kind of model completion to handle occluded areas, for example, the frontal femur. A fully automatic and robust processing pipeline is proposed, generating full bone models from 3-D freehand US scanning. A convolutional neural network (CNN) is combined with a statistical shape model (SSM) to segment and extrapolate the bone surface. We evaluate the method in vivo on ten subjects, comparing the US-based model to a magnetic resonance imaging (MRI) reference. The partial freehand 3-D record of the femur and tibia bones deviate by 0.7-0.8 mm from the MRI reference. After completion, the full bone model shows an average submillimetric error in the case of the femur and 1.24 mm in the case of the tibia. Processing of the images is performed in real time, and the final model fitting step is computed in less than a minute. It took an average of 22 min for a full record per subject.
Collapse
|
16
|
Arranz-Paraiso D, Baeza-Moyano D, González-Lezcano RA. Sound and Light Waves in Healthy Environments. ADVANCES IN RELIGIOUS AND CULTURAL STUDIES 2023:145-162. [DOI: 10.4018/978-1-6684-6924-8.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Architects need the freedom to design their projects with the assurance that they will be inspiring aesthetic as well as healthy places, i.e., buildings, streets, parks, avenues, and squares that offer a complete living experience in an environment that takes into account light, sound, vibration, climate, and all those aspects that can disturb people's well-being. We know that prolonged exposure to noise can cause discomfort and sleep disorders, which affect the quality of life. This noise is not the only pollutant as there are other sound waves such as infrasound and ultrasound that are not perceptible but potentially harmful to health. Not forgetting electromagnetic waves, the light that reaches our bodies and which has regulated our lives throughout the existence of the species. The invention of electric lighting had the consequence that people spend practically all day indoors. Days are poorly illuminated, and the nights have too much light. On the other hand, the intensity of artificial light is a fraction of that of daylight and the spectral composition is also different.
Collapse
|
17
|
Liu D, Munoz F, Sanatkhani S, Pouliopoulos AN, Konofagou E, Grinband J, VP F. Alteration of functional connectivity in the cortex and major brain networks of non-human primates following focused ultrasound exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528741. [PMID: 36824864 PMCID: PMC9949083 DOI: 10.1101/2023.02.16.528741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Focused ultrasound (FUS) is a non-invasive neuromodulation technology that is being investigated for potential treatment of neurological and psychiatric disorders. Focused ultrasound combined with microbubbles can temporarily open the intact blood-brain barrier (BBB) of animals and humans, and facilitate drug delivery. FUS exposure, either with or without microbubbles, has been demonstrated to alter the behavior of non-human primates, and previous work has demonstrated transient and long-term effects of FUS neuromodulation on functional connectivity using resting state functional MRI. However, it is unknown whether opening the BBB affects functional connectivity differently than FUS alone. Thus we applied FUS alone (neuromodulation) and FUS with microbubbles (BBB opening) in the dorsal striatum of lightly anesthetized non-human primates, and compared changes in functional connectivity in major brain networks. We found different alteration patterns between FUS neuromodulation and FUS-mediated BBB opening in several cortical areas, and we also found that applying FUS to a deep brain structure can alter functional connectivity in the default mode network and frontotemporal network.
Collapse
Affiliation(s)
- D Liu
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - F Munoz
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - S Sanatkhani
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - A N Pouliopoulos
- Dept. of Surgical & Interventional Engineering, School of Biomedical Engineering & Imaging Science, King’s College London, UK
| | - E Konofagou
- Dept. of Biomedical Engineering, Columbia University, USA
- Dept. of Radiology, Columbia University, USA
| | - J Grinband
- Dept. of Radiology, Columbia University, USA
- Dept. of Psychiatry, Columbia University, USA
| | - Ferrera VP
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
- Dept. of Psychiatry, Columbia University, USA
| |
Collapse
|
18
|
Processing Smoked Pork Loin Using Ultrasound-Assisted Curing. Processes (Basel) 2023. [DOI: 10.3390/pr11010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to evaluate the impact of high intensity ultrasound (HIU)-assisted brining on the physicochemical characteristics and consumer preference of smoked pork loin (Longissimus dorsi, LD). LD cuts (5 × 8 × 2.5 cm, length × width × height) were randomly distributed in a 2 × 2 design of two concentration of brine (5 or 10% NaCl) and two methods of brining (static, TC; or HIU for 30 min). After brining, the samples were smoked, cooled, vacuum packed and stored for 7 d at 4 °C. Weight, pH, percentage of NaCl, water-holding capacity (WHC), shear force and colour characteristics were evaluated in post-brining and smoked samples. Sensory analysis was performed to evaluate preference in appearance, taste, and texture characteristics. Weight and NaCl increased in samples post-brining. However, smoked pork samples were not significantly different among treatments. The smoked samples became more yellow and less red. Consumers preferred TC smoked pork based on this appearance characteristic. HIU improved NaCl concentrations in cured pork meat. Under these conditions, it is necessary to consider the posterior treatment that the ultrasonicated-cured meat will undergo, since part of the weight gain was lost during the smoking process.
Collapse
|
19
|
Zhu Y, Mao Y, Li Y, Tang T, Jiang H, Qiao S, Lin S, Zheng Z, Fang Z, Chen X. Field investigation of the heat stress in outdoor of healthcare workers wearing personal protective equipment in South China. Front Public Health 2023; 11:1166056. [PMID: 37143989 PMCID: PMC10151780 DOI: 10.3389/fpubh.2023.1166056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Since the advent of coronavirus disease 2019 (COVID-19), healthcare workers (HCWs) wearing personal protective equipment (PPE) has become a common phenomenon. COVID-19 outbreaks overlap with heat waves, and healthcare workers must unfortunately wear PPE during hot weather and experience excessive heat stress. Healthcare workers are at risk of developing heat-related health problems during hot periods in South China. The investigation of thermal response to heat stress among HCWs when they do not wear PPE and when they finish work wearing PPE, and the impact of PPE use on HCWs' physical health were conducted. The field survey were conducted in Guangzhou, including 11 districts. In this survey, HCWs were invited to answer a questionnaire about their heat perception in the thermal environment around them. Most HCWs experienced discomfort in their back, head, face, etc., and nearly 80% of HCWs experienced "profuse sweating." Up to 96.81% of HCWs felt "hot" or "very hot." The air temperature had a significant impact on thermal comfort. Healthcare workers' whole thermal sensation and local thermal sensation were increased significantly by wearing PPE and their thermal sensation vote (TSV) tended towards "very hot." The adaptive ability of the healthcare workers would decreased while wearing PPE. In addition, the accept range of the air temperature (T a) were determined in this investigation. Graphical Abstract.
Collapse
Affiliation(s)
- Yongcheng Zhu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yudong Mao
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Yanling Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tianwei Tang
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Huilin Jiang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sicheng Qiao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaopeng Lin
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhimin Zheng
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Zhaosong Fang
- School of Civil Engineering, Guangzhou University, Guangzhou, China
- Zhaosong Fang,
| | - Xiaohui Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xiaohui Chen,
| |
Collapse
|
20
|
Potential Effects on Human Safety and Health from Infrasound and Audible Frequencies Generated by Vibrations of Diesel Engines Using Biofuel Blends at the Workplaces of Sustainable Engineering Systems. SUSTAINABILITY 2022. [DOI: 10.3390/su14137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Employees involved in various occupational environments that include vibration machines and any kind of vehicles are adversely subjected to multiple source noise. Thus, the corresponding noise frequencies (and mainly the infrasound ones) present high interest, especially from the viewpoint of sustainability, due to the potential effects on human safety and health (H_S&H) in sustainable engineering projects. Moreover, the occupational safety and health (OSH) visualization (a fact of unveiling the social dimension of sustainability) of occupational workplaces (by evaluating the infrasound and audible noise frequencies generated by diesel engines) could help a safety officer to lessen crucial risk factors in the OSH field and also to protect, more efficiently, the employees by taking the most essential safety measures. This study (i) suggests a technique to determine the infrasound and audible sound frequencies produced due to vibrations of diesel engines, by using biofuels (i.e., sustainable utilization of resources), in order to evaluate potential effects on human safety and health at the workplaces of sustainable engineering projects, and (ii) it ultimately aims to contribute to the improvement of the three “sustainability pillars” (economy, social, and environmental). Therefore, it provides experimental results of the frequency of the noise (regarding the infrasound and audible spectrum) that a diesel motor generates by vibration, in the frame of using different engine rpms (850, 1150, and 2000) and a variety of biofuel mixtures (B20-D80, B40-D60, B60-D40, and B80-D20). The article shows that the fuel blend meaningfully affects the generated noise, and more particularly, the usage of biofuel blends coming from mixing diesel oil with biodiesel (a fact of the emerging environmental dimension of sustainability) can produce various noise frequencies, which are determined in the infrasound and audible spectra (~10–23 Hz). The suggested technique, by ameliorating the OSH situation, doubtless will help enterprises to achieve the finest allocation of limited financial resources (a fact corresponding to the economic dimension of sustainability), allowing financial managers to have more available budget for implementing other risk-reduction projects.
Collapse
|