1
|
Zhang Y, Liu Z, Huang H, Li L, Xu S, Shen W. Molecular hydrogen positively influences root gravitropism involving auxin signaling and starch accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2874-2888. [PMID: 39559980 DOI: 10.1111/tpj.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/23/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Although geoscience of natural hydrogen (H2), hydrogen-producing soil bacteria, and especially plant-based H2, has been observed, it is not clear whether or how above H2 resources influence root gravitropic responses. Here, pharmacological, genetic, molecular, and cell biological tools were applied to investigate how plant-based H2 coordinates gravity responses in Arabidopsis roots. Since roots show higher H2 production than shoots, exogenous H2 supply was used to mimic this function. After H2 supplementation, the asymmetric expression of the auxin-response reporter DR5 driven by auxin influx and efflux carriers, and thereafter positive root gravitropism were observed. These positive responses in root gravitropism were sensitive to auxin polar transport inhibitors, and importantly, the defective phenotypes observed in aux1-7, pin1, and pin2 mutants were not significantly altered by exogenous H2. The observed starch accumulation was matched with the reprogramming gene expression linked to starch synthesis and degradation. Transgenic plants expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only displayed higher endogenous H2 concentrations, the inducible AUX1 gene expression and starch accumulation, but also showed pronounced root gravitropism. Collectively, above evidence preliminarily provides a framework for understanding the molecular basis of the possible functions of both plant/soil-based and nature H2 in root architecture.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huize Huang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Li L, Huang H, Jin Z, Jiang K, Zeng Y, Pathier D, Cheng X, Shen W. Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1723. [PMID: 38999563 PMCID: PMC11243525 DOI: 10.3390/plants13131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Molecular hydrogen (H2) is crucial for agricultural microbial systems. However, the mechanisms underlying its influence on crop yields is yet to be fully elucidated. This study observed that H2-based irrigation significantly increased strawberry (Fragaria × ananassa Duch.) yield with/without nutrient fertilization. The reduction in soil available nitrogen (N), phosphorus (P), potassium (K), and organic matter was consistent with the increased expression levels of N/P/K-absorption-related genes in root tissues at the fruiting stage. Metagenomics profiling showed the alterations in rhizosphere microbial community composition achieved by H2, particularly under the conditions without fertilizers. These included the enrichment of plant-growth-promoting rhizobacteria, such as Burkholderia, Pseudomonas, and Cupriavidus genera. Rhizobacteria with the capability to oxidize H2 (group 2a [NiFe] hydrogenase) were also enriched. Consistently, genes related to soil carbon (C) fixation (i.e., rbcL, porD, frdAB, etc.), dissimilar nitrate reduction (i.e., napAB and nrfAH), and P solublization, mineralization, and transportation (i.e., ppx-gppA, appA, and ugpABCE) exhibited higher abundance. Contrary tendencies were observed in the soil C degradation and N denitrification genes. Together, these results clearly indicate that microbe-mediated soil C, N, and P cycles might be functionally altered by H2, thus increasing plant nutrient uptake capacity and horticultural crop yield.
Collapse
Affiliation(s)
- Longna Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Huize Huang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Zhiwei Jin
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Ke Jiang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Yan Zeng
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (D.P.); (X.C.)
| | - Didier Pathier
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (D.P.); (X.C.)
| | - Xu Cheng
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (D.P.); (X.C.)
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| |
Collapse
|
3
|
Hung JC, Li NJ, Peng CY, Yang CC, Ko SS. Safe Farming: Ultrafine Bubble Water Reduces Insect Infestation and Improves Melon Yield and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:537. [PMID: 38498517 PMCID: PMC10891724 DOI: 10.3390/plants13040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Melon pest management relies on the excessive application of pesticides. Reducing pesticide spraying has become a global issue for environmental sustainability and human health. Therefore, developing a new cropping system that is sustainable and eco-friendly is important. This study found that melon seedlings irrigated with ultrafine water containing H2 and O2 (UFW) produced more root hairs, increased shoot height, and produced more flowers than the control irrigated with reverse osmosis (RO) water. Surprisingly, we also discovered that UFW irrigation significantly reduced aphid infestation in melons. Based on cryo-scanning electron microscope (cryo-SEM) observations, UFW treatment enhanced trichome development and prevented aphid infestation. To investigate whether it was H2 or O2 that helped to deter insect infestation, we prepared UF water enrichment of H2 (UF+H2) and O2 (UF+O2) separately and irrigated melons. Cryo-SEM results indicated that both UF+H2 and UF+O2 can increase the density of trichomes in melon leaves and petioles. RT-qPCR showed that UF+H2 significantly increased the gene expression level of the trichome-related gene GLABRA2 (GL2). We planted melons in a plastic greenhouse and irrigated them with ultrafine water enrichment of hydrogen (UF+H2) and oxygen (UF+O2). The SPAD value, photosynthetic parameters, root weight, fruit weight, and fruit sweetness were all better than the control without ultrafine water irrigation. UFW significantly increased trichome development, enhanced insect resistance, and improved fruit traits. This system thus provides useful water management for pest control and sustainable agricultural production.
Collapse
Affiliation(s)
- Jo-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ning-Juan Li
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Yen Peng
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Chieh Yang
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| |
Collapse
|
4
|
Liu S, Zha Z, Chen S, Tang R, Zhao Y, Lin Q, Duan Y, Wang K. Hydrogen-rich water alleviates chilling injury-induced lignification of kiwifruit by inhibiting peroxidase activity and improving antioxidant system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2675-2680. [PMID: 36229969 DOI: 10.1002/jsfa.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Kiwifruit is prone to chilling stress and displays chilling injury (CI) such as lignification; however, the underlying physicochemical mechanism remains largely unknown. Here, the changes in levels of quality attributes, lignin biosynthesis, antioxidant system and sugars were compared in kiwifruit between control and hydrogen-rich water (HRW) treatments during cold storage for 90 days at 0 °C. RESULTS The results reveal that HRW is an effective measure for CI alleviation, as indicated by the decrease in lignification level with repressed peroxidase activity but enhanced polyphenol oxidase activity. The amelioration of membrane peroxidation was suggested by the repressed levels of H2 O2 and malondialdehyde. They were accompanied by the improvement of antioxidant system, which is supported by the enhancement of sugars including fructose and glucose. CONCLUSION In conclusion, HRW can enhance chilling tolerance, as suggested by the alleviation of lignification through inhibiting peroxidase activity and elevating the antioxidant system to attenuate membrane peroxidation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Zhuping Zha
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Shuqi Chen
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Rui Tang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Yaoyao Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuquan Duan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ke Wang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Liu F, Wang Y, Zhang G, Li L, Shen W. Molecular hydrogen positively influences lateral root formation by regulating hydrogen peroxide signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111500. [PMID: 36257409 DOI: 10.1016/j.plantsci.2022.111500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Although a previous study discovered that exogenous molecular hydrogen (H2) supplied with hydrogen-rich water (HRW) can mediate lateral root (LR) development, whether or how endogenous H2 influences LR formation is still elusive. In this report, mimicking the induction responses in tomato seedlings achieved by HRW or exogenous hydrogen peroxide (H2O2; a positive control), transgenic Arabidopsis that overexpressed the hydrogenase1 gene (CrHYD1) from Chlamydomonas reinhardtii not only stimulated endogenous hydrogen peroxide (H2O2) production, but also markedly promoted LR formation. Above H2 and H2O2 responses were abolished by the removal of endogenous H2O2. Moreover, the changes in transcriptional patterns of representative cell cycle genes and auxin signaling-related genes during LR development in both tomato and transgenic Arabidopsis thaliana matched with above phenotypes. The alternations in the levels of GUS transcripts driven by the CYCB1 promoter and expression of PIN1 protein further indicated that H2O2 synthesis was tightly linked to LR formation achieved by endogenous H2, and cell cycle regulation and auxin-dependent pathway might be their targets. There results might provide a reference for molecular mechanism underlying the regulation of root morphogenesis by H2.
Collapse
Affiliation(s)
- Feijie Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guhua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
6
|
Hancock JT. Editorial for Special Issue: “Production and Role of Molecular Hydrogen in Plants”. PLANTS 2022; 11:plants11152047. [PMID: 35956525 PMCID: PMC9370376 DOI: 10.3390/plants11152047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Molecular hydrogen (H2) is an extremely small molecule, which is relatively insoluble in water and relatively inert [...]
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
7
|
Preharvest application of hydrogen nanobubble water enhances strawberry flavor and consumer preferences. Food Chem 2022; 377:131953. [PMID: 34973592 DOI: 10.1016/j.foodchem.2021.131953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
The improvement of fruit flavor is a challenge for producers and breeders. This study investigated the effects and mechanisms of preharvest hydrogen nanobubble water (HNW) application on the flavor of cultivated strawberry (Fragaria × ananassa 'Benihoppe'). Compared with surface water, HNW enhanced the volatile profiles, sugar-acid ratio, and sensory attributes (e.g., aroma, flavor, and overall liking) with/without fertilizer application. Meanwhile, flavor components such as esters (e.g., ethyl hexanoate), acids (e.g., hexanoic acid), and soluble sugars (including glucose, fructose, and sucrose) significantly contributed to increased strawberry flavor achieved with HNW. Importantly, HNW may alleviate the negative effects of fertilizers on strawberry fruit aroma. Further study elucidated that the aroma-related genes (including FaLOX, FaADH, FaAAT, FaQR, FaOMT, and FaNES1) were involved in the accumulation of specific volatiles after HNW treatment. This study provided evidence that the practical application of H2 can improve horticultural product quality at a lower carbon cost.
Collapse
|
8
|
Nguyen TK, Lim JH. Is It a Challenge to Use Molecular Hydrogen for Extending Flower Vase Life? PLANTS 2022; 11:plants11101277. [PMID: 35631701 PMCID: PMC9146928 DOI: 10.3390/plants11101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Currently, molecular hydrogen treatment has the potential to manage the Corona Virus disease (COVID-19) and pandemic based on its anti-inflammatory, apoptosis-resistance, antioxidant, and hormone-regulating properties. Antioxidant properties are beneficial in both animal and human diseases. In agricultural sciences, molecular hydrogen is used to postpone postharvest ripening and senescence in fruits. However, studies on flower senescence are limited to the application of hydrogen molecules during floral preharvest and postharvest. Fortunately, improved tools involving molecular hydrogen can potentially improve postharvest products and storage. We also discuss the benefits and drawbacks of molecular hydrogen in floral preharvest and postharvest. This review provides an overview of molecular hydrogen solutions for floral preservative storage.
Collapse
|