1
|
Martyn C, Hayes BM, Lauko D, Midthun E, Castaneda G, Bosco-Lauth A, Salkeld DJ, Kistler A, Pollard KS, Chou S. Metatranscriptomic investigation of single Ixodes pacificus ticks reveals diverse microbes, viruses, and novel mRNA-like endogenous viral elements. mSystems 2024; 9:e0032124. [PMID: 38742892 PMCID: PMC11237458 DOI: 10.1128/msystems.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks. IMPORTANCE Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.
Collapse
Affiliation(s)
- Calla Martyn
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- One Health Institute, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Domokos Lauko
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
| | - Edward Midthun
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Gloria Castaneda
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Daniel J. Salkeld
- Department of Biology, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Katherine S. Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Jaiswal N, Kumar A. Candida die-off: Adverse effect and neutralization with phytotherapy approaches. Toxicon 2024; 237:107555. [PMID: 38072320 DOI: 10.1016/j.toxicon.2023.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Candida albicans is the main species that causes 3rd most common bloodstream infection candidiasis in hospitalization. Once it has been diagnosed and treated with antifungal medications accurately, large amounts of Candida cells are killed off rapidly known as Candida die-off or Jarisch-Herxheimer reactions. When Candida cells are killed off quickly, a large no. of toxic substances are released simultaneously. This flood of endotoxins is noxious (harmful) and causes the kidneys and liver to work overtime to try and remove them which causes worsening of symptoms in patients. As a complementary and holistic approach to addressing Candida die-off and its associated symptoms, plant-based remedies i.e., phytotherapy have been gaining increased attention. In this review paper, we have discussed major factors involved in provoking Candida die-off, their management by phytotherapy, challenges associated with the toxic effects due to die-off, and neutralization of Candida die-off through phytotherapy to manage this problem and challenges. In conclusion, this article serves as a meticulous compilation of knowledge on the intriguing subject of Candida die-off, presenting a distinct and informative perspective that has the potential to pave the way for new insights in the realm of plant-based antifungal therapeutics.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India.
| |
Collapse
|