1
|
Deng J, Gong F, Li Y, Tan X, Liu X, Yang S, Chen X, Wang H, Liu Q, Shen C, Zhou L, Chen Y. Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2. Virol Sin 2024; 39:619-631. [PMID: 38969340 PMCID: PMC11401473 DOI: 10.1016/j.virs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.
Collapse
Affiliation(s)
- Jikai Deng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Feiyu Gong
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Yingjian Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xue Tan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xuemei Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xianying Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Chao Shen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
2
|
Krismer L, Schöppe H, Rauch S, Bante D, Sprenger B, Naschberger A, Costacurta F, Fürst A, Sauerwein A, Rupp B, Kaserer T, von Laer D, Heilmann E. Study of key residues in MERS-CoV and SARS-CoV-2 main proteases for resistance against clinically applied inhibitors nirmatrelvir and ensitrelvir. NPJ VIRUSES 2024; 2:23. [PMID: 38933182 PMCID: PMC11196219 DOI: 10.1038/s44298-024-00028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024]
Abstract
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an epidemic, zoonotically emerging pathogen initially reported in Saudi Arabia in 2012. MERS-CoV has the potential to mutate or recombine with other coronaviruses, thus acquiring the ability to efficiently spread among humans and become pandemic. Its high mortality rate of up to 35% and the absence of effective targeted therapies call for the development of antiviral drugs for this pathogen. Since the beginning of the SARS-CoV-2 pandemic, extensive research has focused on identifying protease inhibitors for the treatment of SARS-CoV-2. Our intention was therefore to assess whether these protease inhibitors are viable options for combating MERS-CoV. To that end, we used previously established protease assays to quantify inhibition of SARS-CoV-2, MERS-CoV and other main proteases. Nirmatrelvir inhibited several of these proteases, whereas ensitrelvir was less broadly active. To simulate nirmatrelvir's clinical use against MERS-CoV and subsequent resistance development, we applied a safe, surrogate virus-based system. Using the surrogate virus, we previously selected hallmark mutations of SARS-CoV-2-Mpro, such as T21I, M49L, S144A, E166A/K/V and L167F. In the current study, we selected a pool of MERS-CoV-Mpro mutants, characterized the resistance and modelled the steric effect of catalytic site mutants S142G, S142R, S147Y and A171S.
Collapse
Affiliation(s)
- Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Sprenger
- Institute of Biochemistry, University of Innsbruck, CMBI – Center for Molecular Biosciences Innsbruck, Innsbruck, 6020 Austria
| | - Andreas Naschberger
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | | | - Anna Fürst
- Institute of Molecular Immunology, Technical University of Munich, Munich, 81675 Germany
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| |
Collapse
|
3
|
Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. ECO-ENVIRONMENT & HEALTH 2024; 3:45-54. [PMID: 38169914 PMCID: PMC10758742 DOI: 10.1016/j.eehl.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more widespread in animals than previously thought, and it may be able to infect a wider range of domestic and wild species. To effectively control the spread of the virus and protect animal health, it is crucial to understand the cross-species transmission mechanisms and risk factors of SARS-CoV-2. This article collects published literature on SARS-CoV-2 in animals and examines the distribution, transmission routes, biophysical, and anthropogenic drivers of infected animals. The reported cases of infection in animals are mainly concentrated in South America, North America, and Europe, and species affected include lions, white-tailed deer, pangolins, minks, and cats. Biophysical factors influencing infection of animals with SARS-CoV-2 include environmental determinants, high-risk landscapes, air quality, and susceptibility of different animal species, while anthropogenic factors comprise human behavior, intensive livestock farming, animal markets, and land management. Due to current research gaps and surveillance capacity shortcomings, future mitigation strategies need to be designed from a One Health perspective, with research focused on key regions with significant data gaps in Asia and Africa to understand the drivers, pathways, and spatiotemporal dynamics of interspecies transmission.
Collapse
Affiliation(s)
- Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiyang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjie Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixuan Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Wang K, Pan Y, Wang D, Yuan Y, Li M, Chen Y, Bi L, Zhang XE. Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry. Virol Sin 2023; 38:595-605. [PMID: 37343929 PMCID: PMC10278895 DOI: 10.1016/j.virs.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
SARS-CoV-2 variants are constantly emerging, hampering public health measures in controlling the number of infections. While it is well established that mutations in spike proteins observed for the different variants directly affect virus entry into host cells, there remains a need for further expansion of systematic and multifaceted comparisons. Here, we comprehensively studied the effect of spike protein mutations on spike expression and proteolytic activation, binding affinity, viral entry efficiency and host cell tropism of eight variants of concern (VOC) and variants of interest (VOI). We found that both the full-length spike and its receptor-binding domain (RBD) of Omicron bind to hACE2 with an affinity similar to that of the wild-type. In addition, Alpha, Beta, Delta and Lambda pseudoviruses gained significantly enhanced cell entry ability compared to the wild-type, while the Omicron pseudoviruses showed a slightly increased cell entry, suggesting the vastly increased rate of transmission observed for Omicron variant is not associated with its affinity to hACE2. We also found that the spikes of Omicron and Mu showed lower S1/S2 cleavage efficiency and inefficiently utilized TMPRSS2 to enter host cells than others, suggesting that they prefer the endocytosis pathway to enter host cells. Furthermore, all variants' pseudoviruses we tested gained the ability to enter the animal ACE2-expressing cells. Especially the infection potential of rats and mice showed significantly increased, strongly suggesting that rodents possibly become a reservoir for viral evolution. The insights gained from this study provide valuable guidance for a targeted approach to epidemic control, and contribute to a better understanding of SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Ke Wang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Pan
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dianbing Wang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ye Yuan
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Li
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Chen
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Bi
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Domingo JL. An updated review of the scientific literature on the origin of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2022; 215:114131. [PMID: 36037920 PMCID: PMC9420317 DOI: 10.1016/j.envres.2022.114131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
More than two and a half years have already passed since the first case of COVID-19 was officially reported (December 2019), as well as more than two years since the WHO declared the current pandemic (March 2020). During these months, the advances on the knowledge of the COVID-19 and SARS-CoV-2, the coronavirus responsible of the infection, have been very significant. However, there are still some weak points on that knowledge, being the origin of SARS-CoV-2 one of the most notorious. One year ago, I published a review focused on what we knew and what we need to know about the origin of that coronavirus, a key point for the prevention of potential future pandemics of a similar nature. The analysis of the available publications until July 2021 did not allow drawing definitive conclusions on the origin of SARS-CoV-2. Given the great importance of that issue, the present review was aimed at updating the scientific information on that origin. Unfortunately, there have not been significant advances on that topic, remaining basically the same two hypotheses on it. One of them is the zoonotic origin of SARS-CoV-2, while the second one is the possible leak of this coronavirus from a laboratory. Most recent papers do not include observational or experimental studies, being discussions and positions on these two main hypotheses. Based on the information here reviewed, there is not yet a definitive and well demonstrated conclusion on the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
6
|
Zhang C, Cui H, Li E, Guo Z, Wang T, Yan F, Liu L, Li Y, Chen D, Meng K, Li N, Qin C, Liu J, Gao Y, Zhang C. The SARS-CoV-2 B.1.351 Variant Can Transmit in Rats But Not in Mice. Front Immunol 2022; 13:869809. [PMID: 35572504 PMCID: PMC9095975 DOI: 10.3389/fimmu.2022.869809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Previous studies have shown that B.1.351 and other variants have extended the host range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to mice. Sustained transmission is a prerequisite for viral maintenance in a population. However, no evidence of natural transmission of SARS-CoV-2 in wild mice has been documented to date. Here, we evaluated the replication and contact transmission of the B.1.351 variant in mice and rats. The B.1.351 variant could infect and replicate efficiently in the airways of mice and rats. Furthermore, the B.1.351 variant could not be transmitted in BALB/c or C57BL/6 mice but could be transmitted with moderate efficiency in rats by direct contact. Additionally, the B.1.351 variant did not transmit from inoculated Syrian hamsters to BALB/c mice. Moreover, the mouse-adapted SARS-CoV-2 strain C57MA14 did not transmit in mice. In summary, the risk of B.1.351 variant transmission in mice is extremely low, but the transmission risk in rats should not be neglected. We should pay more attention to the potential natural transmission of SARS-CoV-2 variants in rats and their possible spillback to humans.
Collapse
Affiliation(s)
- Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fang Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lina Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Di Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Keyin Meng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengfeng Qin
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
7
|
Du H, Zhang L, Zhang X, Yun F, Chang Y, Tuersun A, Aisaiti K, Ma Z. Metagenome-Assembled Viral Genomes Analysis Reveals Diversity and Infectivity of the RNA Virome of Gerbillinae Species. Viruses 2022; 14:356. [PMID: 35215951 PMCID: PMC8874536 DOI: 10.3390/v14020356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Rodents are a known reservoir for extensive zoonotic viruses, and also possess a propensity to roost in human habitation. Therefore, it is necessary to identify and catalogue the potentially emerging zoonotic viruses that are carried by rodents. Here, viral metagenomic sequencing was used for zoonotic virus detection and virome characterization on 32 Great gerbils of Rhombomys opimus, Meriones meridianus, and Meiiones Unguiculataus species in Xinjiang, Northwest China. In total, 1848 viral genomes that are potentially pathogenic to rodents and humans, as well as to other wildlife, were identified namely Retro-, Flavi-, Pneumo-, Picobirna-, Nairo-, Arena-, Hepe-, Phenui-, Rhabdo-, Calici-, Reo-, Corona-, Orthomyxo-, Peribunya-, and Picornaviridae families. In addition, a new genotype of rodent Hepacivirus was identified in heart and lung homogenates of seven viscera pools and phylogenetic analysis revealed the closest relationship to rodent Hepacivirus isolate RtMm-HCV/IM2014 that was previously reported to infect rodents from Inner Mongolia, China. Moreover, nine new genotype viral sequences that corresponded to Picobirnaviruses (PBVs), which have a bi-segmented genome and belong to the family Picobirnaviridae, comprising of three segment I and six segment II sequences, were identified in intestines and liver of seven viscera pools. In the two phylogenetic trees that were constructed using ORF1 and ORF2 of segment I, the three segment I sequences were clustered into distinct clades. Additionally, phylogenetic analysis showed that PBV sequences were distributed in the whole tree that was constructed using the RNA-dependent RNA polymerase (RdRp) gene of segment II with high diversity, sharing 68.42-82.67% nucleotide identities with other genogroup I and genogroup II PBV strains based on the partial RdRp gene. By RNA sequencing, we found a high degree of biodiversity of Retro-, Flavi-, Pneumo-, and Picobirnaridae families and other zoonotic viruses in gerbils, indicating that zoonotic viruses are a common presence in gerbils from Xinjiang, China. Therefore, further research is needed to determine the zoonotic potential of these viruses that are carried by other rodent species from different ecosystems and wildlife in general.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (H.D.); (L.Z.); (X.Z.); (F.Y.); (Y.C.); (A.T.); (K.A.)
| |
Collapse
|
8
|
Luo M, Liu Q, Wang J, Gong Z. From SARS to the Omicron variant of COVID-19: China's policy adjustments and changes to prevent and control infectious diseases. Biosci Trends 2021; 15:418-423. [PMID: 34924490 DOI: 10.5582/bst.2021.01535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The COVID-19 pandemic has been the biggest public health crisis in a century. Since it was initially reported in 2019, the duration and intensity of its impacts are still in serious question around the world, and it is about to enter its third year. The first public health revolution failed to achieve its ultimate targets, as previously contained infectious diseases seem to have returned, and new infectious diseases continue to emerge. The prevention and control of infectious diseases is still a public health priority worldwide. After SARS, China adjusted a series of its infectious disease policies. In order to ensure the effectiveness and implementation of prevention and control interventions, the government should integrate the concept of public health. Perhaps we need a global public health system at the government level to fight the potential threat of infectious disease. This system could include multifaceted strategies, not just specific prevention and control interventions, and it could also be a comprehensive system to ensure unimpeded communication and cooperation as well as sustainable development.
Collapse
Affiliation(s)
- Mingyu Luo
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Qinmei Liu
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jinna Wang
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhenyu Gong
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|