1
|
Oliveira-Fernandes J, Oliveira-Pinto PR, Mariz-Ponte N, Sousa RMOF, Santos C. Satureja montana and Mentha pulegium essential oils' antimicrobial properties against Pseudomonas syringae pv. actinidiae and elicitor potential through the modulation of kiwifruit hormonal defenses. Microbiol Res 2023; 277:127490. [PMID: 37722185 DOI: 10.1016/j.micres.2023.127490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is responsible for the kiwifruit bacterial canker, the most severe disease of Actinidia spp. The use in agriculture of antibiotics and cooper-based compounds is increasingly being restricted, demanding for new sustainable alternatives to current agrochemicals. We aimed to characterize the anti-Psa potential of essential oils (EOs) of Mentha pulegium and Satureja montana and investigate if they elicit the plant-host hormonal defenses. The EOs were characterized through gas-chromatography with flame ionization detector (GC-FID) and mass spectrometry (MS). Pulegone (78.6%) and carvacrol (43.5%) were the major constituents of M. pulegium and S. montana EO, respectively. Only S. montana EO showed relevant anti-Psa activity in vitro. To evaluate if the EOs also elicited host defenses, in vitro shoots were treated with 2 mg shoot-1 of EO-solution and subsequently inoculated with Psa three days later. Shoots were analyzed 10 min, three days (and 10 min after Psa-inoculation), four and ten days after EO application. The up/down regulation of RNA-transcripts for hormone biosynthesis, Psa biofilm production and virulence genes were quantified by real-time quantitative PCR (RT-qPCR). Phytohormones were quantified by High-Performance Liquid Chromatography (HPLC). S. montana EO showed the most promising results as a defense elicitor, increasing 6-benzylaminopurine (BAP) by 131.07% and reducing indole-3-acetic acid (IAA) levels by 49.19%. Decreases of salicylic acid (SA), and gibberellic acid 3 (GA3) levels by 32.55% and 33.09% respectively and an increase of abscisic acid (ABA) by 85.03%, in M. pulegium EO-treated shoots, revealed some protective post-infection effect. This is the most comprehensive research on the Psa's impact on phytohormones. It also unveils the protective influence of prior EO exposure, clarifying the plant hormonal response to subsequent infections. The results reinforce the hypothesis that carvacrol-rich S. montana EO can be a suitable disease control agent against Psa infection. Its dual action against pathogens and elicitation of host plant defenses make it a promising candidate for incorporation into environmentally friendly disease management approaches. Nonetheless, to fully leverage these promising results, further research is imperative to elucidate the EO mode of action and evaluate the long-term efficacy of this approach.
Collapse
Affiliation(s)
- Juliana Oliveira-Fernandes
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo R Oliveira-Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal; CIBIO-InBIO, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, Vairão, Portugal
| | - Rose M O F Sousa
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; GreenUPorto/Inov4Agro, Faculty of Sciences, University of Porto, Rua Campo Alegre, Porto, Portugal; CITAB/Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Zhang YJ, Pang YB, Wang XY, Jiang YH, Herrera-Balandrano DD, Jin Y, Wang SY, Laborda P. Exogenous genistein enhances soybean resistance to Xanthomonas axonopodis pv. glycines. PEST MANAGEMENT SCIENCE 2022; 78:3664-3675. [PMID: 35611815 DOI: 10.1002/ps.7009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 μg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Xin-Yi Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | | | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, People's Republic of China
| |
Collapse
|