1
|
Cho KA, Kim YH, Woo SY, Ryu KH. Tonsil-Derived Mesenchymal Stem Cell-Derived Small Extracellular Vesicles (sEVs) Restore Myo-Inositol Production in LPS-Treated Skeletal Muscle. Tissue Eng Regen Med 2025; 22:285-295. [PMID: 39998743 PMCID: PMC11925814 DOI: 10.1007/s13770-025-00709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Systemic inflammation, often induced by elevated circulating lipopolysaccharide (LPS) levels, is a common consequence of intestinal epithelial barrier damage and microbial translocation. This condition is particularly prevalent in menopausal women, who are at increased risk for chronic inflammation and metabolic syndrome due to physiological changes during menopause. Myo-inositol has been shown to improve metabolic profiles in menopausal women with metabolic syndrome. In this study, we investigated whether small extracellular vesicles (sEVs) from human palatine tonsil-derived mesenchymal stem cells (T-MSCs) can restore circulating myo-inositol levels and promote myo-inositol synthesis in skeletal muscle under repeated LPS exposure, mimicking the intestinal leakage seen in menopausal women. METHODS Over 2 weeks period, LPS was repeatedly administered to mice, along with a group that also received T-MSC-derived sEVs. After 15 days, the expression of proteins involved in inositol synthesis in skeletal muscle, and serum inositol levels were measured. Additionally, intracellular inositol expression was compared in LPS-treated skeletal muscle cells with and without T-MSC sEVs treatment in vitro. Lastly, the protein and microRNA composition of T-MSC sEVs was analyzed. RESULTS Our results demonstrated that T-MSC-derived sEVs significantly increased serum myo-inositol levels and enhanced the expression of myo-inositol synthesis proteins in mice exposed to LPS. Similarly, LPS-treated myotubes supplemented with T-MSC sEVs exhibited restored myo-inositol expression. Moreover, T-MSC sEVs were found to contain high levels of muscle-related proteins. CONCLUSION These findings suggest that T-MSC sEVs may serve as a promising therapeutic strategy for mitigating the effects of intestinal leakage and chronic inflammation in menopausal women. By improving skeletal muscle mass and maintaining myo-inositol levels, T-MSC sEVs offer potential for addressing metabolic disturbances associated with menopause.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Yu-Hee Kim
- Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Gangseo-Gu, Seoul, 07804, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| |
Collapse
|
2
|
Hu Y, Tang S, Zhao W, Wang S, Sun C, Chen B, Zhu Y. Dietary ferulic acid improves growth performance of broilers via enhanced intestinal antioxidant capacity and barrier function. Anim Biosci 2025; 38:106-116. [PMID: 38665075 PMCID: PMC11725724 DOI: 10.5713/ab.23.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVE In this study, the effects of dietary ferulic acid (FA) on the growth traits, antioxidant capacity, and intestinal barrier function of broilers were investigated. METHODS In total, 192 male Arbor Acres broilers were randomly allocated to one of three dietary groups (8 replicates of 8 birds each): control (CON) group (basal diet), FA100 group (basal diet + 100 mg/kg FA), or FA200 group (basal diet + 200 mg/kg FA). The duration of the feeding trial was 42 days. RESULTS Higher average daily gain (ADG) and lower feed to gain (F/G) ratio during day 0 to day 21 were found in the FA100 and FA200 groups, while higher ADG and lower F/G during day 21 to day 42 were only found in FA200 group, compared to the CON group (p<0.05). Serum levels of malondialdehyde and diamine oxidase on day 21 were lower in the FA100 and FA200 groups and those on day 42 were lower in the FA200 group, while glutathione peroxidase level in the FA100 and FA200 groups on day 21 and that in the FA200 group on day 42 were increased (p<0.05). On day 21, jejunal glutathione synthetase (GSS) expression was upregulated in the FA200 group (p<0.05), while jejunal and ileal expression of nuclear factor erythroid 2-related factor 2 (NRF2) and Occludin as well as ileal expression of glutathione peroxidase 1 (GPX1) and zonula occludens 1 (ZO1) were increased in the FA100 and FA200 groups compared to the CON group (p<0.05). On day 42, mRNA expression of GSS, NRF2, SOD1, and GPX1 in the jejunum and ileum as well as Claudin2 in the jejunum and Occludin in the ileum were increased in the FA200 group (p<0.05). CONCLUSION Dietary FA addition could improve the growth performance, antioxidant capacity, and gut integrity of broilers. The current findings provided evidence that the adoption of FA can be a nutrition intervention measure to achieve high-efficient broiler production for poultry farmers.
Collapse
Affiliation(s)
- Yaodong Hu
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Shi Tang
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Silu Wang
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Caiyun Sun
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Binlong Chen
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Yuxing Zhu
- College of Animal Science, Xichang University, Xichang, 615000,
China
| |
Collapse
|
3
|
Karim A, Waheed A, Ahmad F, Qaisar R. Metformin effects on plasma zonulin levels correlate with enhanced physical performance in osteoarthritis patients with diabetes. Inflammopharmacology 2024; 32:3195-3203. [PMID: 39158775 DOI: 10.1007/s10787-024-01558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Metformin (MTF) shows promise in protecting against physical decline in osteoarthritis (OA), but how it works remains unclear. We studied MTF's effects on gut permeability and its link to physical performance in OA patients. METHODS We studied four groups: control (n = 72), OA non-diabetic (n = 58), OA diabetic on MTF (n = 55), and OA diabetic on other anti-diabetics (n = 57). We measured zonulin levels, as intestinal permeability marker, hand-grip strength (HGS), Oxford knee scoring (OKS) to determine OA severity, and short performance physical battery (SPPB) to determine physical functions. RESULTS Patients suffering from OA showed a reduction in HGS and SPPB scores with raised plasma zonulin than controls, irrespective of disease severity. MTF decreased plasma zonulin levels and improved OKS, gait speed, HGS, and SPPB scores in OA patients. However, OA patients taking other anti-diabetic medications demonstrated higher levels of plasma zonulin, reduced HGS, and SPPB scores. Furthermore, a robust correlation of plasma zonulin and HGS, OKS, gait speed, and SPPB scores in OA patients on MTF was observed. Moreover, we found reduced oxidative stress and inflammation associated with these alterations in OA patients treated with MTF. CONCLUSION MTF improves HGS and physical performance by lowering zonulin levels, preserving gut permeability in OA patients.
Collapse
Affiliation(s)
- Asima Karim
- Basic Medical Sciences, Department of Basic Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Abdul Waheed
- Trauma and Orthopaedics, Department of Orthopaedics, Rehman Medical Institute, Peshawar, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, Department of Basic Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Rizwan Qaisar
- Basic Medical Sciences, Department of Basic Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Rodríguez-Bautista JC, López-Lluch G, Rodríguez-Torres P, López-Moral Á, Quijada-Carrera J, Bueno-Antequera J, Blanco-Suárez M, Cáceres-Calle Ó, Munguia-Izquierdo D. Feasibility, Safety, and Effects of an Aerobic Training Program with Blood Flow Restriction on Functional Capacity, and Symptomatology in Women with Fibromyalgia: A Pilot Study. Biomedicines 2024; 12:1895. [PMID: 39200359 PMCID: PMC11351873 DOI: 10.3390/biomedicines12081895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Evidence suggests that aerobic training with blood flow restriction is beneficial for treating fibromyalgia. This study evaluated the feasibility, safety, and effects of an aerobic training program with blood flow restriction for women with fibromyalgia. METHODS Thirty-seven women with fibromyalgia were included, and thirteen with an average age of 59 ± 3, a BMI of 26 ± 3, and who were polymedicated started the intervention period. The intervention group performed aerobic exercise with blood flow restriction using occlusive bands placed in the upper part of the rectus femoris, with a total duration of 14 min of restriction divided into two periods of 7 min with a rest period of 3 min and a total session duration of 17 min. Pressure intensity was measured using the visual pain scale (VAS), scoring 7 out of 10 (n = 7). The non-intervention group performed aerobic exercise without restriction of blood flow for the same periods, rest periods, and total duration of the session (n = 6). The intervention included 2 weekly sessions with 72 h between aerobic walking for 9 weeks. Walking was measured individually using the rating of perceived exertion scale (RPE) with an intensity between 6 and 7 out of 10. Visual and verbal support for the VAS and RPE scale was always provided throughout the sessions supervised by the investigator. Functional capacity was assessed using tests (six-minute walk test, incremental shuttle walk test, knee extension and handgrip test by dynamometer, 30 s chair stand test, and timed up-and-go test). Symptomatology was assessed using questionnaires (Widespread Pain Index, Symptom Severity Score, Fibromyalgia Impact Questionnaire, and Multidimensional Fatigue Inventory), and blood samples were collected. RESULTS There were no adverse effects, and only one participant in the intervention group withdrew. Between-group and intragroup differences showed that the intervention group obtained improvements in the functional tests; CST p = 0.005; 6MWT p = 0.011; Handgrip p = 0.002; TUGT p = 0.002 with reduced impact of the disease according to the questionnaires; FIQ Stiffness p = 0.027 compared with the nonintervention group. Biochemical results remained within normal ranges in both groups. CONCLUSIONS Blood flow-restricted aerobic training may be feasible, safe, and more effective than unrestricted aerobic training as a physical exercise prescription tool to improve cardiorespiratory fitness, strength, balance, and stiffness in women with fibromyalgia.
Collapse
Affiliation(s)
- José Carlos Rodríguez-Bautista
- Physical Performance and Sports Research Center, Department of Sports and Computer Science, Section of Physical Education and Sports, Faculty of Sport Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (Á.L.-M.); (J.B.-A.); (D.M.-I.)
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology (CABD-UPO-JA), Centro de Investigación en Rendimiento Físico y Deportivo (CIRFD), Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Patricia Rodríguez-Torres
- Department of Internal Medicine, Hospital Universitario Nuestra Señora de Valme, 41014 Seville, Spain;
| | - Álvaro López-Moral
- Physical Performance and Sports Research Center, Department of Sports and Computer Science, Section of Physical Education and Sports, Faculty of Sport Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (Á.L.-M.); (J.B.-A.); (D.M.-I.)
| | - Jesús Quijada-Carrera
- Rheumatology Department, Hospital Viamed Santa Ángela de la Cruz, 41014 Seville, Spain;
| | - Javier Bueno-Antequera
- Physical Performance and Sports Research Center, Department of Sports and Computer Science, Section of Physical Education and Sports, Faculty of Sport Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (Á.L.-M.); (J.B.-A.); (D.M.-I.)
| | - Manuel Blanco-Suárez
- SHC Medical, Hospital Viamed Santa Ángela de la Cruz, 41014 Seville, Spain; (M.B.-S.); (Ó.C.-C.)
| | - Óscar Cáceres-Calle
- SHC Medical, Hospital Viamed Santa Ángela de la Cruz, 41014 Seville, Spain; (M.B.-S.); (Ó.C.-C.)
| | - Diego Munguia-Izquierdo
- Physical Performance and Sports Research Center, Department of Sports and Computer Science, Section of Physical Education and Sports, Faculty of Sport Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (Á.L.-M.); (J.B.-A.); (D.M.-I.)
| |
Collapse
|
5
|
Calvez V, Becherucci G, Covello C, Piccirilli G, Mignini I, Esposto G, Laterza L, Ainora ME, Scaldaferri F, Gasbarrini A, Zocco MA. Navigating the Intersection: Sarcopenia and Sarcopenic Obesity in Inflammatory Bowel Disease. Biomedicines 2024; 12:1218. [PMID: 38927425 PMCID: PMC11200968 DOI: 10.3390/biomedicines12061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are intricate systemic conditions that can extend beyond the gastrointestinal tract through both direct and indirect mechanisms. Sarcopenia, characterized by a reduction in muscle mass and strength, often emerges as a consequence of the clinical course of IBDs. Indeed, sarcopenia exhibits a high prevalence in Crohn's disease (52%) and ulcerative colitis (37%). While computed tomography and magnetic resonance imaging remain gold-standard methods for assessing muscle mass, ultrasound is gaining traction as a reliable, cost-effective, and widely available diagnostic method. Muscle strength serves as a key indicator of muscle function, with grip strength test emerging nowadays as the most reliable assessment method. In IBDs, sarcopenia may arise from factors such as inflammation, malnutrition, and gut dysbiosis, leading to the formulation of the 'gut-muscle axis' hypothesis. This condition determines an increased need for surgery with poorer post-surgical outcomes and a reduced response to biological treatments. Sarcopenia and its consequences lead to reduced quality of life (QoL), in addition to the already impaired QoL. Of emerging concern is sarcopenic obesity in IBDs, a challenging condition whose pathogenesis and management are still poorly understood. Resistance exercise and nutritional interventions, particularly those aimed at augmenting protein intake, have demonstrated efficacy in addressing sarcopenia in IBDs. Furthermore, anti-TNF biological therapies showed interesting outcomes in managing this condition. This review seeks to furnish a comprehensive overview of sarcopenia in IBDs, elucidating diagnostic methodologies, pathophysiological mechanisms, and clinical implications and management. Attention will also be paid to sarcopenic obesity, exploring the pathophysiology and possible treatment modalities of this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Catholic University of Rome, 00168 Rome, Italy; (V.C.); (G.B.); (C.C.); (G.P.); (I.M.); (G.E.); (L.L.); (M.E.A.); (F.S.); (A.G.)
| |
Collapse
|
6
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Mena P, Meschi T. The interaction between Mediterranean diet and intestinal microbiome: relevance for preventive strategies against frailty in older individuals. Aging Clin Exp Res 2024; 36:58. [PMID: 38448632 PMCID: PMC10917833 DOI: 10.1007/s40520-024-02707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Age-related changes in intestinal microbiome composition and function are increasingly recognized as pivotal in the pathophysiology of aging and are associated with the aging phenotype. Diet is a major determinant of gut-microbiota composition throughout the entire lifespan, and several of the benefits of a healthy diet in aging could be mediated by the microbiome. Mediterranean diet (MD) is a traditional dietary pattern regarded as the healthy diet paradigm, and a large number of studies have demonstrated its benefits in promoting healthy aging. MD has also a positive modulatory effect on intestinal microbiome, favoring bacterial taxa involved in the synthesis of several bioactive compounds, such as short-chain fatty acids (SCFAs), that counteract inflammation, anabolic resistance, and tissue degeneration. Intervention studies conducted in older populations have suggested that the individual response of older subjects to MD, in terms of reduction of frailty scores and amelioration of cognitive function, is significantly mediated by the gut-microbiota composition and functionality. In this context, the pathophysiology of intestinal microbiome in aging should be considered when designing MD-based interventions tailored to the needs of geriatric patients.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy.
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Pedro Mena
- Microbiome Research Hub, University of Parma, Parma, Italy
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| |
Collapse
|
7
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
8
|
Ahmad F, Karim A, Khan J, Qaisar R. Statin Therapy Induces Gut Leakage and Neuromuscular Disjunction in Patients With Chronic Heart Failure. J Cardiovasc Pharmacol 2023; 82:189-195. [PMID: 37381157 DOI: 10.1097/fjc.0000000000001445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
ABSTRACT Statins are commonly used to limit the risk of cardiovascular diseases, including ischemic heart attack and stroke. However, treatment often leads to myopathy and muscle weakness. Therefore, a better understanding of underlying pathomechanism is needed to improve the clinical outcomes. Here, we assessed the physical performance, including handgrip strength (HGS), gait speed (GS), and short physical performance battery, in 172 patients diagnosed with chronic heart failure (CHF) treated with (n = 50) or without (n = 122) statin and 59 controls. The plasma biomarkers, including sarcopenia marker C-terminal agrin fragment-22 (CAF22), intestinal barrier integrity marker zonulin, and C-reactive protein (CRP), were measured and correlated with the physical performance of patients. The HGS, short physical performance battery scores, and GS were significantly compromised in patients with CHF versus controls. Irrespective of etiology, significant elevation of plasma CAF22, zonulin, and CRP was observed in patients with CHF. There were strong inverse correlations of CAF22 with HGS (r 2 = 0.34, P < 0.0001), short physical performance battery scores (r 2 = 0.08, P = 0.0001), and GS (r 2 = 0.143, P < 0.0001). Strikingly, CAF22 and zonulin were positively correlated with each other (r 2 = 0.10, P = 0.0002) and with the level of CRP in patients with CHF. Further investigations revealed a significant induction of CAF22, zonulin, and CRP in patients with CHF taking statin versus nonstatin group. Consistently, HGS and GS were significantly lower in the statin versus nonstatin CHF patients' group. Collectively, statin therapy adversely affects the neuromuscular junction and intestinal barrier, which potentially induces systemic inflammation and physical disability in patients with CHF. Further prospective confirmation of the findings is required in a well-controlled study.
Collapse
Affiliation(s)
- Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Javaidullah Khan
- Department of Cardiology, Post Graduate Medical Institute, Hayatabad Medical Complex, Peshawar, Pakistan; and
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
10
|
Gobbens RJ. Frailty in Community-Dwelling Older People. Healthcare (Basel) 2023; 11:2298. [PMID: 37628496 PMCID: PMC10454719 DOI: 10.3390/healthcare11162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With a growing aging population around the world [...].
Collapse
Affiliation(s)
- Robbert J. Gobbens
- Faculty of Health, Sports and Social Work, Inholland University of Applied Sciences, 1081 HV Amsterdam, The Netherlands;
- Zonnehuisgroep Amstelland, 1186 AA Amstelveen, The Netherlands
- Department Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Tranzo Academic Centre for Transformation in Care and Welfare, Faculty of Behavioural and Social Sciences, Tilburg University, 5037 AB Tilburg, The Netherlands
| |
Collapse
|
11
|
Mendes J, Simões CD, Martins JO, Sousa AS. INFLAMMATORY BOWEL DISEASE AND SARCOPENIA: A FOCUS ON MUSCLE STRENGTH - NARRATIVE REVIEW. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:373-382. [PMID: 37792768 DOI: 10.1590/s0004-2803.230302023-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/26/2023] [Indexed: 10/06/2023]
Abstract
•Muscle strength decline is a crucial factor for the course of sarcopenia in inflammatory bowel disease (IBD) patients. •There is a need to discuss the association between IBD and sarcopenia focusing not only on changes of muscle mass, but also on muscle strength. •A narrative review was conducted in order to present the set of factors with impact in both muscle strength and IBD. •Inflammation, reduced nutrient intake and malabsorption, changes in body composition and gut microbiota dysbiosis are most likely the main factors with impact on muscle strength in IBD patients. Inflammation, changes in nutrient absorption and gut dysbiosis are common conditions in patients with inflammatory bowel disease. These factors may lead to variations in macro- and micronutrients and, particularly, to an imbalance of protein metabolism, loss of muscle mass and development of sarcopenia. This narrative review aims to present the set of factors with impact in muscle strength and physical performance that may potentially mediate the relation between inflammatory bowel disease and sarcopenia. Studies that associated changes in muscle strength, sarcopenia and inflammatory bowel disease were selected through a literature search in databases Medline, Pubmed and Scielo using relevant keywords: muscle strength, physical performance, sarcopenia and inflammatory bowel disease. Chronic inflammation is currently reported as a determinant factor in the development of muscle atrophy in inflammatory bowel disease. In addition, strength decline in inflammatory bowel disease patients may be also influenced by changes in body composition and by gut dysbiosis. Measures of muscle strength and physical performance should be considered in the initial identification of sarcopenia, particularly in patients with inflammatory bowel disease, for a timely intervention can be provided. Presence of proinflammatory cytokines, high adiposity, malabsorption and consequent deficits of macro and micronutrients, loss of muscle mass, and gut dysbiosis may be the main factors with impact in muscle strength, that probably mediate the relation between inflammatory bowel disease and sarcopenia.
Collapse
Affiliation(s)
- Joana Mendes
- FP-I3ID, FP-BHS, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| | - Catarina D Simões
- FP-I3ID, FP-BHS, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- CIBIO-InBIO Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
| | - Joana O Martins
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| | - Ana S Sousa
- FP-I3ID, FP-BHS, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Center for Innovative Care and Health Technology (ciTechcare), Polytechnic of Leiria, 2410-541 Leiria, Portugal
| |
Collapse
|
12
|
Bosnić Z, Babič F, Anderková V, Štefanić M, Wittlinger T, Majnarić LT. A Critical Appraisal of the Diagnostic and Prognostic Utility of the Anti-Inflammatory Marker IL-37 in a Clinical Setting: A Case Study of Patients with Diabetes Type 2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3695. [PMID: 36834391 PMCID: PMC9966907 DOI: 10.3390/ijerph20043695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The role of the cytokine interleukin-37 (IL-37) has been recognized in reversing inflammation-mediated metabolic costs. The aim was to evaluate the clinical utility of this cytokine as a diagnostic and prognostic marker in patients with type 2 diabetes (T2D). METHODS We included 170 older (median: 66 years) individuals with T2D (females: 95) and classified as primary care attenders to assess the association of factors that describe patients with plasma IL-37 levels (expressed as quartiles) using multinomial regression models. We determined the diagnostic ability of IL-37 cut-offs to identify diabetes-related complications or patient subgroups by using Receiver Operating Characteristic analysis (c-statistics). RESULTS Frailty status was shown to have a suppressive effect on IL-37 circulating levels and a major modifying effect on associations of metabolic and inflammatory factors with IL-37, including the effects of treatments. Situations in which IL-37 reached a clinically significant discriminating ability included the model of IL-37 and C-Reactive Protein in differentiating among diabetic patients with low-normal/high BMI ((<25/≥25 kg/m2), and the model of IL-37 and Thyroid Stimulating Hormone in discriminating between women with/without metabolic syndrome. CONCLUSIONS The study has revealed limitations in using classical approaches in determining the diagnostic and prognostic utility of the cytokine IL-37 in patients with T2D and lain a foundation for new methodology approaches.
Collapse
Affiliation(s)
- Zvonimir Bosnić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia
| | - František Babič
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, 06601 Košice, Slovakia
| | - Viera Anderková
- Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, 06601 Košice, Slovakia
| | - Mario Štefanić
- Department of Nuclear Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia
| | - Thomas Wittlinger
- Department of Cardiology, Asklepios Hospital, University of Göttingen, 38642 Goslar, Germany
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia
| |
Collapse
|