1
|
Hiebl C, Pinner D, Konegger H, Steger F, Mohamed D, Fuchs W. Enhancing Gas Fermentation Efficiency via Bioaugmentation with Megasphaera sueciensis and Clostridium carboxidivorans. Bioengineering (Basel) 2025; 12:470. [PMID: 40428089 PMCID: PMC12109107 DOI: 10.3390/bioengineering12050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Gas fermentation aims to fix CO2 into higher-value compounds, such as short or medium-chain fatty acids or alcohols. In this context, the use of mixed microbial consortia presents numerous advantages, including increased resilience and adaptability. The current study aimed to improve the performance of an enriched mixed microbial population via bioaugmentation with Megasphaera sueciensis and Clostridium carboxidivorans to improve the metabolite spectrum. The initial fermentation in trickle-bed reactors mainly yielded acetate, a low-value compound. Introducing M. sueciensis, which converts acetate into higher-chain fatty acids, shifted production toward butyrate (up to 3.2 g/L) and caproate (1.1 g/L). The presence of M. sueciensis was maintained even after several media swaps, showing its ability to establish itself as a permanent part of the microbial community. Metataxonomic analysis confirmed the successful integration of M. sueciensis into the mixed culture, with it becoming a dominant member of the Veillonellaceae family. In contrast, bioaugmentation with C. carboxidivorans was unsuccessful. Although this strain is known for producing alcohols, such as butanol and hexanol, it did not significantly enhance alcohol production, as attempts to establish it within the microbial consortium were unsuccessful. Despite these mixed results, bioaugmentation with complementary microbial capabilities remains a promising strategy to improve gas fermentation efficiency. This approach may enhance the economic feasibility of industrial-scale renewable chemical production.
Collapse
Affiliation(s)
- Clemens Hiebl
- Department of Agricultural Sciences, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; (C.H.); (D.P.); (H.K.); (F.S.)
| | - Dominik Pinner
- Department of Agricultural Sciences, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; (C.H.); (D.P.); (H.K.); (F.S.)
| | - Hannes Konegger
- Department of Agricultural Sciences, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; (C.H.); (D.P.); (H.K.); (F.S.)
| | - Franziska Steger
- Department of Agricultural Sciences, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; (C.H.); (D.P.); (H.K.); (F.S.)
| | - Dina Mohamed
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Werner Fuchs
- Department of Agricultural Sciences, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; (C.H.); (D.P.); (H.K.); (F.S.)
| |
Collapse
|
2
|
Satta A, Ghiotto G, Santinello D, Giangeri G, Bergantino E, Modesti M, Raga R, Treu L, Campanaro S, Zampieri G. Synergistic functional activity of a landfill microbial consortium in a microplastic-enriched environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174696. [PMID: 38997032 DOI: 10.1016/j.scitotenv.2024.174696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Plastic pollution of the soil is a global issue of increasing concern, with far-reaching impact on the environment and human health. To fully understand the medium- and long-term impact of plastic dispersal in the environment, it is necessary to define its interaction with the residing microbial communities and the biochemical routes of its degradation and metabolization. However, despite recent attention on this problem, research has largely focussed on microbial functional potential, failing to clearly identify collective adaptation strategies of these communities. Our study combines genome-centric metagenomics and metatranscriptomics to characterise soil microbial communities adapting to high polyethylene and polyethylene terephthalate concentration. The microbiota were sampled from a landfill subject to decades-old plastic contamination and enriched through prolonged cultivation using these microplastics as the only carbon source. This approach aimed to select the microorganisms that best adapt to these specific substrates. As a result, we obtained simplified communities where multiple plastic metabolization pathways are widespread across abundant and rare microbial taxa. Major differences were found in terms of expression, which on average was higher in planktonic microbes than those firmly adhered to plastic, indicating complementary metabolic roles in potential microplastic assimilation. Moreover, metatranscriptomic patterns indicate a high transcriptional level of numerous genes in emerging taxa characterised by a marked accumulation of genomic variants, supporting the hypothesis that plastic metabolization requires an extensive rewiring in energy metabolism and thus provides a strong selective pressure. Altogether, our results provide an improved characterisation of the impact of microplastics derived from common plastics types on terrestrial microbial communities and suggest biotic responses investing contaminated sites as well as potential biotechnological targets for cooperative plastic upcycling.
Collapse
Affiliation(s)
- Alessandro Satta
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Ghiotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Davide Santinello
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Ginevra Giangeri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 227, 220, 2800 Kgs. Lyngby, Denmark
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padua, Via Gradenigo, 6/a, 35131 Padova, Italy
| | - Roberto Raga
- Department of Civil, Environmental and Architectural Engineering, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
3
|
Lobo CB, Molina RDI, Moreno Mochi P, Vargas JM, Jure MÁ, Juárez Tomás MS. Safety attributes of Pseudomonas sp. P26, an environmental microorganism with potential application in contaminated environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123818. [PMID: 38508367 DOI: 10.1016/j.envpol.2024.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Currently, the selection of non-pathogenic microorganisms that lack clinically relevant antimicrobial resistance is crucial to bioaugmentation strategies. Pseudomonas sp. P26 (P26) is an environmental bacterium of interest due to its ability to remove aromatic compounds from petroleum, but its safety characteristics are still unknown. The study aimed to: a) determine P26 sensitivity to antimicrobials, b) investigate the presence of quinolone and β-lactam resistance genes, c) determine the presence of virulence factors, and d) evaluate the effect of P26 on the viability of Galleria mellonella (an invertebrate animal model). P26 antimicrobial sensitivity was determined in vitro using the Kirby-Bauer agar diffusion method and the VITEK 2 automated system (BioMerieux®). Polymerase Chain Reaction was employed for the investigation of genes associated with quinolone resistance, extended-spectrum β-lactamases, and carbapenemases. Hemolysin and protease production was determined in human blood agar and skimmed-milk agar, respectively. In the in vivo assay, different doses of P26 were injected into Galleria mellonella larvae and their survival was monitored daily. Control larvae injected with Pseudomonas putida KT2440 (a strain considered as safe) and Pseudomonas aeruginosa PA14 (a pathogenic strain) were included. Pseudomonas sp. P26 was susceptible to most evaluated antimicrobials, except for trimethoprim-sulfamethoxazole. No epidemiologically relevant genes associated with quinolone and β-lactam resistance were identified. Hemolysin and protease production was only evidenced in the virulent strain (PA14). Furthermore, the results obtained in the in vivo experiment demonstrated that inocula less than 108 CFU/mL of P26 and P. putida KT2440 did not significantly affect larval survival, whereas larvae injected with the lowest dose of the pathogenic strain P. aeruginosa PA14 experienced instant mortality. The results suggest that Pseudomonas sp. P26 is a safe strain for its application in environmental bioremediation processes. Additional studies will be conducted to ensure the safety of this bacterium against other organisms.
Collapse
Affiliation(s)
- Constanza Belén Lobo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| | - Rocío Daniela Inés Molina
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| | - Paula Moreno Mochi
- Laboratorio de Bacteriología Certificado (LABACER), Cátedra de Bacteriología, Instituto de Microbiología Luis Verna, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
| | - Juan Martín Vargas
- Laboratorio de Bacteriología Certificado (LABACER), Cátedra de Bacteriología, Instituto de Microbiología Luis Verna, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Ángela Jure
- Laboratorio de Bacteriología Certificado (LABACER), Cátedra de Bacteriología, Instituto de Microbiología Luis Verna, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Silvina Juárez Tomás
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
4
|
Zakrzewska M, Rzepa G, Musialowski M, Goszcz A, Stasiuk R, Debiec-Andrzejewska K. Reduction of bioavailability and phytotoxicity effect of cadmium in soil by microbial-induced carbonate precipitation using metabolites of ureolytic bacterium Ochrobactrum sp. POC9. FRONTIERS IN PLANT SCIENCE 2023; 14:1109467. [PMID: 37416890 PMCID: PMC10321601 DOI: 10.3389/fpls.2023.1109467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
The application of ureolytic bacteria for bioremediation of soil contaminated with heavy metals, including cadmium (Cd), allows for the efficient immobilization of heavy metals by precipitation or coprecipitation with carbonates. Microbially-induced carbonate precipitation process may be useful also in the case of the cultivation of crop plants in various agricultural soils with trace but legally permissible Cd concentrations, which may be still uptaken by plants. This study aimed to investigate the influence of soil supplementation with metabolites containing carbonates (MCC) produced by the ureolytic bacterium Ochrobactrum sp. POC9 on the Cd mobility in the soil as well as on the Cd uptake efficiency and general condition of crop plants (Petroselinum crispum). In the frame of the conducted studies (i) carbonate productivity of the POC9 strain, (ii) the efficiency of Cd immobilization in soil supplemented with MCC, (iii) crystallization of cadmium carbonate in the soil enriched with MCC, (iv) the effect of MCC on the physico-chemical and microbiological properties of soil, and (v) the effect of changes in soil properties on the morphology, growth rate, and Cd-uptake efficiency of crop plants were investigated. The experiments were conducted in soil contaminated with a low concentration of Cd to simulate the natural environmental conditions. Soil supplementation with MCC significantly reduced the bioavailability of Cd in soil with regard to control variants by about 27-65% (depending on the volume of MCC) and reduced the Cd uptake by plants by about 86% and 74% in shoots and roots, respectively. Furthermore, due to the decrease in soil toxicity and improvement of soil nutrition with other metabolites produced during the urea degradation (MCC), some microbiological properties of soil (quantity and activity of soil microorganisms), as well as the general condition of plants, were also significantly improved. Soil supplementation with MCC enabled efficient Cd stabilization and significantly reduced its toxicity for soil microbiota and plants. Thus, MCC produced by POC9 strain may be used not only as an effective Cd immobilizer in soil but also as a microbe and plant stimulators.
Collapse
Affiliation(s)
- Marta Zakrzewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Marcin Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Goszcz
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, Shamshiri RR. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4666. [PMID: 35457533 PMCID: PMC9025980 DOI: 10.3390/ijerph19084666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/29/2023]
Abstract
Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
Collapse
Affiliation(s)
- Abdullah Kaviani Rad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa;
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town 7129, South Africa
| | - Yeganeh Afsharyzad
- Department of Microbiology, Faculty of Modern Sciences, The Islamic Azad University of Tehran Medical Sciences, Tehran 19496-35881, Iran;
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid 73819-43885, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran 14179-35840, Iran;
| | - Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam-Bornim, Germany;
| |
Collapse
|
6
|
Martini MC, Berini F, Ausec L, Casciello C, Vacca C, Pistorio M, Lagares A, Mandic-Mulec I, Marinelli F, Del Papa MF. Identification and Characterization of a Novel Plasmid-Encoded Laccase-Like Multicopper Oxidase from Ochrobactrum sp. BF15 Isolated from an On-Farm Bio-Purification System. Food Technol Biotechnol 2021; 59:519-529. [PMID: 35136375 PMCID: PMC8753806 DOI: 10.17113/ftb.59.04.21.7253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
RESEARCH BACKGROUND In recent decades, laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) have attracted the attention of researchers due to their wide range of biotechnological and industrial applications. Laccases can oxidize a variety of organic and inorganic compounds, making them suitable as biocatalysts in biotechnological processes. Even though the most traditionally used laccases in the industry are of fungal origin, bacterial laccases have shown an enormous potential given their ability to act on several substrates and in multiple conditions. The present study aims to characterize a plasmid-encoded laccase-like multicopper oxidase (LMCO) from Ochrobactrum sp. BF15, a bacterial strain previously isolated from polluted soil. EXPERIMENTAL APPROACH We used in silico profile hidden Markov models to identify novel laccase-like genes in Ochrobactrum sp. BF15. For laccase characterization, we performed heterologous expression in Escherichia coli, purification and activity measurement on typical laccase substrates. RESULTS AND CONCLUSIONS Profile hidden Markov models allowed us to identify a novel LMCO, named Lac80. In silico analysis of Lac80 revealed the presence of three conserved copper oxidase domains characteristic of three-domain laccases. We successfully expressed Lac80 heterologously in E. coli, allowing us to purify the protein for further activity evaluation. Of thirteen typical laccase substrates tested, Lac80 showed lower activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), pyrocatechol, pyrogallol and vanillic acid, and higher activity on 2,6-dimethoxyphenol. NOVELTY AND SCIENTIFIC CONTRIBUTION Our results show Lac80 as a promising laccase for use in industrial applications. The present work shows the relevance of bacterial laccases and highlights the importance of environmental plasmids as valuable sources of new genes encoding enzymes with potential use in biotechnological processes.
Collapse
Affiliation(s)
- María Carla Martini
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Luka Ausec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Carmine Casciello
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Carolina Vacca
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Mariano Pistorio
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Antonio Lagares
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - María Florencia Del Papa
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
7
|
Dash B, Sahu N, Singh AK, Gupta SB, Soni R. Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil. Folia Microbiol (Praha) 2020; 66:189-196. [PMID: 33131029 DOI: 10.1007/s12223-020-00832-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
In the present study, bacterial isolates were screened for arsenic resistance efficiency. Environmental isolates were isolated from arsenic-rich soil samples (i.e., from Rajnandgaon district of Chhattisgarh state, India). Amplification and sequencing of 16S rRNA gene revealed that the isolates were of Bacillus firmus RSN1, Brevibacterium senegalense RSN2, Enterobacter cloacae RSN3, Stenotrophomonas pavanii RSN6, Achromobacter mucicolens RSN7, and Ochrobactrum intermedium RSN10. Arsenite efflux gene (arsB) was successfully amplified in E. cloacae RSN3. Atomic absorption spectroscopy (AAS) analysis showed an absorption of 32.22% arsenic by the RSN3 strain. Furthermore, results of scanning electron microscopy (SEM) for morphological variations revealed an initial increase in the cell size at 1 mM sodium arsenate; however, it was decreased at 10 mM concentration in comparison to control. This change of the cell size in different metal concentrations was due to the uptake and expulsion of the metal from the cell, which also confirmed the arsenite efflux system.
Collapse
Affiliation(s)
- Biplab Dash
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar Jora, Raipur, 492012, CG, India
| | - Narayan Sahu
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar Jora, Raipur, 492012, CG, India
| | - Anup Kumar Singh
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar Jora, Raipur, 492012, CG, India
| | - S B Gupta
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar Jora, Raipur, 492012, CG, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar Jora, Raipur, 492012, CG, India.
| |
Collapse
|
8
|
Shukla A, Parmar P, Goswami D, Patel B, Saraf M. Characterization of novel thorium tolerant Ochrobactrum intermedium AM7 in consort with assessing its EPS-Thorium binding. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122047. [PMID: 31954311 DOI: 10.1016/j.jhazmat.2020.122047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 05/23/2023]
Abstract
Currently, radioactive waste is disposed primarily by burial in a deep geological repository. Microorganisms thriving in such contaminated environment show tolerance to radionuclides. In the present study the bacterial flora, from soil sample collected from an area around atomic power station exposed to radionuclides and heavy metals, was cultivated and assessed for thorium (Th) tolerance. Of all the isolates, strain AM7 identified as O. intermedium was selected since it could thrive at high levels of Th (1000 mg L-1). AM7 was characterized physico-chemically and its culture medium was optimized using central composite design of response surface methodology for assessing its growth properties in presence of Th. The strain also showed exceptional exopolysaccharide (EPS) production and its yield was further analyzed using one factor study to investigate the influence of each medium component. On supplementing the EPS medium with Th, no significant decrease in yield was observed. FTIR spectroscopy revealed the functional groups of EPS involved in EPS-Th binding. To the best of our knowledge, this is the first report showing exceptional Th-tolerance by any bacteria. Such study will help other researchers to strategize an environment-friendly way of radwaste disposal.
Collapse
Affiliation(s)
- Arpit Shukla
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Paritosh Parmar
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Baldev Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
9
|
Genomic Characterization of Antimicrobial Resistance, Virulence, and Phylogeny of the Genus Ochrobactrum. Antibiotics (Basel) 2020; 9:antibiotics9040177. [PMID: 32294990 PMCID: PMC7235858 DOI: 10.3390/antibiotics9040177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 01/27/2023] Open
Abstract
Ochrobactrum is a ubiquitous Gram-negative microorganism, mostly found in the environment, which can cause opportunistic infections in humans. It is almost uniformly resistant to penicillins and cephalosporins through an AmpC-like β-lactamase enzyme class (OCH). We studied 130 assembled genomes, of which 5 were animal-derived isolates recovered in Israel, and 125 publicly available genomes. Our analysis focused on antimicrobial resistance (AMR) genes, virulence genes, and whole-genome phylogeny. We found that 76% of Ochrobactrum genomes harbored a blaOCH β-lactamase gene variant, while 7% harbored another AmpC-like gene. No virulence genes other than lipopolysaccharide-associated genes were found. Core genome multilocus sequence typing clustered most samples to known species, but neither geographical clustering nor isolation source clustering were evident. When analyzing the distribution of different blaOCH variants as well as of the blaOCH-deficient samples, a clear phylogenomic clustering was apparent for specific species. The current analysis of the largest collection to date of Ochrobactrum genomes sheds light on the resistome, virulome, phylogeny, and species classification of this increasingly reported human pathogen. Our findings also suggest that Ochrobactrum deserves further characterization to underpin its evolution, taxonomy, and antimicrobial resistance.
Collapse
|
10
|
Decewicz P, Golec P, Szymczak M, Radlinska M, Dziewit L. Identification and Characterization of the First Virulent Phages, Including a Novel Jumbo Virus, Infecting Ochrobactrum spp. Int J Mol Sci 2020; 21:ijms21062096. [PMID: 32197547 PMCID: PMC7139368 DOI: 10.3390/ijms21062096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
The Ochrobactrum genus consists of an extensive repertoire of biotechnologically valuable bacterial strains but also opportunistic pathogens. In our previous study, a novel strain, Ochrobactrum sp. POC9, which enhances biogas production in wastewater treatment plants (WWTPs) was identified and thoroughly characterized. Despite an insightful analysis of that bacterium, its susceptibility to bacteriophages present in WWTPs has not been evaluated. Using raw sewage sample from WWTP and applying the enrichment method, two virulent phages, vB_OspM_OC and vB_OspP_OH, which infect the POC9 strain, were isolated. These are the first virulent phages infecting Ochrobactrum spp. identified so far. Both phages were subjected to thorough functional and genomic analyses, which allowed classification of the vB_OspM_OC virus as a novel jumbo phage, with a genome size of over 227 kb. This phage encodes DNA methyltransferase, which mimics the specificity of cell cycle regulated CcrM methylase, a component of the epigenetic regulatory circuits in Alphaproteobacteria. In this study, an analysis of the overall diversity of Ochrobactrum-specific (pro)phages retrieved from databases and extracted in silico from bacterial genomes was also performed. Complex genome mining allowed us to build similarity networks to compare 281 Ochrobactrum-specific viruses. Analyses of the obtained networks revealed a high diversity of Ochrobactrum phages and their dissimilarity to the viruses infecting other bacteria.
Collapse
Affiliation(s)
- Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.G.); (M.S.)
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.G.); (M.S.)
| | - Monika Radlinska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
- Correspondence: ; Tel.: +48-225-541-406
| |
Collapse
|
11
|
Diversity and Horizontal Transfer of Antarctic Pseudomonas spp. Plasmids. Genes (Basel) 2019; 10:genes10110850. [PMID: 31661808 PMCID: PMC6896180 DOI: 10.3390/genes10110850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas spp. are widely distributed in various environments around the world. They are also common in the Antarctic regions. To date, almost 200 plasmids of Pseudomonas spp. have been sequenced, but only 12 of them were isolated from psychrotolerant strains. In this study, 15 novel plasmids of cold-active Pseudomonas spp. originating from the King George Island (Antarctica) were characterized using a combined, structural and functional approach, including thorough genomic analyses, functional analyses of selected genetic modules, and identification of active transposable elements localized within the plasmids and comparative genomics. The analyses performed in this study increased the understanding of the horizontal transfer of plasmids found within Pseudomonas populations inhabiting Antarctic soils. It was shown that the majority of the studied plasmids are narrow-host-range replicons, whose transfer across taxonomic boundaries may be limited. Moreover, structural and functional analyses enabled identification and characterization of various accessory genetic modules, including genes encoding major pilin protein (PilA), that enhance biofilm formation, as well as active transposable elements. Furthermore, comparative genomic analyses revealed that the studied plasmids of Antarctic Pseudomonas spp. are unique, as they are highly dissimilar to the other known plasmids of Pseudomonas spp.
Collapse
|
12
|
Poszytek K, Karczewska-Golec J, Dziurzynski M, Stepkowska-Kowalska O, Gorecki A, Decewicz P, Dziewit L, Drewniak L. Genome-Wide and Functional View of Proteolytic and Lipolytic Bacteria for Efficient Biogas Production through Enhanced Sewage Sludge Hydrolysis. Molecules 2019; 24:molecules24142624. [PMID: 31323902 PMCID: PMC6680700 DOI: 10.3390/molecules24142624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022] Open
Abstract
In this study, we used a multifaceted approach to select robust bioaugmentation candidates for enhancing biogas production and to demonstrate the usefulness of a genome-centric approach for strain selection for specific bioaugmentation purposes. We also investigated the influence of the isolation source of bacterial strains on their metabolic potential and their efficiency in enhancing anaerobic digestion. Whole genome sequencing, metabolic pathway reconstruction, and physiological analyses, including phenomics, of phylogenetically diverse strains, Rummeliibacillus sp. POC4, Ochrobactrum sp. POC9 (both isolated from sewage sludge) and Brevundimonas sp. LPMIX5 (isolated from an agricultural biogas plant) showed their diverse enzymatic activities, metabolic versatility and ability to survive under varied growth conditions. All tested strains display proteolytic, lipolytic, cellulolytic, amylolytic, and xylanolytic activities and are able to utilize a wide array of single carbon and energy sources, as well as more complex industrial by-products, such as dairy waste and molasses. The specific enzymatic activity expressed by the three strains studied was related to the type of substrate present in the original isolation source. Bioaugmentation with sewage sludge isolates–POC4 and POC9–was more effective for enhancing biogas production from sewage sludge (22% and 28%, respectively) than an approach based on LPMIX5 strain (biogas production boosted by 7%) that had been isolated from an agricultural biogas plant, where other type of substrate is used.
Collapse
Affiliation(s)
- Krzysztof Poszytek
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Karczewska-Golec
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Mikolaj Dziurzynski
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Olga Stepkowska-Kowalska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Adrian Gorecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
13
|
Nitrofurantoin-Microbial Degradation and Interactions with Environmental Bacterial Strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091526. [PMID: 31052168 PMCID: PMC6539117 DOI: 10.3390/ijerph16091526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
The continuous exposure of living organisms and microorganisms to antibiotics that have increasingly been found in various environmental compartments may be perilous. One group of antibacterial agents that have an environmental impact that has been very scarcely studied is nitrofuran derivatives. Their representative is nitrofurantoin (NFT)-a synthetic, broad-spectrum antibiotic that is often overdosed. The main aims of the study were to: (a) isolate and characterize new microbial strains that are able to grow in the presence of NFT, (b) investigate the ability of isolates to decompose NFT, and (c) study the impact of NFT on microbial cell properties. As a result, five microbial species were isolated. A 24-h contact of bacteria with NFT provoked modifications in microbial cell properties. The greatest differences were observed in Sphingobacterium thalpophilum P3d, in which a decrease in both total and inner membrane permeability (from 86.7% to 48.3% and from 0.49 to 0.42 µM min-1) as well as an increase in cell surface hydrophobicity (from 28.3% to 39.7%) were observed. Nitrofurantoin removal by selected microbial cultures ranged from 50% to 90% in 28 days, depending on the bacterial strain. Although the isolates were able to decompose the pharmaceutical, its presence significantly affected the bacterial cells. Hence, the environmental impact of NFT should be investigated to a greater extent.
Collapse
|
14
|
Effect of Bioaugmentation on Biogas Yields and Kinetics in Anaerobic Digestion of Sewage Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081717. [PMID: 30103443 PMCID: PMC6121296 DOI: 10.3390/ijerph15081717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 01/28/2023]
Abstract
Bioaugmentation with a mixture of microorganisms (Bacteria and Archaea) was applied to improve the anaerobic digestion of sewage sludge. The study was performed in reactors operating at a temperature of 35 °C in semi-flow mode. Three runs with different doses of bioaugmenting mixture were conducted. Bioaugmentation of sewage sludge improved fermentation and allowed satisfactory biogas/methane yields and a biodegradation efficiency of more than 46%, despite the decrease in hydraulic retention time (HRT) from 20 d to 16.7 d. Moreover, in terms of biogas production, the rate constant k increased from 0.071 h−1 to 0.087 h−1 as doses of the bioaugmenting mixture were increased, as compared to values of 0.066 h−1 and 0.069 h−1 obtained with sewage sludge alone. Next-generation sequencing revealed that Cytophaga sp. predominated among Bacteria in digesters and that the hydrogenotrophic methanogen Methanoculleus sp. was the most abundant genus among Archaea.
Collapse
|