1
|
Zeraattalab-Motlagh S, Syau E, Dadabhoy H, Hardin AL, Musaad SMA, Park RJ, Baranowski T, Thompson D, Moreno JP. Impact of child summertime obesity interventions on body mass index and weight-related behaviors: A systematic review and meta-analysis. Obes Rev 2025; 26:e13883. [PMID: 39701061 DOI: 10.1111/obr.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Obesity during childhood is a critical public health issue. The summer break from school is a time when children are prone to accelerated weight gain. We aimed to investigate how obesity prevention or treatment programs implemented over the summer affect anthropometric measures or weight-related behaviors. METHODS Published studies examining the impact of obesity prevention/treatment interventions targeting the summer with anthropometric or weight-related behaviors in children (5-18 years old) were identified using systematic searches of Medline, Cochrane, Scopus, CINAHL, PsycINFO, and EMBASE until April 2024. The summarized effect estimate was computed by applying the random-effects approach. The evidence certainty was assessed using GRADE. RESULTS Forty-seven studies were identified for inclusion. The majority of studies identified focused on physical activity and dietary habits. Only six studies that examined the effects of prevention interventions on weight, body mass index (BMI), and waist circumference (WC) were meta-analyzed. There was no evidence that prevention interventions impacted children's weight, BMI, and WC. However, most of the studies included in the systematic review indicated beneficial effects of interventions for anthropometric measures. CONCLUSION There was no evidence that summertime obesity interventions targeting physical activity and dietary intake were effective in the prevention of obesity in children.
Collapse
Affiliation(s)
| | - Evelyn Syau
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Hafza Dadabhoy
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Allie L Hardin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Salma M A Musaad
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Rebekah Julie Park
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Tom Baranowski
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Debbe Thompson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jennette P Moreno
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Luque G, Ortiz P, Torres-Sánchez A, Ruiz-Rodríguez A, López-Moreno A, Aguilera M. Impact of Ex Vivo Bisphenol A Exposure on Gut Microbiota Dysbiosis and Its Association with Childhood Obesity. J Xenobiot 2025; 15:14. [PMID: 39846546 PMCID: PMC11755556 DOI: 10.3390/jox15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Dietary exposure to the plasticiser bisphenol A (BPA), an obesogenic and endocrine disruptor from plastic and epoxy resin industries, remains prevalent despite regulatory restriction and food safety efforts. BPA can be accumulated in humans and animals, potentially exerting differential health effects based on individual metabolic capacity. This pilot study examines the impact of direct ex vivo BPA exposure on the gut microbiota of obese and normal-weight children, using 16S rRNA amplicon sequencing and anaerobic culturing combined methods. Results showed that direct xenobiotic exposure induced modifications in microbial taxa relative abundance, community structure, and diversity. Specifically, BPA reduced the abundance of bacteria belonging to the phylum Bacteroidota, while taxa from the phylum Actinomycetota were promoted. Consistently, Bacteroides species were classified as sensitive to BPA, whereas bacteria belonging to the class Clostridia were identified as resistant to BPA in our culturomics analysis. Some of the altered bacterial abundance patterns were common for both the BPA-exposed groups and the obese non-exposed group in our pilot study. These findings were also corroborated in a larger cohort of children. Future research will be essential to evaluate these microbial taxa as potential biomarkers for biomonitoring the effect of BPA and its role as an obesogenic substance in children.
Collapse
Affiliation(s)
- Gracia Luque
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Pilar Ortiz
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Ana López-Moreno
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| | - Margarita Aguilera
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| |
Collapse
|
3
|
He B, Xu S, Schooling CM, Leung GM, Ho JWK, Au Yeung SL. Gut microbiome and obesity in late adolescence: A case-control study in "Children of 1997" birth cohort. Ann Epidemiol 2025; 101:58-66. [PMID: 39710013 DOI: 10.1016/j.annepidem.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE Although the gut microbiome is important in human health, its relation to adolescent obesity remains unclear. Here we assessed the associations of the gut microbiome with adolescent obesity in a case-control study. METHODS In the "Children of 1997" birth cohort, participants with and without obesity at ∼17.4 years were 1:1 matched on sex, physical activity, parental education and occupation (n = 312). Fecal gut microbiome composition and pathways were assessed via shotgun metagenomic sequencing. The association of microbiota species with obesity was evaluated using conditional logistic regression. We explored the association of the obesity-relevant species with adolescent metabolomics using multivariable linear regression, and causal relationships with type 2 diabetes using Mendelian randomization analysis. RESULTS Gut microbiota in the adolescents with obesity exhibited lower richness (p = 0.031) and evenness (p = 0.014) compared to controls. Beta diversity revealed differences in the microbiome composition in two groups (p = 0.034). Lower relative abundance of Clostridium spiroforme, Clostridium phoceensis and Bacteroides uniformis were associated with higher obesity risk (q<0.15). Lower Bacteroides uniformis was associated with higher branched-chain amino acid, potentially contributing to higher type 2 diabetes risk. CONCLUSION Adolescents with obesity had a distinct gut microbiota profile compared to the controls, possibly linked to metabolic pertubation and related diseases.
Collapse
Affiliation(s)
- Baoting He
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Sheng Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Laboratory of Data Discovery for Health Limited (D(2)4H), Hong Kong Science Park, Hong Kong.
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Public Health and Health Policy, City University of New York, New York, USA.
| | - Gabriel M Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Laboratory of Data Discovery for Health Limited (D(2)4H), Hong Kong Science Park, Hong Kong.
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Laboratory of Data Discovery for Health Limited (D(2)4H), Hong Kong Science Park, Hong Kong.
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Hesketh KD, Zheng M, Campbell KJ. Early life factors that affect obesity and the need for complex solutions. Nat Rev Endocrinol 2025; 21:31-44. [PMID: 39313572 DOI: 10.1038/s41574-024-01035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The prevalence of obesity increases with age but is apparent even in early life. Early childhood is a critical period for development that is known to influence future health. Even so, the focus on obesity in this phase, and the factors that affect the development of obesity, has only emerged over the past two decades. Furthermore, there is a paucity of iterative work in this area that would move the field forward. Obesity is a complex condition involving the interplay of multiple influences at different levels: the individual and biological level, the sociocultural level, and the environmental and system levels. This Review provides a brief overview of the evidence for these factors with a focus on aspects specific to early life. By spotlighting the complex web of interactions between the broad range of influences, both causal and risk markers, we highlight the complex nature of the condition. Much work in the early life field remains observational and many of the intervention studies are limited by a focus on single influences and a disjointed approach to solutions. Yet the complexity of obesity necessitates coordinated multi-focused solutions and joined-up action across the first 2,000 days from conception, and beyond.
Collapse
Affiliation(s)
- Kylie D Hesketh
- Institute for Physical Activity and Nutrition, Faculty of Health, Deakin University, Geelong, Victoria, Australia.
| | - Miaobing Zheng
- Institute for Physical Activity and Nutrition, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Karen J Campbell
- Institute for Physical Activity and Nutrition, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
5
|
Wang M, Zhang Z, Liu Y, Jian E, Ye P, Jiang H, Yu X, Cai P. Research trends between childhood obesity and gut microbiota: a bibliometric analysis (2002-2023). Front Microbiol 2024; 15:1461306. [PMID: 39397792 PMCID: PMC11466780 DOI: 10.3389/fmicb.2024.1461306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Background In recent years, the prevalence of childhood obesity has escalated alarmingly, posing significant threats to the physical and mental well-being of children, with an elevated likelihood of persisting into adulthood. Notably, recent investigations have uncovered a profound association between intestinal microbiota, a crucial component of the internal milieu, and childhood obesity. Disturbances in intestinal microbiota and their by-products are now understood to be profoundly intertwined with the evolutionary pathway of childhood obesity. Bibliometric analysis offers a deep understanding of the current research landscape, so we apply it to a review of the emerging trends and patterns between childhood obesity and gut microbiota. Materials and methods We conducted a rigorous and extensive search of the Web of Science (WoS) Core Collection database, spanning the years from 1900 to 2023, to analyze scholarly articles pertaining to childhood obesity and gut microbiota. Utilizing VOSviewer, CiteSpace, the R package "bibliometrix," and the online bibliometric analysis platform (https://bibliometric.com/), we delved into the intricate details of research hotspots, academic collaborations, and emerging trends within this domain. Results The exhaustive search encompassed the globe, uncovering a cumulative total of 1,384 pertinent studies originating from 429 nations. The results were compelling, revealing a profound influence exerted by the United States and China in this specific field of research. Furthermore, it was observed that the volume of scholarly works pertaining to childhood obesity and gut microbiota is steadily growing year on year. The current hot topics in this field include "abuse," "maltreatment," "adverse childhood experiences," "students," and "food addiction". Conclusion This comprehensive review offers a meticulous exploration of the evolving trends and emerging research agendas pertaining to childhood obesity and gut microbiota over the past two decades. It strives to equip researchers with a thorough understanding of the key nations, institutions, journals, and potential collaborators in these specialized fields. Additionally, it sheds light on the current frontiers of research and strategic avenues for further exploration, thus serving as an invaluable resource for scholars delving deeper into the intricacies of childhood obesity and the gut microbiome.
Collapse
Affiliation(s)
- Mengping Wang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Zhen Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Yuxuan Liu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Enlin Jian
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Peng Ye
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Hongjie Jiang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Xiaoping Yu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Peiling Cai
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Chanda W, Jiang H, Liu SJ. The Ambiguous Correlation of Blautia with Obesity: A Systematic Review. Microorganisms 2024; 12:1768. [PMID: 39338443 PMCID: PMC11433710 DOI: 10.3390/microorganisms12091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota's role in obesity development is increasingly recognized. Blautia, as one of the major intestinal bacteria of the Firmicutes phylum, is reported with both potential probiotic properties and causal factors for obesity in different studies, making its role controversial. To summarize the current understanding of the Blautia-obesity correlation and to evaluate the evidence from animal and clinical studies, we used "Blautia" AND "obesity" as keywords searching through PubMed and SpringerLink databases for research articles. After removing duplicates and inadequate articles using the exclusion criteria, we observed different results between studies supporting and opposing the beneficial role of Blautia in obesity at the genus level. Additionally, several studies showed probiotic effectiveness at the species level for Blautia coccoides, B. wexlerae, B. hansenii, B. producta, and B. luti. Therefore, the current evidence does not demonstrate Blautia's direct involvement as a pathogenic microbe in obesity development or progression, which informs future research and therapeutic strategies targeting the gut Blautia in obesity management.
Collapse
Affiliation(s)
- Warren Chanda
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Pathology and Microbiology Department, School of Medicine and Health Sciences, Mulungushi University, Livingstone P.O. Box 60009, Zambia
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Yang Y, Chen J, Gao H, Cui M, Zhu M, Xiang X, Wang Q. Characterization of the gut microbiota and fecal and blood metabolomes under various factors in urban children from Northwest China. Front Cell Infect Microbiol 2024; 14:1374544. [PMID: 38585649 PMCID: PMC10995345 DOI: 10.3389/fcimb.2024.1374544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Children have regional dynamics in the gut microbiota development trajectory. Hitherto, the features and influencing factors of the gut microbiota and fecal and plasma metabolites in children from Northwest China remain unclear. Methods Shotgun metagenomic sequencing and untargeted metabolomics were performed on 100 healthy volunteers aged 2-12 years. Results Age, body mass index (BMI), regular physical exercise (RPE), and delivery mode (DM) significantly affect gut microbiota and metabolites. Lactobacillus, Butyricimonas, Prevotella, Alistipes, and predicted pathway propanoate production were significantly increased with age while Bifidobacterium breve, B. animalis, B. pseudocatenulatum, Streptococcus infantis, and carbohydrate degradation were decreased. Fecal metabolome revealed that the metabolism of caffeine, amino acids, and lipid significantly increased with age while galactose metabolism decreased. Noticeably, BMI was positively associated with pathogens including Erysipelatoclostridium ramosum, Parabacteroides distasonis, Ruminococcus gnavus, and amino acid metabolism but negatively associated with beneficial Akkermansia muciniphila, Alistipes finegoldii, Eubacterium ramulus, and caffeine metabolism. RPE has increased probiotic Faecalibacterium prausnitzii and Anaerostipes hadrus, acetate and lactate production, and major nutrient metabolism in gut and plasma, but decreased pathobiont Bilophila wadsworthia, taurine degradation, and pentose phosphate pathway. Interestingly, DM affects the gut microbiota and metabolites throughout the whole childhood. Bifidobacterium animalis, Lactobacillus mucosae, L. ruminis, primary bile acid, and neomycin biosynthesis were enriched in eutocia, while anti-inflammatory Anaerofustis stercorihominis, Agathobaculum butyriciproducens, Collinsella intestinalis, and pathogenic Streptococcus salivarius, Catabacter hongkongensis, and amino acid metabolism were enriched in Cesarean section children. Discussion Our results provided theoretical and data foundation for the gut microbiota and metabolites in preadolescent children's growth and development in Northwest China.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Juanjuan Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Huiyu Gao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minglu Cui
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Mingyu Zhu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuesong Xiang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|