1
|
Kwon JS, Lee J, Shilpha J, Jang H, Kang WH. The landscape of sequence variations between resistant and susceptible hot peppers to predict functional candidate genes against bacterial wilt disease. BMC PLANT BIOLOGY 2024; 24:1036. [PMID: 39482582 PMCID: PMC11529287 DOI: 10.1186/s12870-024-05742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Bacterial wilt (BW), caused by Ralstonia solanacearum (Ral), results in substantial yield losses in pepper crops. Developing resistant pepper varieties through breeding is the most effective strategy for managing BW. To achieve this, a thorough understanding of the genetic information connected with resistance traits is essential. Despite identifying three major QTLs for bacterial wilt resistance in pepper, Bw1 on chromosome 8, qRRs-10.1 on chromosome 10, and pBWR-1 on chromosome 1, the genetic information of related BW pepper varieties has not been sufficiently studied. Here, we resequenced two pepper inbred lines, C. annuum 'MC4' (resistant) and C. annuum 'Subicho' (susceptible), and analyzed genomic variations through SNPs and Indels to identify candidate genes for BW resistance. RESULTS An average of 139.5 Gb was generated among the two cultivars, with coverage ranging from 44.94X to 46.13X. A total of 8,815,889 SNPs was obtained between 'MC4' and 'Subicho'. Among them, 31,190 (0.35%) were non-synonymous SNPs (nsSNPs) corresponding to 10,926 genes, and these genes were assigned to 142 Gene Ontology (GO) terms across the two cultivars. We focused on three known BW QTL regions by identifying genes with sequence variants through gene set enrichment analysis and securing those belonging to high significant GO terms. Additionally, we found 310 NLR genes with nsSNP variants between 'MC4' (R) and 'Subicho' (S) within these regions. Also, we performed an Indel analysis on these genes. By integrating all this data, we identified eight candidate BW resistance genes, including two NLR genes with nsSNPs variations in qRRs-10.1 on chromosome 10. CONCLUSION We identified genomic variations in the form of SNPs and Indels by re-sequencing two pepper cultivars with contrasting traits for bacterial wilt. Specifically, the four genes associated with pBWR-1 and Bw1 that exhibit both nsSNP and Indel variations simultaneously in 'Subicho', along with the two NLR genes linked to qRRs-10.1, which are known for their direct involvement in immune responses, are identified as most likely BW resistance genes. These variants in leading candidate genes associated with BW resistance can be used as important markers for breeding pepper varieties.
Collapse
Affiliation(s)
- Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
2
|
Ortega-Albero N, Barchi L, Fita A, Díaz M, Martínez F, Luna-Prohens JM, Rodríguez-Burruezo A. Genetic diversity, population structure, and phylogeny of insular Spanish pepper landraces ( Capsicum annuum L.) through phenotyping and genotyping-by-sequencing. FRONTIERS IN PLANT SCIENCE 2024; 15:1435427. [PMID: 39539294 PMCID: PMC11557316 DOI: 10.3389/fpls.2024.1435427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
Pepper (Capsicum spp.) is one of the most important crops worldwide. Understanding the species' genetic background is key to preserve agrodiversity on-farm, to contribute to a more diverse and resilient agrifood sector, and to find new sources of variation that could be useful in future breeding programs. In this regard, varietal groups bred in insular environments have gained special interest as they have evolved quite isolated from continental forms, with a limited genetic exchange. The present work explores the diversity of a plethora of Balearic landraces, corresponding to different local varietal types, through phenotyping and genotyping-by-sequencing (GBS). Mallorca and Eivissa landraces were phenotyped according to a comprehensive list of descriptors for plant, leaf, flower, fruit, pollen, and seed and were genotyped with single nucleotide polymorphism (SNP) markers; population structure and their patterns of diversity were studied. The results showed a considerable morphological diversity for most traits analyzed, within and between landraces. On the whole, in regard to genetic patterns, relatively low levels of heterozygosity and moderate genetic diversity for the studied landraces were found although some of them exhibited diverse patterns. The materials were not grouped in specific clusters associated with each island, but mainly according to varietal types. These findings can serve as the basis for studying divergent evolutionary patterns associated with the corresponding populations. Finally, the results can contribute to further elucidation of the genetic basis of Balearic landraces and serve as an inspiring case of study for other insular endemisms of cultivated species.
Collapse
Affiliation(s)
- Neus Ortega-Albero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, València, Spain
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, València, Spain
| | - Miguel Díaz
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, València, Spain
| | - Felipe Martínez
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, València, Spain
| | - Joana-Maria Luna-Prohens
- Department of Vegetal Production, Institut de Recerca i Formació Agroalimentària i Pesquera de les Illes Balears (IRFAP), Palma, Spain
| | - Adrián Rodríguez-Burruezo
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, València, Spain
| |
Collapse
|
3
|
Zhang X, Ma X, Wang S, Liu S, Shi S. Physiological and Genetic Aspects of Resistance to Abiotic Stresses in Capsicum Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3013. [PMID: 39519932 PMCID: PMC11548056 DOI: 10.3390/plants13213013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Abiotic stress is one of the key factors harming global agriculture today, seriously affecting the growth and yield of vegetables. Pepper is the most widely grown vegetable in the world, with both high nutritional and economic values. Currently, the increase in global extreme weather events has heightened the frequency of abiotic stresses, such as drought, high and low temperatures, waterlogging, and high salt levels, which impairs pepper growth and development, leading to its reduced yield and quality. In this review, we summarize the research progress on the responses of pepper to abiotic stress in recent years in terms of physiology, biochemistry, molecular level, and mitigation measures. We then explore the existing problems and propose future research directions. This work provides a reference for the cultivation and development of new pepper varieties resistant to abiotic stress.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiuming Ma
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shihui Wang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shumei Liu
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shaochuan Shi
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
4
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
5
|
Zhang H, Ikram M, Li R, Xia Y, Zhao W, Yuan Q, Siddique KHM, Guo P. Uncovering the transcriptional responses of tobacco (Nicotiana tabacum L.) roots to Ralstonia solanacearum infection: a comparative study of resistant and susceptible cultivars. BMC PLANT BIOLOGY 2023; 23:620. [PMID: 38057713 DOI: 10.1186/s12870-023-04633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Tobacco bacterial wilt (TBW) caused by Ralstonia solanacearum is the most serious soil-borne disease of tobacco that significantly reduces crop yield. However, the limited availability of resistance in tobacco hinders breeding efforts for this disease. RESULTS In this study, we conducted hydroponic experiments for the root expression profiles of D101 (resistant) and Honghuadajinyuan (susceptible) cultivars in response to BW infection at 0 h, 6 h, 1 d, 3 d, and 7d to explore the defense mechanisms of BW resistance in tobacco. As a result, 20,711 and 16,663 (total: 23,568) differentially expressed genes (DEGs) were identified in the resistant and susceptible cultivars, respectively. In brief, at 6 h, 1 d, 3 d, and 7 d, the resistant cultivar showed upregulation of 1553, 1124, 2583, and 7512 genes, while the susceptible cultivar showed downregulation of 1213, 1295, 813, and 7735 genes. Similarly, across these time points, the resistant cultivar had downregulation of 1034, 749, 1686, and 11,086 genes, whereas the susceptible cultivar had upregulation of 1953, 1790, 2334, and 6380 genes. The resistant cultivar had more up-regulated genes at 3 d and 7 d than the susceptible cultivar, indicating that the resistant cultivar has a more robust defense response against the pathogen. The GO and KEGG enrichment analysis showed that these genes are involved in responses to oxidative stress, plant-pathogen interactions, cell walls, glutathione and phenylalanine metabolism, and plant hormone signal transduction. Among the DEGs, 239 potential candidate genes were detected, including 49 phenylpropane/flavonoids pathway-associated, 45 glutathione metabolic pathway-associated, 47 WRKY, 48 ERFs, eight ARFs, 26 pathogenesis-related genes (PRs), and 14 short-chain dehydrogenase/reductase genes. In addition, two highly expressed novel genes (MSTRG.61386-R1B-17 and MSTRG.61568) encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins were identified in both cultivars at 7 d. CONCLUSIONS This study revealed significant enrichment of DEGs in GO and KEGG terms linked to glutathione, flavonoids, and phenylpropane pathways, indicating the potential role of glutathione and flavonoids in early BW resistance in tobacco roots. These findings offer fundamental insight for further exploration of the genetic architecture and molecular mechanisms of BW resistance in tobacco and solanaceous plants at the molecular level.
Collapse
Affiliation(s)
- Hailing Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Muhammad Ikram
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yanshi Xia
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Weicai Zhao
- Guangdong Research Institute of Tobacco Science, Shaoguan, 512029, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, 510640, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
7
|
Lee S, Chakma N, Joung S, Lee JM, Lee J. QTL Mapping for Resistance to Bacterial Wilt Caused by Two Isolates of Ralstonia solanacearum in Chili Pepper (Capsicum annuum L.). PLANTS 2022; 11:plants11121551. [PMID: 35736702 PMCID: PMC9229654 DOI: 10.3390/plants11121551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Bacterial wilt caused by the β-proteobacterium Ralstonia solanacearum is one of the most destructive soil-borne pathogens in peppers (Capsicum annuum L.) worldwide. Cultivated pepper fields in Korea face a continuous spread of this pathogen due to global warming. The most efficient and sustainable strategy for controlling bacterial wilt is to develop resistant pepper varieties. Resistance, which is quantitatively inherited, occurs differentially depending on R. solanacearum isolates. Therefore, in this study, we aimed to identify resistance quantitative trait loci (QTLs) in two F2 populations derived from self-pollination of a highly resistant pepper cultivar ‘Konesian hot’ using a moderately pathogenic ‘HS’ isolate and a highly pathogenic ‘HWA’ isolate of R. solanacearum for inoculation, via genotyping-by-sequencing analysis. QTL analysis revealed five QTLs, Bwr6w-7.2, Bwr6w-8.1, Bwr6w-9.1, Bwr6w-9.2, and Bwr6w-10.1, conferring resistance to the ‘HS’ isolate with R2 values of 13.05, 12.67, 15.07, 10.46, and 9.69%, respectively, and three QTLs, Bwr6w-5.1, Bwr6w-6.1, and Bwr6w-7.1, resistant to the ‘HWA’ isolate with phenotypic variances of 19.67, 16.50, and 12.56%, respectively. Additionally, six high-resolution melting (HRM) markers closely linked to the QTLs were developed. In all the markers, the mean disease index of the paternal genotype was significantly lower than that of the maternal genotype. The QTLs and HRM markers are expected to be useful for the development of pepper varieties with high resistance to bacterial wilt.
Collapse
Affiliation(s)
- Saeyoung Lee
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.L.); (N.C.); (S.J.)
| | - Nidhi Chakma
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.L.); (N.C.); (S.J.)
| | - Sunjeong Joung
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.L.); (N.C.); (S.J.)
| | - Je Min Lee
- Department of Horticultural Science, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jundae Lee
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea; (S.L.); (N.C.); (S.J.)
- Correspondence: ; Tel.: +82-63-270-2560
| |
Collapse
|