1
|
Turuban M, Kromhout H, Vila J, Vallbona‐Vistós M, De Vocht F, Baldi I, Richardson L, Benke G, Krewski D, Parent M, Sadetzki S, Schlehofer B, Schüz J, Siemiatycki J, van Tongeren M, Woodward A, Cardis E, Turner MC. Occupational exposure to radiofrequency electromagnetic fields and brain tumor risk: Application of the INTEROCC job-exposure matrix. Int J Cancer 2025; 156:538-551. [PMID: 39301814 PMCID: PMC11621992 DOI: 10.1002/ijc.35182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Radiofrequency electromagnetic fields (RF-EMF, 100 kHz to 300 GHz) are classified by IARC as possibly carcinogenic to humans (Group 2B). This study evaluates the potential association between occupational RF-EMF exposure and brain tumor risk, utilizing for the first time, a RF-EMF job-exposure matrix (RF-JEM) developed in the multi-country INTEROCC case-control study. Cumulative and time-weighted average (TWA) occupational RF-EMF exposures were estimated for study participants based on lifetime job histories linked to the RF-JEM using three different methods: (1) by considering RF-EMF intensity among all exposed jobs, (2) by considering RF-EMF intensity among jobs with an exposure prevalence ≥ the median exposure prevalence of all exposed jobs, and (3) by considering RF-EMF intensity of jobs of participants who reported RF-EMF source use. Stratified conditional logistic regression models were used, considering various lag periods and exposure time windows defined a priori. Generally, no clear associations were found for glioma or meningioma risk. However, some statistically significant positive associations were observed including in the highest exposure categories for glioma for cumulative and TWA exposure in the 1- to 4-year time window for electric fields (E) in the first JEM application method (odds ratios [ORs] = 1.36, 95% confidence interval [95% CI] 1.08, 1.72 and 1.27, 95% CI 1.01, 1.59, respectively), as well as for meningioma for cumulative exposure in the 5- to 9-year time window for electric fields (E) in the third JEM application method (OR = 2.30, 95% CI 1.11, 4.78). We did not identify convincing associations between occupational RF-EMF exposure and risk of glioma or meningioma.
Collapse
Grants
- German Federal Ministry for the Environment, Nuclear Safety, and Nature Protection
- Health Research Council of New Zealand
- N85142 Cancer Research Society
- European Social Fund
- Generalitat de Catalunya
- Hawkes Bay Medical Research Foundation
- MOP-42525 CIHR
- Health and Safety Executive, the Department of Health, the UK Network Operators (O2, Orange, T-Mobile, Vodafone, "3")
- R01CA124759-01 National Institutes for Health
- R01 CA124759 NCI NIH HHS
- 001 World Health Organization
- Wellington Medical Research Foundation
- NIHR Applied Research Collaboration West (NIHR ARC West)
- 219129 Australian National Health and Medical Research Council (EME)
- Cancer Society of New Zealand
- Ministry for the Environment and Traffic of the state of Baden-Wurttemberg
- Canada Research Chairs Program
- EST-2018 RF-35 Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES)
- CEX2018-000806-S MCIN/AEI
- Ministry for the Environment of the State of North Rhine-Westphalia
- Canadian Institutes of Health Research (CIHR)
- Cancer Research Society
- Mobile Manufacturers' Forum (MMF)
- RYC-2017-01892 Spanish Ministry of Science, Innovation and Universities
- University of Mainz
- University of Sydney Medical Foundation Program
- Guzzo-CRS Chair in Environment and Cancer
- ST-2005-004 AFSSET
- 100 QLK4-CT-1999901563 European Fifth Framework Program
- NSERC/SSHRC/McLaughlin Chair
- Mobile and Wireless Forum (MWF)
- Canadian Wireless Telecommunications Association
- GSM Association
- Cancer Council Victoria
- Waikato Medical Research Foundation
- Union for International Cancer Control
- Fonds de recherche du Québec - Santé
- Cancer Council NSW
- European Social Fund
- Generalitat de Catalunya
- NIHR Applied Research Collaboration West (NIHR ARC West)
- Union for International Cancer Control
- Cancer Council NSW
- Cancer Council Victoria
- Canadian Institutes of Health Research
- Cancer Research Society
- Canadian Institutes of Health Research (CIHR)
- NSERC/SSHRC/McLaughlin Chair
- University of Mainz
- Health Research Council of New Zealand
- Wellington Medical Research Foundation
- Waikato Medical Research Foundation
- Cancer Society of New Zealand
- Health and Safety Executive, the Department of Health, the UK Network Operators (O2, Orange, T‐Mobile, Vodafone, “3”)
Collapse
Affiliation(s)
- Maxime Turuban
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS)Utrecht UniversityUtrechtThe Netherlands
| | - Javier Vila
- Environmental Protection Agency (EPA)Office of Radiation Protection and Environmental MonitoringWexfordIreland
| | | | - Frank De Vocht
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- NIHR Applied Research Collaboration West (NIHR ARC West)BristolUK
| | - Isabelle Baldi
- INSERM UMR 1219 Epicene TeamBordeaux Population Health Research CenterBordeauxFrance
- Service Santé Travail EnvironnementCHU de BordeauxBordeauxFrance
| | - Lesley Richardson
- University of Montreal Hospital Research Centre (CRCHUM)MontrealCanada
| | - Geza Benke
- School of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| | - Daniel Krewski
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Marie‐Elise Parent
- Institut National de la Recherche ScientifiqueUniversité du QuébecLavalQuebecCanada
| | | | | | - Joachim Schüz
- International Agency for Research on Cancer (IARC)Environment and Lifestyle Epidemiology BranchLyonFrance
| | - Jack Siemiatycki
- University of Montreal Hospital Research Centre (CRCHUM)MontrealCanada
| | - Martie van Tongeren
- Division of Population Health, Health Services Research and Primary careUniversity of ManchesterManchesterUK
| | - Alistair Woodward
- School of Population HealthUniversity of AucklandAucklandNew Zealand
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Spanish Consortium for Research and Public Health (CIBERESP)Instituto de Salud Carlos IIIMadridSpain
| | - Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Spanish Consortium for Research and Public Health (CIBERESP)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Turuban M, Kromhout H, Vila J, de Vocht F, Vallbona-Vistós M, Baldi I, Cardis E, Turner MC. Comparison of a radiofrequency electric and magnetic field source-based job-exposure matrix with personal radiofrequency exposure measurements. Ann Work Expo Health 2024; 68:951-966. [PMID: 39326006 DOI: 10.1093/annweh/wxae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES Assessing occupational exposure to radiofrequency electromagnetic fields (RF-EMF) presents significant challenges due to the considerable variability in exposure levels within and between occupations. This spatial and temporal variability complicates the reliable evaluation of potential health risks associated with RF-EMF exposure in the workplace. Accurate assessment methods are crucial to understand the extent of exposure and to evaluate potential health risks, especially given the potential for higher exposures in occupational settings compared to the general population. This study compares the historical RF-EMF exposure estimates in the INTEROCC RF-EMF job-exposure matrix (RF-JEM) with recent personal measurement data collected in 2 countries as part of the OccRF-Health study, to assess the broader applicability of the RF-JEM. METHODS Weighted kappa (kw) coefficients and Spearman rank correlation tests were performed to assess the alignment between RF-JEM estimates and measurements for 8 h time-weighted average exposure intensity and prevalence estimates across various occupations. The comparisons were mainly based on 22 jobs having ≥5 measured workers in the OccRF-Health study. RESULTS Poor agreement was found for both exposure prevalence and intensity between both methods (kw < 0.1). RF-JEM values likely overestimated exposure levels for both electric (E) and magnetic (H) fields (mean percentage difference >194%) compared to current personal measurements. CONCLUSIONS Findings suggest that the INTEROCC-JEM likely overestimates current exposure intensity levels in the measured jobs. Adopting a semiquantitative JEM could also mitigate misclassification errors due to exposure variability, improving accuracy in exposure assessment. These findings indicate the need for more targeted personal measurements, including among highly exposed workers, and for potentially considering new exposure metrics to more accurately assess occupational RF-EMF exposures in occupational epidemiological research.
Collapse
Affiliation(s)
- Maxime Turuban
- Barcelona Institute for Global Health (ISGlobal), C/ del Rosselló, 132, L'Eixample, 08036, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Facultat de Medicina i Ciències de la Vida, C/ del Dr. Aiguader, 80, Ciutat Vella, 08003, Barcelona, Spain
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Javier Vila
- Environmental Protection Agency (EPA), Office of Radiation Protection and Environmental Monitoring, Johnstown Castle, Y35 W821, Wexford, Ireland
| | - Frank de Vocht
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, BS8 2PS, Bristol, United Kingdom
- NIHR Applied Research Collaboration West (NIHR ARC West), Bristol, United Kingdom
| | - Miquel Vallbona-Vistós
- Barcelona Institute for Global Health (ISGlobal), C/ del Rosselló, 132, L'Eixample, 08036, Barcelona, Spain
| | - Isabelle Baldi
- INSERM UMR 1219 Epicene Team, Bordeaux Population Health Research Center, 146 Rue Léo Saignat, 33076, Bordeaux, France
- Service Santé Travail Environnement, CHU de Bordeaux, 33000, Bordeaux, France
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), C/ del Rosselló, 132, L'Eixample, 08036, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Facultat de Medicina i Ciències de la Vida, C/ del Dr. Aiguader, 80, Ciutat Vella, 08003, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), C/ del Rosselló, 132, L'Eixample, 08036, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Facultat de Medicina i Ciències de la Vida, C/ del Dr. Aiguader, 80, Ciutat Vella, 08003, Barcelona, Spain
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
3
|
Calvente I, Núñez MI. Is the sustainability of exposure to non-ionizing electromagnetic radiation possible? Med Clin (Barc) 2024; 162:387-393. [PMID: 38151370 DOI: 10.1016/j.medcli.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/29/2023]
Abstract
Technological advances imply an increase in artificially generating sources of electromagnetic fields (EMF), therefore, resulting in a permanent exposure of people and the environment (electromagnetic pollution). Inconsistent results have been published considering the evaluated health effects. The purpose of this study was to review scientific literature on EMF to provide a global and retrospective perspective, on the association between human exposure to non-ionizing radiation (NIR, mainly radiofrequency-EMF) and health and environmental effects. Studies on the health effects of 5G radiation exposure have not yet been performed with sufficient statistical power, as the exposure time is still relatively short and also the latency and intensity of exposure to 5G. The safety standards only consider thermal effects, do not contemplate non-thermal effects. We consider relevant to communicate this knowledge to the general public to improve education in this field, and to healthcare professionals to prevent diseases that may result from RF-EMF exposures.
Collapse
Affiliation(s)
- Irene Calvente
- Research Support Unit, Biosanitary Institute of Granada (ibs.GRANADA), University Hospital Complex of Granada, Spain
| | - María Isabel Núñez
- Research Support Unit, Biosanitary Institute of Granada (ibs.GRANADA), University Hospital Complex of Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Spain.
| |
Collapse
|
4
|
Ahsan Ashraf M, Celik T. Evaluating radiofrequency electromagnetic field exposure in confined spaces: a systematic review of recent studies and future directions. RADIATION PROTECTION DOSIMETRY 2024; 200:598-616. [PMID: 38491820 PMCID: PMC11033578 DOI: 10.1093/rpd/ncae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/15/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
This study reviews recent research on Radiofrequency Electromagnetic Field (RF-EMF) exposure in confined environments, focusing on methodologies and parameters. Studies typically evaluate RF-EMF exposure using an electric field and specific absorption rate but fail to consider temperature rise in the tissues in confined environments. The study highlights the investigation of RF-EMF exposure in subterranean environments such as subways, tunnels and mines. Future research should evaluate the exposure of communication devices in such environments, considering the surrounding environment. Such studies will aid in understanding the risks and developing effective mitigation strategies to protect workers and the general public.
Collapse
Affiliation(s)
- Muhammad Ahsan Ashraf
- Sibanye-Stillwater Digital Mining Laboratory (DigiMine), University of the Witwatersrand, Johannesburg 2000, South Africa
- School of Electrical and Information Engineering, Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Turgay Celik
- School of Electrical and Information Engineering, Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg 2000, South Africa
- Faculty of Engineering and Science, University of Agder, 4630 Kristiansand, Norway
| |
Collapse
|
5
|
Turuban M, Kromhout H, Vila J, Vallbona-Vistós M, Baldi I, Turner MC. Personal exposure to radiofrequency electromagnetic fields in various occupations in Spain and France. ENVIRONMENT INTERNATIONAL 2023; 180:108156. [PMID: 37722304 DOI: 10.1016/j.envint.2023.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND A preliminary job-exposure matrix (JEM) for radiofrequency electromagnetic fields (RF-EMF) was created based on self-reported occupational information from a multi-country population-based study of approximately 10,000 participants combined with available measurement data compiled in a source-exposure matrix (spot measurements). In order to address the limited personal occupational RF-EMF measurement data available in the literature, we performed a measurement campaign among workers in various occupations in Spain and France. METHODS Personal full-shift measurements were conducted using RadMan 2XT™ (Narda) devices. A worker diary was used to capture information on occupational and background sources of RF exposure during the shift. Inclusion of occupations to be measured was initially based on exposure prevalence and level information in the preliminary JEM and expert judgment. RESULTS Personal full-shift measurements were conducted among 333 workers representing 46 ISCO88 occupations. Exposure to electric (E) and magnetic (H) fields was infrequent with >99% of measurements below the detection limit of the device (≥1% of the 1998 ICNIRP standards). A total of 50.2% and 77.2% of workers were ever exposed to E and H fields respectively (having at least one recorded 1-second measurement above the detection limit). Workers in elementary occupations, technicians and associate professionals, plant and machine operators and assemblers had somewhat greater numbers of measurements above the detection limit, higher maximum values and longer exposure durations. A small proportion of measurements were ≥100% of the standards, though these exceedances were brief (generally a few seconds in duration). Female workers and workers reporting use of any RF-EMF emitting source were more likely to have a measured exposure to E and H fields. CONCLUSION We conducted personal RF-EMF measurements among workers in various occupations in Spain and France. Overall, RF-EMF exposure ≥1 % ICNIRP was infrequent, despite some intermittent exposures ≥100% observed among workers in some occupations.
Collapse
Affiliation(s)
- Maxime Turuban
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Javier Vila
- Environmental Protection Agency (EPA), Office of Radiation Protection and Environmental Monitoring, Wexford, Ireland
| | | | - Isabelle Baldi
- INSERM UMR 1219 Epicene Team, Bordeaux Population Health Research Center, Bordeaux, France; Service Santé Travail Environnement, CHU de Bordeaux, Bordeaux, France
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
6
|
Ramirez-Vazquez R, Escobar I, Vandenbosch GAE, Vargas F, Caceres-Monllor DA, Arribas E. Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review. ENVIRONMENTAL RESEARCH 2023; 218:114979. [PMID: 36460078 DOI: 10.1016/j.envres.2022.114979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The last 25 years have seen an increase in the number of radiofrequency sources with the global adoption of smartphones as primary connectivity devices. The objective of this work was to review and evaluate the measured studies of personal exposure to Radiofrequency Electromagnetic Fields (RF-RMF) and meet the basic quality criteria eligible for inclusion in this Review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, following the eligibility criteria of the PECO (Population, Exposure, Comparator, and Outcome) methodology, and the instrument for critical reading Critical Appraisal Skills Programme Español (CASPe). We systematically reviewed the works published between January 1, 1998, and December 31, 2021, yielding 56 publications. Of the different types of studies in which personal exposure to RF-EMF has been measured with two measurement methodologies can be highlighted: Personal measurements with volunteers and Personal measurements with a trained researcher (touring a specific area, one or several microenvironments, an entire city, walking or in some means of transport). Personal exposimeters were used in 83% of the studies. The lowest mean was measured in Egypt with a value of 0.00100 μW/m2 (1.00 nW/m2) in 2007 and the highest mean was measured in Belgium with a value of 285000 μW/m2 (0.285 W/m2) in 2019. The results of our study confirm that RF-EMF exposure levels are well below the maximum levels established by the ICNIRP guidelines.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Isabel Escobar
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Guy A E Vandenbosch
- ESAT-WaveCoRE, Dep. of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Box 2444, 3001, Leuven, Belgium
| | | | | | - Enrique Arribas
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain.
| |
Collapse
|
7
|
López I, Rivera M, Félix N, Maestú C. It is mandatory to review environmental radiofrequency electromagnetic field measurement protocols and exposure regulations: An opinion article. Front Public Health 2022; 10:992645. [PMID: 36353271 PMCID: PMC9639819 DOI: 10.3389/fpubh.2022.992645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 01/26/2023] Open
Affiliation(s)
- Isabel López
- Departamento de Fotónica y Bioingeniería (TFB), Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marco Rivera
- Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nazario Félix
- Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Arquitectura y Tecnología de Sistemas Informáticos (DATSI), Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ceferino Maestú
- Departamento de Fotónica y Bioingeniería (TFB), Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain,CIBER–BBN Centro de Investigación Biomédica en Red, Madrid, Spain,*Correspondence: Ceferino Maestú
| |
Collapse
|
8
|
Ramirez-Vazquez R, Escobar I, Franco T, Arribas E. Physical units to report intensity of electromagnetic wave. ENVIRONMENTAL RESEARCH 2022; 204:112341. [PMID: 34740620 DOI: 10.1016/j.envres.2021.112341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work is to propose a consensus to scientific community that handles personal exposimeters, which measure intensity of an electromagnetic wave (W/m2). To express the intensity of an electromagnetic wave there is a duality in the way of expressing it. Some scientists prefer to use W/m2 while others use V/m, which is a unit of the electric field. There is also a duality in the name, sometimes it is called it power flux density and some other times, wave intensity. We believe that this second name is more appropriate from the point of view of physics. We suggest expressing intensity of an electromagnetic wave in W/m2 instead of giving the value of their electric field which is measured in V/m. There is a quadratic relation between electric field and intensity of the wave, and it is necessary to do a mathematical operation, so in our opinion, it is preferable to use W/m2 which directly gives us the value of the measured intensity. Furthermore, if the intensity is very low, it may be expressed in μW/m2 and with only three significant figures, due to sensitivity of the current exposimeters used.
Collapse
Affiliation(s)
- R Ramirez-Vazquez
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Albacete, Spain.
| | - I Escobar
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Albacete, Spain
| | - T Franco
- School of Higher Education in Mechanical and Electrical Engineering (ESIME-Zacatenco), Instituto Politecnico Nacional (IPN), Mexico city, Mexico
| | - E Arribas
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Albacete, Spain
| |
Collapse
|
9
|
Ramirez-Vazquez R, Arabasi S, Al-Taani H, Sbeih S, Gonzalez-Rubio J, Escobar I, Arribas E. Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1898. [PMID: 32183369 PMCID: PMC7142519 DOI: 10.3390/ijerph17061898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
In the last two decades, due to the development of the information society, the massive increase in the use of information technologies, including the connection and communication of multiple electronic devices, highlighting Wi-Fi networks, as well as the emerging technological advances of 4G and 5G (new-generation mobile phones that will use 5G), have caused a significant increase in the personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF), and as a consequence, increasing discussions about the possible adverse health effects. The main objective of this study was to measure the personal exposure to radiofrequency electromagnetic fields from the Wi-Fi in the university area of German Jordanian University (GJU) and prepare georeferenced maps of the registered intensity levels and to compare them with the basic international restrictions. Spot measurements were made outside the university area at German Jordanian University. Measurements were made in the whole university area and around two buildings. Two Satimo EME SPY 140 (Brest, France) personal exposimeters were used, and the measurements were performed in the morning and afternoon, and on weekends and weekdays. The total average personal exposure to RF-EMF from the Wi-Fi band registered in the three study areas and in the four days measured was 28.82 μW/m2. The average total exposure from the Wi-Fi band registered in the ten measured points of the university area of GJU was 22.97 μW/m2, the one registered in the eight measured points of building H was 34.48 μW/m2, and the one registered in the eight points of building C was 29.00 μW/m2. The maximum average values registered in the campus of GJU are below the guidelines allowed by International Commission on Non-ionizing Radiation Protection (ICNIRP). The measurement protocol used in this work has been applied in measurements already carried out in Spain and Mexico, and it is applicable in university areas of other countries.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Sameer Arabasi
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Hussein Al-Taani
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Suhad Sbeih
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Jesus Gonzalez-Rubio
- Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/ Almansa 14, 02071 Albacete, Spain;
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Enrique Arribas
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| |
Collapse
|