1
|
Dawood MG, El-Awadi ME, Sadak MS, Khater MA, Abdel-Baky YR. Evaluate the physiological role of tetrapyrroles precursor on growth, yield and some biochemical composition of two cultivars of Vicia faba L. BMC PLANT BIOLOGY 2025; 25:479. [PMID: 40234770 PMCID: PMC11998451 DOI: 10.1186/s12870-025-06418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
It is well known that 5-aminolevulinic acid (5ALA) is a non-protein amino acid and essential for the formation of biosynthesis of tetrahydropyrroles. So, two field experiments were carried out in a private farm at Sharkia Governorate to study effect of foliar spraying with 5ALA (1, 3, and 6 mgL-1) on both quality and economic characters of two cultivars of Vicia faba L. (Giza 843 and Nubaria 1). Results indicated that plants belong to Nubaria 1 cv. are characterized by significant increases in all components of photosynthetic pigments, indole acetic acid, free amino acids, seed yield /fed and straw yield/fed over those of Giza 843 cv. under control treatments. Notably, yielded seeds of Giza 843 cv. are characterized by significant increases in total carbohydrate and protein content than those of Nubaria 1 cv. Whereas, yielded seeds of Nubaria 1 cv. are characterized by significant increases in total phenolic content and vicine. Moreover, 5ALA treatments significantly increased most of all values of vegetative growth parameters, photosynthetic pigments, indole acetic acid, proline and free amino acids as well as seed and straw yield/fed, total carbohydrate and protein, and phenolic contents accompanied by significant decreases in vicine content of two faba bean cultivars relative to corresponding controls. On the other hand, the increments in most of investigated parameters were in opposite direction with concentration of 5ALA.The least concentration of 5ALA (1mg/L) was the most significant treatment in both cultivars. Since it increased seed yield by 17.86% and 72.27% in Giza 843 cv. and Nubaria 1 cv. respectively relative to corresponding controls. Regarding anti-nutritional substance called vicine, 5ALA at 3mg/L caused significant decrease in vicine content of Giza 843 cv. relative to control. It could be concluded that faba bean plants belong to Nubaria 1 cv. effectively responded to 5ALA at 1mg/L more than faba bean plants belong to Giza 843 cv.
Collapse
Affiliation(s)
- Mona G Dawood
- Botany Department, Agriculture and Biological Institute, National Research Centre, 33 El Bohouth St P.O. 12622, Dokki, Giza, Egypt.
| | - Mohamed E El-Awadi
- Botany Department, Agriculture and Biological Institute, National Research Centre, 33 El Bohouth St P.O. 12622, Dokki, Giza, Egypt
| | - Mervat Sh Sadak
- Botany Department, Agriculture and Biological Institute, National Research Centre, 33 El Bohouth St P.O. 12622, Dokki, Giza, Egypt
| | - Mahmoud A Khater
- Botany Department, Agriculture and Biological Institute, National Research Centre, 33 El Bohouth St P.O. 12622, Dokki, Giza, Egypt
| | - Yasser R Abdel-Baky
- Botany Department, Agriculture and Biological Institute, National Research Centre, 33 El Bohouth St P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Zhang L, Chang Q, Zhao X, Guo Q, Chen S, Zhang Q, He Y, Chen S, Chen K, Ban R, Hao Y, Hou X. Selenium Improves Yield and Quality in Prunella vulgaris by Regulating Antioxidant Defense, Photosynthesis, Growth, Secondary Metabolites, and Gene Expression Under Acid Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:920. [PMID: 40265862 PMCID: PMC11944784 DOI: 10.3390/plants14060920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Prunella vulgaris, an essential component of traditional Chinese medicine, is suitable for growing in soil with a pH value ranging from 6.5 to 7.5. However, it is primarily cultivated in acidic soil regions of China, where its growth is frequently compromised by acidic stress. Selenium (Se) has been recognized for its potential to enhance stress tolerance in plants. However, its role in acid-stress-induced oxidative stress is not clear. In this study, the effects of varying Se concentrations on the growth and quality of P. vulgaris under acidic stress were investigated. The results showed that acid stress enhanced antioxidant enzyme activities, non-enzymatic antioxidant substances, and osmolyte content, accompanied by an increase in oxidant production and membrane damage. Furthermore, it decreased the photosynthetic capacity, inhibited root and shoot growth, and diminished the yield of P. vulgaris. In contrast, exogenous application of Se, particularly at 5 mg L-1, markedly ameliorated these adverse effects. Compared to acid-stressed plants, 5 mg L-1 Se treatment enhanced superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione peroxidase activities by 150.19%, 54.94%, 43.43%, and 45.55%, respectively. Additionally, soluble protein, soluble sugar, and proline contents increased by 11.75%, 23.32%, and 40.39%, respectively. Se application also improved root architecture and alleviated membrane damage by reducing hydrogen peroxide, superoxide anion, malondialdehyde, and electrolyte leakage levels. Furthermore, it significantly enhanced the photosynthetic capacity by elevating pigment levels, the performance of PSI and PSII, electron transfer, and the coordination of PSI and PSII. Consequently, plant growth and spica weight were significantly promoted, with a 12.50% increase in yield. Moreover, Se application upregulated key genes involved in flavonoid and phenolic acid metabolic pathways, leading to elevated levels of total flavonoids, caffeic acid, ferulic acid, rosmarinic acid, and hyperoside by 31.03%, 22.37%, 40.78%, 15.11%, and 20.84%, respectively, compared to acid-stressed plants. In conclusion, exogenous Se effectively alleviated the adverse effects of acid stress by improving the antioxidant system, growth, and photosynthetic capacity under acid stress, thus enhancing the yield and quality of P. vulgaris.
Collapse
Affiliation(s)
- Lixia Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (L.Z.); (X.Z.); (Q.G.); (Y.H.); (K.C.); (R.B.)
| | - Qingshan Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (S.C.); (Q.Z.); (S.C.); (Y.H.)
| | - Xingli Zhao
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (L.Z.); (X.Z.); (Q.G.); (Y.H.); (K.C.); (R.B.)
| | - Qi Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (L.Z.); (X.Z.); (Q.G.); (Y.H.); (K.C.); (R.B.)
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (S.C.); (Q.Z.); (S.C.); (Y.H.)
| | - Qiaoming Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (S.C.); (Q.Z.); (S.C.); (Y.H.)
| | - Yinglong He
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (L.Z.); (X.Z.); (Q.G.); (Y.H.); (K.C.); (R.B.)
| | - Sudan Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (S.C.); (Q.Z.); (S.C.); (Y.H.)
| | - Ke Chen
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (L.Z.); (X.Z.); (Q.G.); (Y.H.); (K.C.); (R.B.)
| | - Ruiguo Ban
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (L.Z.); (X.Z.); (Q.G.); (Y.H.); (K.C.); (R.B.)
| | - Yuhang Hao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (S.C.); (Q.Z.); (S.C.); (Y.H.)
| | - Xiaogai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (L.Z.); (X.Z.); (Q.G.); (Y.H.); (K.C.); (R.B.)
| |
Collapse
|
3
|
Yang H, Zhang J, Zhong Y, Wang L. 5-Aminolevulinic acid improves strawberry salt tolerance through a NO-H 2O 2 signaling circuit regulated by FaWRKY70 and FaWRKY40. J Adv Res 2024:S2090-1232(24)00609-X. [PMID: 39743212 DOI: 10.1016/j.jare.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na+ homeostasis under salt stress. Regulation of this process requires the signaling molecules nitric oxide (NO) and hydrogen peroxide (H2O2), but the specific signaling cascade and transcriptional regulatory mechanism have not previously been characterized. OBJECTIVES Our work focused on the dissection of the NO and H2O2 signaling cascade and transcriptional regulatory mechanism by which FaWRKY70-FaWRKY40 participated in ALA-improved Na+ homeostasis and salt tolerance of strawberry. METHODS It was preliminarily confirmed by transcriptome and RT-qPCR that FaWRKY40 and FaWRKY70 participated in ALA-induced salt tolerance of strawberry. Two WRKY transcription factors overexpressed in woodland strawberry as well as tobacco were used to identify the gene functions in salt tolerance. Yeast one-hybrid (Y1H), β-glucuronidase (GUS), dual luciferase reporter (DLR) and electrophoretic mobility shift assays (EMSA) were used to verify the interaction with the target gene. RESULTS ALA induced NO and H2O2 production, which formed a signaling circuit reciprocally regulated by FaNR1 and FaRbohD expression to coordinate Na+ homeostasis. FaWRKY40 was shown to act as a positive transcription factor in this pathway: FaWRKY40 overexpression improved salt tolerance in woodland strawberry and tobacco, whereas FaWRKY40 RNA interference increased plant salt injury. FaWRKY40 bound to the promoters of FaRbohD, FaNHX1, and FaSOS1 to promote root H2O2 generation and Na+ reallocation. Conversely, FaWRKY70, a negative WRKY transcription factor, was found to increase salt sensitivity by inhibiting expression of FvWRKY40, FvNR1, and FvHKT1. ALA inhibited FaWRKY70 but increased FaWRKY40 expression, coordinating the regulation of NO-H2O2 signaling and Na+ homeostasis when strawberry was stress by salinity. CONCLUSION ALA inhibits NaCl-stimulated FaWRYK70 expression, relieving the transcriptional inhibition of its downstream targets. The NO-H2O2 signaling circuit can then initiate mechanisms such as Na+ exclusion, vacuolar sequestration, and removal of Na+ from the xylem sap, limiting Na+ accumulation in the leaves and promoting Na+ homeostasis and plant salt tolerance.
Collapse
Affiliation(s)
- Hao Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Jianting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| |
Collapse
|
4
|
Amtaghri S, Eddouks M. Pharmacological and phytochemical properties of the genus Buxus: A review. Fitoterapia 2024; 177:106081. [PMID: 38936673 DOI: 10.1016/j.fitote.2024.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Buxus plants have been used in traditional medicine for a very long time. The Buxus genus has been used to cure a variety of illnesses. OBJECTIVE This review aimed to provide a literature review on the genus Buxus including its biological and phytochemical properties. MATERIALS AND METHODS The current study was conducted using several scientific databases. Correct plant names were verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS Within all the species of the family Buxaceae, 5 species of the genus Buxus are reported to be antibacterial, 3 species have been found to be antioxidant, 5 species are cytotoxic, 1 species is anti-inflammatory, 1 species is antidiabetic, and 4 species are antifungal. Alkaloids, terpenoids, tannins, flavonoids, peptides, and phenolic compounds are the main chemical components of this genus. The study of >11 Buxuss pecies has identified >201 compounds. Pharmacological research has demonstrated that crude extracts and some pure compounds obtained from Buxus have several pharmacological activities such as antibacterial, antioxidant, cytotoxic, anti-inflammatory, antidiabetic, and antifungal. Based on the study of the phytochemistry of Buxus species, it was concluded that all the studied plants have active compounds, among which 55 molecules showed interesting activities. CONCLUSIONS The numerous traditional uses of Buxus species have been supported by several studies. Before Buxus plants can be fully employed clinically, further research is necessary.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco; Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco.
| |
Collapse
|
5
|
Ye Y, Li S, Du X, Zhang L, Bao N, Li Y, Zhao Y. Effects of dietary 5-aminolevulinic acid on growth performance and nonspecific immunity of Litopenaeus vannamei, as determined by transcriptomic analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109746. [PMID: 38964435 DOI: 10.1016/j.fsi.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
5-aminolevulinic acid (5-ALA) is an endogenous non-protein amino acid that is frequently used in modern agriculture. This study set out to determine how dietary 5-ALA affected the nonspecific immunity and growth performance of Litopenaeus vannamei. The shrimp were supplemented with dietary 5-ALA at 0, 15, 30, 45, and 60 mg/kg for three months. Transcriptome data of the control group and the group supplemented with 45 mg/kg dietary 5-ALA were obtained using transcriptome sequencing. 592 DEGs were identified, of which 426 were up-regulated and 166 were down-regulated. The pathways and genes associated with growth performance and nonspecific immunity were confirmed using qRT-PCR. The highest survival rate, body length growth rate, and weight gain values were observed in shrimp fed diets containing 45 mg/kg 5-ALA. L. vannamei in this group had a significantly higher total hemocyte count, phagocytosis rate and respiratory burst value than those in the control group. High doses of dietary 5-ALA (45 mg/kg, 60 mg/kg) significantly increased the activities of catalase, superoxide dismutase, oxidized glutathione, glutathione-peroxidase, phenoloxidase, lysozyme, acid phosphatase, and alkaline phosphatase. At the transcriptional level, dietary 5-ALA significantly up-regulated the expression levels of antioxidant immune-related genes. The optimal concentration of 5-ALA supplementation was 39.43 mg/kg, as indicated by a broken line regression. Our study suggested that dietary 5-ALA positively impacts the growth and nonspecific immunity of L. vannamei, providing a novel theoretical basis for further research into 5-ALA as a dietary supplement.
Collapse
Affiliation(s)
- Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Lin Zhang
- Beijing Challenge Bio-technology Co., Ltd, 100081, China
| | - Ning Bao
- Beijing Challenge Bio-technology Co., Ltd, 100081, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Zhang L, Chang Q, He Y, Zhao X, Liu W, Guo Q, Chen K, Hou X. Selenite foliar application increased the accumulation of medicinal components in Paeonia ostii by promoting antioxidant capacity, reducing oxidative stress, and improving photosynthetic capacity. PHOTOSYNTHETICA 2024; 62:168-179. [PMID: 39651417 PMCID: PMC11613835 DOI: 10.32615/ps.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 12/11/2024]
Abstract
The effects of selenite (0, 15, 30, 45 mg L-1) on physiological characteristics and medicinal components of Paeonia ostii were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity. Moreover, selenite treatment also greatly increased the contents of gallic acid, catechin, albiflorin, paeoniflorin, benzoic acid, and paeonol in Moutan cortex radicis (MCR). These results showed that selenite effectively protected the photosynthetic apparatus from photooxidative damage by enhancing antioxidant capacity, improving photosynthetic capacity, and increasing the content of the medicinal compounds in MCR.
Collapse
Affiliation(s)
- L.X. Zhang
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - Q.S. Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, 471003 Luoyang, China
| | - Y.L. He
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - X.L. Zhao
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - W. Liu
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - Q. Guo
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - K. Chen
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| | - X.G. Hou
- College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China
| |
Collapse
|
7
|
Wu L, Song L, Cao L, Meng L. Alleviation of Shade Stress in Chinese Yew ( Taxus chinensis) Seedlings with 5-Aminolevulinic Acid (ALA). PLANTS (BASEL, SWITZERLAND) 2023; 12:2333. [PMID: 37375957 DOI: 10.3390/plants12122333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
5-aminolevulinic acid (ALA) is a novel regulator that can promote plant growth, nitrogen uptake, and abiotic stress tolerance. Its underlying mechanisms, however, have not been fully investigated. In this study, the effects of ALA on morphology, photosynthesis, antioxidant systems, and secondary metabolites in two cultivars of 5-year-old Chinese yew (Taxus chinensis) seedlings, 'Taihang' and 'Fujian', were examined under shade stress (30% light for 30 days) using different doses of ALA (0, 30, and 60 mg/L). The findings from our study show that shade stress significantly reduced plant height, stem thickness, and crown width and increased malondialdehyde (MDA) levels. However, the application of 30 mg/L ALA effectively mitigated these effects, which further induced the activity of antioxidant enzymes under shade stress, resulting in the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) being increased by 10%, 16.4%, and 42.1%, and 19.8%, 20.1%, and 42% in 'Taihang' and 'Fujian', respectively. It also promoted their role in the absorption, conversion, and efficient use of light energy. Additionally, the use of 30 mg/L ALA caused a significant increase in the concentration of secondary metabolites, including polysaccharide (PC), carotenoid (CR), and flavonoids (FA), with increases of up to 46.1%, 13.4%, and 35.6% and 33.5%, 7.5%, and 57.5% in both yew cultivars, respectively, contributing to nutrient uptake. With ALA treatment, the yew seedlings showed higher chlorophyll (total chlorophyll, chlorophyll a and b) levels and photosynthesis rates than the seedlings that received the shade treatment alone. To conclude, the application of 30 mg/L ALA alleviated shade stress in yew seedlings by maintaining redox balance, protecting the photorespiratory system, and increasing organic metabolites, thus increasing the number of new branches and shoots and significantly promoting the growth of the seedlings. Spraying with ALA may be a sustainable strategy to improve the shade-resistant defense system of yew. As these findings increase our understanding of this shade stress response, they may have considerable implications for the domestication and cultivation of yew.
Collapse
Affiliation(s)
- Liuliu Wu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linlin Song
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lifan Cao
- Engineering and Technology Research Center of Paper Mulberry Industry, Henan Academy of Sciences, Zhengzhou 451451, China
| | - Li Meng
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
8
|
Zhou Z, Li J, Li C, Guo Q, Hou X, Zhao C, Wang Y, Chen C, Wang Q. Effects of Graphene Oxide on the Growth and Photosynthesis of the Emergent Plant Iris pseudacorus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091738. [PMID: 37176796 PMCID: PMC10180715 DOI: 10.3390/plants12091738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
The extensive applications of graphene oxide (GO) inevitably lead to entry into the natural aquatic environment. However, information on its toxicity to emergent plants is still lacking. In this study, an emergent plant, Iris pseudacorus, was exposed to GO (1, 20, 80, and 140 mg·L-1) under hydroponic conditions for 15 weeks. Changes in plant growth were assessed by analyzing plant biomass and photosynthetic pigment contents; the photosynthesis response was verified by measuring chlorophyll a fluorescence; and the nutrient levels of the plant were evaluated. Results showed that GO at 20-140 mg·L-1 significantly increased plant dry weight by 37-84% and photosynthetic pigment contents by 26-178%, and 80 mg·L-1 was the optimal concentration. PSII activity, adjustment capacities of electron transport in PSII, the grouping or energetic connectivity between PSII units, light energy conversion efficiency, photosynthesis performance indexes (by 11-51%), and contents of several nutrient elements (N, Fe, and Cu) were increased by 49-69%, 34-84%, and 11-38%, respectively. These findings indicate that GO can enhance plant growth by promoting plant photosynthesis performance and improving plant nutrient levels, and has great application potential in promoting the growth and development of this emergent plant as a phytoremediation agent.
Collapse
Affiliation(s)
- Zixin Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiaxin Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xincun Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunqiao Zhao
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
9
|
Chang Q, Zhang L, Chen S, Gong M, Liu L, Hou X, Mi Y, Wang X, Wang J, Zhang Y, Sun Y. Exogenous Melatonin Enhances the Yield and Secondary Metabolite Contents of Prunella vulgaris by Modulating Antioxidant System, Root Architecture and Photosynthetic Capacity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1129. [PMID: 36903989 PMCID: PMC10005377 DOI: 10.3390/plants12051129] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Melatonin (MT) plays a number of key roles in regulating plant growth and secondary metabolite accumulation. Prunella vulgaris is an important traditional Chinese herbal medicinal plant which is used for the treatment of lymph, goiter, and mastitis. However, the effect of MT on the yield and medicinal component content of P. vulgaris remains still unclear. In this research, we have examined the influence of different concentrations of MT (0, 50, 100, 200, 400 μM) on the physiological characteristics, secondary metabolite contents, and yield of P. vulgaris biomass. The results showed that 50-200 μM MT treatment had a positive effect on P. vulgaris. MT treatment at 100 μM greatly increased the activities of superoxide dismutase and peroxidase, the contents of soluble sugar and proline, and obviously decreased the relative electrical conductivity, the contents of malondialdehyde and hydrogen peroxide of leaves. Furthermore, it markedly promoted the growth and development of the root system, increased the content of photosynthetic pigments, improved the performance of photosystems I and II and the coordination of both photosystems, and enhanced the photosynthetic capacity of P. vulgaris. In addition, it significantly increased the dry mass of whole plant and spica and promoted the accumulation of total flavonoids, total phenolics, caffeic acid, ferulic acid, rosmarinic acid, and hyperoside in the spica of P. vulgaris. These findings demonstrated that the application of MT could effectively activate the antioxidant defense system of P. vulgaris, protect the photosynthetic apparatus from photooxidation damage, and improve the photosynthetic capacity and the root absorption capacity, thereby promoting the yield and accumulation of secondary metabolites in P. vulgaris.
Collapse
Affiliation(s)
- Qingshan Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Lixia Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Longchang Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaogai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yinfa Mi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaohui Wang
- Peony Research Institute, Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, China
| | - Jianzhang Wang
- Luoyang Greening Management Center, Luoyang 471023, China
| | - Yue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yiming Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
10
|
Franzolin MR, Lopes IS, Courrol DDS, de Souza Barreto S, Courrol LC. Synthesis, characterization, antimicrobial activity, and toxicity evaluation of aminolevulinic acid-silver and silver-iron nanoparticles for potential applications in agriculture. RSC Adv 2022; 12:30094-30103. [PMID: 36329930 PMCID: PMC9585435 DOI: 10.1039/d2ra05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Aminolevulinic acid (ALA) is considered one of the most critical plants growth regulators and essential precursors for chlorophyll biosynthesis; besides, its photodynamic activity can be used to exterminate larvae and microorganisms in plants and soil. Silver nanoparticles (AgNPs) have unique physicochemical properties and potent antimicrobial, antiviral, and antifungal activities, and in agriculture, their application as nanopesticides has been proposed. In this study, silver and silver–iron nanoparticles capped/stabilized with aminolevulinic acid (ALAAgNPs and ALAAgFeNPs) were synthesized by the photoreduction method and characterized by UV-vis spectroscopy, transmission electron microscopy, and zeta potential analysis. The kinetics of 1O2 generation from ALAAgFeNPs were obtained. The ALANP toxicity was evaluated on stalks of E. densa by observing cell morphology changes and measuring chlorophyll content compared with water-treated plants. Antimicrobial activity was tested against E. coli, P. aeruginosa, and Candida albicans. The results suggested that ALANPs (prepared with [AgNO3] ≤ 0.2 mM and [ALA] ≤ 0.4 mM) could be suitable for applications in the agricultural sector. The presence of ∼0.3 mmol of iron in ALAAgNPs synthesis increased cell uptake and chlorophyll synthesis. ALA is a natural metabolite in all living cells and possesses low toxicity. ALANPs exhibit high antimicrobial activity, promote plant growth and have the potential to show photodynamic herbicidal properties under solar illumination.![]()
Collapse
Affiliation(s)
| | - Isabela Santos Lopes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São PauloDiademaSão PauloBrazil
| | | | | | - Lilia Coronato Courrol
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São PauloDiademaSão PauloBrazil
| |
Collapse
|
11
|
Yang Y, Xie J, Li J, Zhang J, Zhang X, Yao Y, Wang C, Niu T, Bakpa EP. Trehalose alleviates salt tolerance by improving photosynthetic performance and maintaining mineral ion homeostasis in tomato plants. FRONTIERS IN PLANT SCIENCE 2022; 13:974507. [PMID: 36035709 PMCID: PMC9412767 DOI: 10.3389/fpls.2022.974507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
Trehalose (Tre), which was an osmoprotective or stabilizing molecule, played a protective role against different abiotic stresses in plants and showed remarkable perspectives in salt stress. In this study, the potential role of Tre in improving the resistance to salt stress in tomato plants was investigated. Tomato plants (Micro Tom) were treated with Hoagland nutrient solution (CK), 10 mM Tre (T), 150 mM sodium chloride (NaCl, S), and 10 mM Tre+150 mM NaCl (S+T) for 5 days. Our results showed that foliar application of Tre alleviated the inhibition of tomato plant growth under salt stress. In addition, salt stress decreased the values of net photosynthetic rate (Pn, 85.99%), stomata conductance (gs, 57.3%), and transpiration rate (Tr, 47.97%), but increased that of intercellular carbon dioxide concentration (Ci, 26.25%). However, exogenous application of Tre significantly increased photosynthetic efficiency, increased the activity of Calvin cycle enzymes [ribulose diphosphate carboxylase/oxygenase (Rubisco), fructose-1,6-bisphosphate aldolase (FBA), fructose-1, 6-bisphosphatase (FBPase), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and transketolase (TK)], up-regulated the expression of genes encoding enzymes, induced stomatal opening, and alleviated salt-induced damage to the chloroplast membrane and structure. In the saline environment, photosynthetic electron transport was restricted, resulting the J-I-P phase to decrease. At the same time, the absorption, capture, and transport energies per excited cross-section and per active reaction center decreased, and the dissipation energy increased. Conversely, Tre reversed these values and enhanced the photosystem response to salt stress by protecting the photosynthetic electron transport system. In addition, foliage application with Tre significantly increased the potassium to sodium transport selectivity ratio (S K-Na ) by 16.08%, and increased the levels of other ions to varying degrees. Principal component analysis (PCA) analysis showed that exogenous Tre could change the distribution of elements in different organs and affect the expressions of SlSOS1, SlNHX, SlHKT1.1, SlVHA, and SlHA-A at the transcriptional level under salt stress, thereby maintaining ion homeostasis. This study demonstrated that Tre was involved in the process of mitigating salt stress toxicity in tomato plants and provided specific insights into the effectiveness of Tre in mediating salt tolerance.
Collapse
|
12
|
Yang L, Wu Y, Wang X, Lv J, Tang Z, Hu L, Luo S, Wang R, Ali B, Yu J. Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage ( Brassica pekinensis L.) to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:845396. [PMID: 35720555 PMCID: PMC9199490 DOI: 10.3389/fpls.2022.845396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/04/2022] [Indexed: 06/15/2023]
Abstract
The 5-aminolevulinic acid (ALA), a new type of plant growth regulator, can relieve the toxicity of cadmium (Cd) to plants. However, its mechanism has not been thoroughly studied. In the study, the roles of ALA have been investigated in the tolerance of Chinese cabbage (Brassica pekinensis L.) seedlings to Cd stress. The results showed that Cd significantly reduced the biomass and the length of the primary root of seedlings but increased the malondialdehyde (MDA) and the hydrogen peroxide (H2O2) contents. These can be effectively mitigated through the application of ALA. The ALA can further induce the activities of antioxidant enzymes in the ascorbate-glutathione (AsA-GSH) cycle under Cd stress, which resulted in high levels of both GSH and AsA. Under ALA + Cd treatment, the seedlings showed a higher chlorophyll content and photosynthetic performance in comparison with Cd treatment alone. Microscopic analysis results confirmed that ALA can protect the cell structure of shoots and roots, i.e., stabilizing the morphological structure of chloroplasts in leaf mesophyll cells. The qRT-PCR results further reported that ALA downregulated the expressions of Cd absorption and transport-related genes in shoots (HMA2 and HMA4) and roots (IRT1, IRT2, Nramp1, and Nramp3), which resulted in the low Cd content in the shoots and roots of cabbage seedlings. Taken together, the exogenous application of ALA alleviates Cd stress through maintaining redox homeostasis, protecting the photosynthetic system, and regulating the expression of Cd transport-related genes in Chinese cabbage seedlings.
Collapse
Affiliation(s)
- Lijing Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ruidong Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Yang Y, Yao Y, Li J, Zhang J, Zhang X, Hu L, Ding D, Bakpa EP, Xie J. Trehalose Alleviated Salt Stress in Tomato by Regulating ROS Metabolism, Photosynthesis, Osmolyte Synthesis, and Trehalose Metabolic Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:772948. [PMID: 35360323 PMCID: PMC8963455 DOI: 10.3389/fpls.2022.772948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Trehalose plays a critical role in plant response to salinity but the involved regulatory mechanisms remain obscure. Here, this study explored the mechanism of exogenous trehalose-induced salt tolerance in tomato plants by the hydroponic test method. Our results indicated that 10 mM trehalose displayed remarkable plant biomass by improving growth physiology, which were supported by the results of chlorophyll fluorescence and rapid light-response curve. In the salinity environment, trehalose + NaCl treatment could greatly inhibit the decrease of malondialdehyde level, and it increases the contents of other osmotic substances, carbohydrates, K+, and K+/Na+ ratio. Meanwhile, trehalose still had similar effects after recovery from salt stress. Furthermore, trehalose pretreatment promoted trehalose metabolism; significantly increased the enzymatic activity of the trehalose metabolic pathway, including trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), and trehalase (TRE); and upregulated the expression of SlTPS1, SlTPS5, SlTPS7, SlTPPJ, SlTPPH, and SlTRE under saline conditions. However, the transcriptional levels of SlTPS1, SlTPS5, and SlTPS7 genes and the activity of TPS enzyme were reversed after recovery. In addition, we found that hydrogen peroxide (H2O2) and superoxide anion (O2 -) were accumulated in tomato leaves because of salt stress, but these parameters were all recovered by foliar-applied trehalose, and its visualization degree was correspondingly reduced. Antioxidant enzyme activities (SOD, POD, and CAT) and related gene expression (SlCu/Zn-SOD, SlFe-SOD, SlMn-SOD, SlPOD, and SlCAT) in salt-stressed tomato leaves were also elevated by trehalose to counteract salt stress. Collectively, exogenous trehalose appeared to be the effective treatment in counteracting the negative effects of salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Zhang H, Tao H, Yang H, Zhang L, Feng G, An Y, Wang L. MdSCL8 as a Negative Regulator Participates in ALA-Induced FLS1 to Promote Flavonol Accumulation in Apples. Int J Mol Sci 2022; 23:ijms23042033. [PMID: 35216148 PMCID: PMC8875840 DOI: 10.3390/ijms23042033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
Apples (Malus domestica) are rich in flavonols, and 5-aminolevulinic acid (ALA) plays an important role in the regulation of plant flavonoid metabolism. To date, the underlying mechanism of ALA promoting flavonol accumulation is unclear. Flavonol synthase (FLS) is a key enzyme in flavonol biosynthesis. In this study, we found that ALA could enhance the promoter activity of MdFLS1 in the ‘Fuji’ apple and improve its expression. With MdFLS1 as bait, we screened a novel transcription factor MdSCL8 by the Yeast One-Hybrid (Y1H) system from the apple cDNA library which we previously constructed. Using luciferase reporter assay and transient GUS activity assay, we verified that MdSCL8 inhibits the activity of MdFLS1 promoter and hinders MdFLS1 expression, thus reducing flavonol accumulation in apple. ALA significantly inhibited MdSCL8 expression. Therefore, ALA promoted the expression of MdFLS1 and the consequent flavonol accumulation probably by down-regulating MdSCL8. We also found that ALA significantly enhanced the gene expression of MdMYB22 and MdHY5, two positive regulators of MdFLS. We further demonstrated that MdMYB22 interacts with MdHY5, but neither of them interacts with MdSCL8. Taken together, our data suggest MdSCL8 as a novel regulator of MdFLS1 and provide important insights into mechanisms of ALA-induced flavonol accumulation in apples.
Collapse
|
15
|
Study of the Influence of Abiotic and Biotic Stress Factors on Horticultural Plants. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In changing environmental conditions, horticulture plants are affected by a vast range of abiotic and biotic stresses which directly and indirectly influence plant condition [...]
Collapse
|