1
|
Kadeer A, Xiong M, Hou CL, Zheng BP, Zhang HL, Wu XS, Abouseif Y, Zheng ZH, Bie ZL, Notaguchi M, Huang Y. The Rootstock's Cotyledon-Regulated Fructokinase ClFRK1 Contributes to Graft Union Formation in Watermelon. PHYSIOLOGIA PLANTARUM 2025; 177:e70144. [PMID: 40059082 DOI: 10.1111/ppl.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Grafting is a traditional horticultural practice that enhances plant resilience against biotic and abiotic stresses. However, the influence of specific tissues, such as rootstock cotyledons, on graft union formation is not well understood. This study investigates the impact of rootstock cotyledon removal on graft healing in watermelon and its underlying mechanisms. Our results indicate that grafting with rootstock cotyledons (+C) consistently resulted in higher survival rates and better growth outcomes compared to grafting without rootstock cotyledons (-C). This effect was more pronounced in cultivated watermelon rootstocks, which have lower hypocotyl sugar content than wild watermelon rootstocks. Transcriptomic analysis revealed that cotyledon removal disrupted sugar metabolism and affected gene expression related to cell division and tissue development. A fructokinase, ClFRK1, was identified among the candidate genes positively correlated with graft survival rate and healing degree. Silencing ClFRK1 reduced callus proliferation, delayed graft healing and reduced survival rate. Conversely, fructose treatment increased ClFRK1 expression levels at the graft junction, which promoted callus proliferation and vascular reconnection. We propose a novel regulatory model for how ClFRK1 regulates graft union formation. These findings underscore new insights into the interactions and synergistic processes between the graft interface and non-grafted organs during graft union formation and also enrich our understanding of fructokinase.
Collapse
Affiliation(s)
- Akebaierjiang Kadeer
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Mu Xiong
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Chen-le Hou
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Bei-Ping Zheng
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hong-Liang Zhang
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiang-Shuai Wu
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yehia Abouseif
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zu-Hua Zheng
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhi-Long Bie
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Michitaka Notaguchi
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yuan Huang
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, P.R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P.R. China
| |
Collapse
|
2
|
Razi K, Suresh P, Mahapatra PP, Al Murad M, Venkat A, Notaguchi M, Bae DW, Prakash MAS, Muneer S. Exploring the role of grafting in abiotic stress management: Contemporary insights and automation trends. PLANT DIRECT 2024; 8:e70021. [PMID: 39678018 PMCID: PMC11646695 DOI: 10.1002/pld3.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Abstract
Grafting is a technique that involves attaching a rootstock to the aerial part of another genotype or species (scion), leading to improved crop performance and sustainable growth. The ability to tolerate abiotic stresses depends on cell membrane stability, a reduction in electrolyte leakage, and the species of scion and rootstock chosen. This external mechanism, grafting, serves as a beneficial tool in influencing crop performance by combining nutrient uptake and translocation to shoots, promoting sustainable plant growth, and enhancing the potential yield of both fruit and vegetable crops. Grafting helps to enhance crop production and improve the capacity of plants to utilize water when undergoing abiotic stress, particularly in genotypes that produce high yields upon rootstocks that are capable of decreasing the impact of drought stress on the shoot. The rootstock plays a pivotal role in establishing a grafted plant by forming a union between the graft and the rootstock. This process is characterized by its integrative, reciprocal nature, enabling plants to tolerate abiotic stress conditions. Grafting has been shown to alleviate the overproduction of lipid peroxidation and reactive oxygen species in the leaves and roots and enhance drought tolerance in plants by maintaining antioxidant enzyme activities and stress-responsive gene expression. Phytohormones, such as cytokinin, auxin, and gibberellin, play a critical role in maintaining rootstock-scion interactions. This review unveils the role of grafting in mitigating various environmental stressors, establishment of a robust graft junction, physiology of rootstock-scion communication, the mechanism underlying rootstock influence, hormonal regulations and the utilization of agri-bots in perfect healing and further cultivation of vegetable crops through grafting.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Preethika Suresh
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Pritam Paramguru Mahapatra
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Musa Al Murad
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Ajila Venkat
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | | | - Dong Won Bae
- Central Instrument FacilityGyeongsang National UniversityJinjuSouth Korea
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of AgricultureAnnamalai UniversityAnnamalai NagarTamil NaduIndia
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| |
Collapse
|
3
|
Liang H, Liu J, Shi X, Ge M, Zhu J, Wang D, Zhou M. An Integrated Analysis of Anatomical and Sugar Contents Identifies How Night Temperatures Regulate the Healing Process of Oriental Melon Grafted onto Pumpkin. PLANTS (BASEL, SWITZERLAND) 2024; 13:1506. [PMID: 38891314 PMCID: PMC11174965 DOI: 10.3390/plants13111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Graft healing is a complex process affected by environmental factors, with temperature being one of the most important influencing factors. Here, oriental melon grafted onto pumpkin was used to study changes in graft union formation and sugar contents at the graft interface under night temperatures of 18 °C and 28 °C. Histological analysis suggested that callus formation occurred 3 days after grafting with a night temperature of 28 °C, which was one day earlier than with a night temperature of 18 °C. Vascular reconnection with a night temperature of 28 °C was established 2 days earlier than with a night temperature of 18 °C. Additionally, nine sugars were significantly enriched in the graft union, with the contents of sucrose, trehalose, raffinose, D-glucose, D-fructose, D-galactose, and inositol initially increasing but then decreasing. Furthermore, we also found that exogenous glucose and fructose application promotes vascular reconnection. However, exogenous sucrose application did not promote vascular reconnection. Taken together, our results reveal that elevated temperatures improve the process of graft union formation through increasing the contents of sugars. This study provides information to develop strategies for improving grafting efficiency under low temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mobing Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan 430070, China; (H.L.); (J.L.); (X.S.); (M.G.); (J.Z.); (D.W.)
| |
Collapse
|
4
|
Pu D, Wen ZY, Sun JB, Zhang MX, Zhang F, Dong CJ. Unveiling the mechanism of source-sink rebalancing in cucumber-pumpkin heterografts: the buffering roles of rootstock cotyledon. PHYSIOLOGIA PLANTARUM 2024; 176:e14232. [PMID: 38450746 DOI: 10.1111/ppl.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.
Collapse
Affiliation(s)
- Dan Pu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng-Yang Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing-Bo Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng-Xia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Juan Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Devi P, DeVetter L, Kraft M, Shrestha S, Miles C. Micrographic View of Graft Union Formation Between Watermelon Scion and Squash Rootstock. FRONTIERS IN PLANT SCIENCE 2022; 13:878289. [PMID: 35498692 PMCID: PMC9051512 DOI: 10.3389/fpls.2022.878289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Grafting has become a common practice for watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] production in many parts of the world, due to its efficacy against biotic and abiotic stressors. However, grafting success for watermelon is challenging in part due to the complex anatomy of the cucurbit vascular system. The survival of grafted transplants depends on compatibility between the scion and rootstock, which in turn depends on anatomical, physiological, and genetic variables. A better understanding of cucurbit anatomy and graft union formation would inform grafting approaches and transplant management. An anatomical study was conducted by scanning electron microscopy (SEM) at 11 and 25 days after grafting (DAG) with seedless watermelon cultivar 'Secretariat' grafted onto compatible rootstock cultivars 'Pelop' (Lagenaria siceraria) and 'Tetsukabuto' (Cucurbita maxima × Cucurbita moschata) in comparison to non-grafted watermelon and rootstock seedlings. At 11 DAG, the parenchymatic cells of the central pith of grafted plants were dead and a necrotic layer was observed, representing the beginning of callus formation. New xylem strands were formed in the vascular system, connecting the rootstock with the scion. At 25 DAG, fully developed vascular bundles at the graft interface were observed with both scion-rootstock combinations. Although more studies are necessary to characterize the sequence of physiological events after grafting in Cucurbit species, this is one of the first studies to describe the complex anatomical changes that occur during watermelon graft healing.
Collapse
Affiliation(s)
- Pinki Devi
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Lisa DeVetter
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Michael Kraft
- Scientific Technical Services, Western Washington University, Bellingham, WA, United States
| | - Srijana Shrestha
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Carol Miles
- Department of Horticulture, Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| |
Collapse
|
6
|
Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to Drought Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to assess the morphological and physio-biochemical responses of a commercial watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) cv. ‘Crimson Sweet’ grafted onto a drought-tolerant rootstock of wild watermelon (bitter apple, Citrullus colocynthis (L.) Schrad, ‘Esfahan’) in comparison with an ungrafted ‘Crimson Sweet’ watermelon or one grafted onto a commercial interspecific Cucurbita hybrid (Cucurbita maxima Duch. × Cucurbita moschata Duch.) rootstock (‘Shintoza’) under water stress. The experiment was conducted in pots under a controlled environment in a greenhouse, and water stress was imposed by maintaining moisture level in pots at 100% (well water (WW)) or 50% (water deficit (WD)) of container capacity (CC). WD significantly decreased most of the morphological traits in ungrafted and grafted plants, while the decrease in growth traits was lower in grafted plants than ungrafted plants. The response of grafted plants onto wild watermelon rootstock (‘Esfahan’) for most of the affected parameters (shoot fresh and dry weight, vine length and internodal length) was, however, comparable to those grafted onto commercial Cucurbita hybrid rootstock (‘Shintoza’). Plants grafted onto bitter apple (wild watermelon) exhibited a relatively lower decrease in growth and biomass, besides showing higher antioxidant activity (e.g., guaiacol peroxidase) concomitant with the lower accumulation of malondialdehyde and electrolyte leakage in the leaf tissues in comparison with ungrafted plants. The overall growth performance, as well as those under water stress conditions in commercial rootstock-grafted watermelon, was related to its better plant water status (e.g., high relative water content) which was likely ascertained by its greater root efficiency. This suggests that watermelons grafted onto bitter apple rootstock and Cucurbita hybrid rootstock were constitutively more resistant to drought, with higher efficiency in mitigating oxidative stress than ungrafted treatment. The above findings demonstrated that bitter apple, a well-adapted desert species, can be used as an alternative rootstock to commercial rootstocks (e.g., ‘Shintoza’) for watermelon grafting under water stress conditions. In addition, bitter apple rootstock can be involved in rootstock breeding programs to improve drought tolerance in watermelon.
Collapse
|
7
|
Grumet R, McCreight JD, McGregor C, Weng Y, Mazourek M, Reitsma K, Labate J, Davis A, Fei Z. Genetic Resources and Vulnerabilities of Major Cucurbit Crops. Genes (Basel) 2021; 12:1222. [PMID: 34440396 PMCID: PMC8392200 DOI: 10.3390/genes12081222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The Cucurbitaceae family provides numerous important crops including watermelons (Citrullus lanatus), melons (Cucumis melo), cucumbers (Cucumis sativus), and pumpkins and squashes (Cucurbita spp.). Centers of domestication in Africa, Asia, and the Americas were followed by distribution throughout the world and the evolution of secondary centers of diversity. Each of these crops is challenged by multiple fungal, oomycete, bacterial, and viral diseases and insects that vector disease and cause feeding damage. Cultivated varieties are constrained by market demands, the necessity for climatic adaptations, domestication bottlenecks, and in most cases, limited capacity for interspecific hybridization, creating narrow genetic bases for crop improvement. This analysis of crop vulnerabilities examines the four major cucurbit crops, their uses, challenges, and genetic resources. ex situ germplasm banks, the primary strategy to preserve genetic diversity, have been extensively utilized by cucurbit breeders, especially for resistances to biotic and abiotic stresses. Recent genomic efforts have documented genetic diversity, population structure, and genetic relationships among accessions within collections. Collection size and accessibility are impacted by historical collections, current ability to collect, and ability to store and maintain collections. The biology of cucurbits, with insect-pollinated, outcrossing plants, and large, spreading vines, pose additional challenges for regeneration and maintenance. Our ability to address ongoing and future cucurbit crop vulnerabilities will require a combination of investment, agricultural, and conservation policies, and technological advances to facilitate collection, preservation, and access to critical Cucurbitaceae diversity.
Collapse
Affiliation(s)
- Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - James D. McCreight
- USDA, ARS, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA;
| | - Cecilia McGregor
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53706, USA;
| | - Michael Mazourek
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY 14853, USA;
| | - Kathleen Reitsma
- North Central Regional Plant Introduction Station, Iowa State University, Ames, IA 50014, USA;
| | - Joanne Labate
- Plant Genetic Resources Unit, United States Department of Agriculture, Agricultural Research Service, Geneva, NY 14456, USA;
| | - Angela Davis
- Sakata Seed America, Inc., Woodland, CA 95776, USA;
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|