1
|
Hohsoh N, Sanghan T, Chong DY, Stojanovic G, Chatpun S. Comparative electromyography analysis of subphase gait disorder in chronic stroke survivors. PeerJ 2024; 12:e18473. [PMID: 39553714 PMCID: PMC11569779 DOI: 10.7717/peerj.18473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Abnormal lower limb muscle activity is the most common cause of the alterative pattern of gait in stroke survivors, resulting from spastic and paralytic muscles around the hip, knee, and ankle joints. However, the activity of the major lower limb muscles that control the legs to facilitate walking in stroke patients have not been clearly understood in each subphase of the gait. This study differentiated the characteristics of surface electromyography (sEMG) signals of lower limb muscles during four subphases of gait cycle between stroke patients and healthy subjects. Sixteen chronic stroke patients and sixteen healthy subjects were recruited. All participants completed three walking trials with a self-selected walking speed. The sEMG signals were recorded on the gluteus medius, rectus femoris, long head of biceps femoris, medial gastrocnemius, tibialis anterior, and peroneus longus muscles. The characteristics of sEMG signals were processed and analyzed in the time and frequency features, considering the first double support, single support, second double support, and swing phases of the gait cycle.The stroke patients had altered sEMG characteristics on both paretic and non-paretic sides compared to healthy subjects across the sub-phases of gait cycle for all six muscles. All time domain features of sEMG signal showed that the medial gastrocnemius muscle has the most significant impaired activity (p < 0.05) and affected gait disturbance during all four subphases of the gait cycle. The findings demonstrated that the medial gastrocnemius muscle had impaired activity and was most affected during all four sub-phases of the gait cycle. This indicates that sEMG of medial gastrocnemius muscle can be used to measure the improvement of gait rehabilitation.
Collapse
Affiliation(s)
- Nusreena Hohsoh
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Thanita Sanghan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Desmond Y.R. Chong
- Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Goran Stojanovic
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Surapong Chatpun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| |
Collapse
|
2
|
Ogawa T, Fujita K, Kawabata K, Hori H, Hayashi K, Suzuki A, Nakaya Y, Kobayashi Y. Is it safe to control the car pedal with the lower limb of the unaffected side in patients with stroke? TRAFFIC INJURY PREVENTION 2023; 25:27-35. [PMID: 37773056 DOI: 10.1080/15389588.2023.2260914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVES Few studies have examined motor function in determining the suitability of patients with stroke to resume driving a car. Patients with hemiplegia usually control car pedals with the unaffected lower limb. However, motor control on the unaffected side is also impaired in patients with stroke. This study aimed to clarify the neurophysiological characteristics of pedal switching control during emergency braking in patients with hemiplegia. METHODS The study participants consisted of 10 drivers with left hemiplegia and 10 age-matched healthy drivers. An experimental pedal was used to measure muscle activity and kinematic data during braking, triggered by the light from a light-emitting diode placed in front of the drivers. RESULTS The patient group took the same reaction time as the healthy group. However, from the visual stimulus to the release of the accelerator pedal, the patient group had higher muscle activity in the tibialis anterior and rectus femoris and had faster angular velocities of hip and knee flexion than the healthy group. In addition, the patient group had higher co-contraction activities between flexors and extensors. From the accelerator pedal release to brake contact, the patient group had slower angular velocities of hip adduction, internal rotation, ankle dorsiflexion, internal return, and internal rotation than the healthy group. CONCLUSIONS Patients with hemiplegia exhibited poor control of pedal switching using their unaffected side throughout the pedal-switching task. These results indicate that the safety related to car-pedal control should be carefully evaluated while deciding whether a patient can resume driving a car after a stroke.
Collapse
Affiliation(s)
- Tomoki Ogawa
- Department of Health Science, Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Kazuki Fujita
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Kaori Kawabata
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Hideaki Hori
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Asuka Suzuki
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yuka Nakaya
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| |
Collapse
|
3
|
Anastasiev A, Kadone H, Marushima A, Watanabe H, Zaboronok A, Watanabe S, Matsumura A, Suzuki K, Matsumaru Y, Ishikawa E. Empirical Myoelectric Feature Extraction and Pattern Recognition in Hemiplegic Distal Movement Decoding. Bioengineering (Basel) 2023; 10:866. [PMID: 37508895 PMCID: PMC10376258 DOI: 10.3390/bioengineering10070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In myoelectrical pattern recognition (PR), the feature extraction methods for stroke-oriented applications are challenging and remain discordant due to a lack of hemiplegic data and limited knowledge of skeletomuscular function. Additionally, technical and clinical barriers create the need for robust, subject-independent feature generation while using supervised learning (SL). To the best of our knowledge, we are the first study to investigate the brute-force analysis of individual and combinational feature vectors for acute stroke gesture recognition using surface electromyography (EMG) of 19 patients. Moreover, post-brute-force singular vectors were concatenated via a Fibonacci-like spiral net ranking as a novel, broadly applicable concept for feature selection. This semi-brute-force navigated amalgamation in linkage (SNAiL) of EMG features revealed an explicit classification rate performance advantage of 10-17% compared to canonical feature sets, which can drastically extend PR capabilities in biosignal processing.
Collapse
Affiliation(s)
- Alexey Anastasiev
- Department of Neurosurgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hideki Kadone
- Center for Cybernics Research, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Aiki Marushima
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroki Watanabe
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Alexander Zaboronok
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Shinya Watanabe
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Akira Matsumura
- Ibaraki Prefectural University of Health Sciences, 4669-2 Amicho, Inashiki 300-0394, Ibaraki, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, Artificial Intelligence Laboratory, Faculty of Engineering Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
4
|
Hu J, Zou J, Wan Y, Yao Q, Dong P, Li G, Wu X, Zhang L, Liang D, Zeng Q, Huang G. Rehabilitation of motor function after stroke: A bibliometric analysis of global research from 2004 to 2022. Front Aging Neurosci 2022; 14:1024163. [PMID: 36408095 PMCID: PMC9667945 DOI: 10.3389/fnagi.2022.1024163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS The mortality rate of stroke has been increasing worldwide. Poststroke somatic dysfunctions are common. Motor function rehabilitation of patients with such somatic dysfunctions enhances the quality of life and has long been the primary practice to achieve functional recovery. In this regard, we aimed to delineate the new trends and frontiers in stroke motor function rehabilitation literature published from 2004 to 2022 using a bibliometric software. METHODS All documents related to stroke rehabilitation and published from 2004 to 2022 were retrieved from the Web of Science Core Collection. Publication output, research categories, countries/institutions, authors/cocited authors, journals/cocited journals, cocited references, and keywords were assessed using VOSviewer v.1.6.15.0 and CiteSpace version 5.8. The cocitation map was plotted according to the analysis results to intuitively observe the research hotspots. RESULTS Overall, 3,302 articles were retrieved from 78 countries or regions and 564 institutions. Over time, the publication outputs increased annually. In terms of national contribution, the United States published the most papers, followed by China, Japan, South Korea, and Canada. Yeungnam University had the most articles among all institutions, followed by Emory University, Fudan University, and National Taiwan University. Jang Sung Ho and Wolf S.L. were the most productive (56 published articles) and influential (cited 1,121 times) authors, respectively. "Effect of constraint-induced movement therapy on upper extremity function 3-9 months after stroke: the Extremity Constraint Induced Therapy Evaluation randomized clinical trial" was the most frequently cited reference. Analysis of keywords showed that upper limbs, Fugl-Meyer assessment, electromyography, virtual reality, telerehabilitation, exoskeleton, and brain-computer interface were the research development trends and focus areas for this topic. CONCLUSION Publications regarding motor function rehabilitation following stroke are likely to continuously increase. Research on virtual reality, telemedicine, electroacupuncture, the brain-computer interface, and rehabilitation robots has attracted increasing attention, with these topics becoming the hotspots of present research and the trends of future research.
Collapse
Affiliation(s)
- Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Qiuru Yao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Peng Dong
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Gege Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Xuan Wu
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Lijie Zhang
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Donghui Liang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Das R, Paul S, Mourya GK, Kumar N, Hussain M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Front Neurosci 2022; 16:859298. [PMID: 35495059 PMCID: PMC9051393 DOI: 10.3389/fnins.2022.859298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/06/2022] Open
Abstract
The study of human movement and biomechanics forms an integral part of various clinical assessments and provides valuable information toward diagnosing neurodegenerative disorders where the motor symptoms predominate. Conventional gait and postural balance analysis techniques like force platforms, motion cameras, etc., are complex, expensive equipment requiring specialist operators, thereby posing a significant challenge toward translation to the clinics. The current manuscript presents an overview and relevant literature summarizing the umbrella of factors associated with neurodegenerative disorder management: from the pathogenesis and motor symptoms of commonly occurring disorders to current alternate practices toward its quantification and mitigation. This article reviews recent advances in technologies and methodologies for managing important neurodegenerative gait and balance disorders, emphasizing assessment and rehabilitation/assistance. The review predominantly focuses on the application of inertial sensors toward various facets of gait analysis, including event detection, spatiotemporal gait parameter measurement, estimation of joint kinematics, and postural balance analysis. In addition, the use of other sensing principles such as foot-force interaction measurement, electromyography techniques, electrogoniometers, force-myography, ultrasonic, piezoelectric, and microphone sensors has also been explored. The review also examined the commercially available wearable gait analysis systems. Additionally, a summary of recent progress in therapeutic approaches, viz., wearables, virtual reality (VR), and phytochemical compounds, has also been presented, explicitly targeting the neuro-motor and functional impairments associated with these disorders. Efforts toward therapeutic and functional rehabilitation through VR, wearables, and different phytochemical compounds are presented using recent examples of research across the commonly occurring neurodegenerative conditions [viz., Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis, Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS)]. Studies exploring the potential role of Phyto compounds in mitigating commonly associated neurodegenerative pathologies such as mitochondrial dysfunction, α-synuclein accumulation, imbalance of free radicals, etc., are also discussed in breadth. Parameters such as joint angles, plantar pressure, and muscle force can be measured using portable and wearable sensors like accelerometers, gyroscopes, footswitches, force sensors, etc. Kinetic foot insoles and inertial measurement tools are widely explored for studying kinematic and kinetic parameters associated with gait. With advanced correlation algorithms and extensive RCTs, such measurement techniques can be an effective clinical and home-based monitoring and rehabilitation tool for neuro-impaired gait. As evident from the present literature, although the vast majority of works reported are not clinically and extensively validated to derive a firm conclusion about the effectiveness of such techniques, wearable sensors present a promising impact toward dealing with neurodegenerative motor disorders.
Collapse
Affiliation(s)
- Ratan Das
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Gajendra Kumar Mourya
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Neelesh Kumar
- Biomedical Applications Unit, Central Scientific Instruments Organisation, Chandigarh, India
| | - Masaraf Hussain
- Department of Neurology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, India
| |
Collapse
|
6
|
Kinematic and Electrophysiological Characteristics of Pedal Operation by Elderly Drivers during Emergency Braking. Healthcare (Basel) 2021; 9:healthcare9070852. [PMID: 34356230 PMCID: PMC8303510 DOI: 10.3390/healthcare9070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related decline in lower limb motor control may cause errors in pedal operation when driving a car. This study aimed to clarify the kinematics and electrophysiological characteristics of the pedal-switching operation associated with emergency braking in the case of elderly drivers. The participants in this study consisted of 11 young drivers and 10 elderly drivers. An experimental pedal was used, and the muscle activity and kinematic data during braking action were analyzed using the light from a light-emitting diode installed in the front as a trigger. The results showed that elderly drivers took the same time from viewing the visual stimulus to releasing the accelerator pedal as younger drivers, but took longer to switch to the brake pedal. The elderly drivers had higher soleus muscle activity throughout the process, from accelerator release to brake contact; furthermore, the rectus femoris activity was delayed, and the simultaneous activity between the rectus femoris and biceps femoris was low. Furthermore, elderly drivers tended to have low hip adduction velocity and tended to switch pedals by hip internal rotation. Thus, the alteration in joint movements and muscle activity of elderly drivers can reduce their pedal operability and may be related to the occurrence of pedal errors.
Collapse
|