1
|
Lin DY, Waller ST, Lin MY. A Review of Urban Planning Approaches to Reduce Air Pollution Exposures. Curr Environ Health Rep 2024; 11:557-566. [PMID: 39198370 DOI: 10.1007/s40572-024-00459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE OF REVIEW With only 12% of the human population living in cities meeting the air quality standards set by the WHO guidelines, there is a critical need for coordinated strategies to meet the requirements of a healthy society. One pivotal mechanism for addressing societal expectations on air pollution and human health is to employ strategic modeling within the urban planning process. This review synthesizes research to inform coordinated strategies for a healthy society. Through strategic modeling in urban planning, we seek to uncover integrated solutions that mitigate air pollution, enhance public health, and create sustainable urban environments. RECENT FINDINGS Successful urban planning can help reduce air pollution by optimizing city design with regard to transportation systems. As one specific example, ventilation corridors i.e. aim to introduce natural wind into urban areas to improve thermal comfort and air quality, and they can be effective if well-designed and managed. However, physical barriers such as sound walls and vegetation must be carefully selected following design criteria with significant trade-offs that must be modeled quantitatively. These tradeoffs often involve balancing effectiveness, cost, aesthetics, and environmental impact. For instance, sound walls are highly effective at reducing noise, provide immediate impact, and are long-lasting. However, they are expensive to construct, visually unappealing, and may block views and sunlight. To address the costly issue of sound walls, a potential solution is implementing vegetation with a high leaf area index or leaf area density. This alternative is also an effective method for air pollution reduction with varying land-use potential. Ultimately, emission regulations are a key aspect of all such considerations. Given the broad range of developments, concerns, and considerations spanning city management, ventilation corridors, physical barriers, and transportation planning, this review aims to summarize the effect of a range of urban planning methods on air pollution considerations.
Collapse
Affiliation(s)
- Dung-Ying Lin
- Department of Industrial Engineering and Engineering Management, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - S Travis Waller
- Institute of Transport Planning and Road Traffic, Technische Universität Dresden, Dresden, Germany
| | - Ming-Yeng Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Asharam K, Mitku AAA, Ramsay L, Jeena PM, Naidoo RN. Environmental exposures associated with early childhood recurrent wheezing in the mother and child in the environment birth cohort: a time-to-event study. Thorax 2024; 79:953-960. [PMID: 38964859 PMCID: PMC11503139 DOI: 10.1136/thorax-2023-221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Antenatal factors and environmental exposures contribute to recurrent wheezing in early childhood. AIM To identify antenatal and environmental factors associated with recurrent wheezing in children from birth to 48 months in the mother and child in the environment cohort, using time-to-event analysis. METHOD Maternal interviews were administered during pregnancy and postnatally and children were followed up from birth to 48 months (May 2013-October 2019). Hybrid land-use regression and dispersion modelling described residential antenatal exposure to nitrogen dioxide (NO2) and particulate matter of 2.5 µm diameter (PM2.5). Wheezing status was assessed by a clinician. The Kaplan-Meier hazard function and Cox-proportional hazard models provided estimates of risk, adjusting for exposure to environmental tobacco smoke (ETS), maternal smoking, biomass fuel use and indoor environmental factors. RESULTS Among 520 mother-child pairs, 85 (16%) children, had a single wheeze episode and 57 (11%) had recurrent wheeze. Time to recurrent wheeze (42.9 months) and single wheeze (37.8 months) among children exposed to biomass cooking fuels was significantly shorter compared with children with mothers using electricity (45.9 and 38.9 months, respectively (p=0.03)). Children with mothers exposed to antenatal ETS were 3.8 times more likely to have had recurrent wheeze compared with those not exposed (adjusted HR 3.8, 95% CI 1.3 to 10.7). Mean birth month NO2 was significantly higher among the recurrent wheeze category compared with those without wheeze. NO2 and PM2.5 were associated with a 2%-4% adjusted increased wheezing risk. CONCLUSION Control of exposure to ETS and biomass fuels in the antenatal period is likely to delay the onset of recurrent wheeze in children from birth to 48 months.
Collapse
Affiliation(s)
- Kareshma Asharam
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Aweke A Abebaw Mitku
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Statistics, College of Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Lisa Ramsay
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Prakash Mohan Jeena
- Discipline of Paediatric and Child Health, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Zhang X, Yu S, Zhang F, Zhu S, Zhao G, Zhang X, Li T, Yu B, Zhu W, Li D. Association between traffic-related air pollution and osteoporotic fracture hospitalizations in inland and coastal areas: evidences from the central areas of two cities in Shandong Province, China. Arch Osteoporos 2023; 18:96. [PMID: 37452267 DOI: 10.1007/s11657-023-01308-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Our result showed that short-term exposure to traffic-related air pollutants (TRAPs) might increase the risk of hospitalizations for osteoporotic fractures. It was suggested that government should formulate emission reduction policies to protect the health of citizens. INTRODUCTION As the main source of urban air pollution in China, exhaust emissions of motor vehicles have been linked to adverse health outcomes, but evidence of the relationship between short-term exposure to TRAPs and osteoporotic fractures is still relatively rare. METHODS In this study, a total of 5044 inpatients from an inland city (Jinan) and a coastal city (Qingdao), two cities with developed transportation in Shandong Province, were included. A generalized additive model (GAM) was used to investigate the association between TRAPs and hospitalizations for osteoporotic fractures. The stratified analyses were performed by gender and age. RESULTS Positive associations between TRAPs and osteoporotic fracture hospitalizations were observed. We found that short-term exposure to TRAPs was associated with increased numbers of hospitalizations for osteoporotic fractures. PM2.5 and PM10 were statistically significant associated with hospitalizations for osteoporotic fractures at both single-day and multiday lag structures only in Qingdao, with the strongest associations at lag06 and lag07 [RR=1.0446(95%CI: 1.0018,1.0891) for PM2.5, RR=1.0328(95%CI: 1.0084,1.0578) for PM10]. For NO2 and CO, we found significant associations at lag4 in the single lag structure in Jinan [RR=1.0354 (95%CI: 1.0071, 1.0646) for NO2, RR=1.0014 (95%CI: 1.0002, 1.0025) for CO], while only CO at lag4 was significantly associated with hospitalizations for osteoporotic fractures in Qingdao [1.0038 (1.0012, 1.0063)]. Stratified analyses indicated that the associations were stronger in females and older individuals (65 + years). CONCLUSION This study implied that short-term exposure to TRAPs pollution was associated with an increased risk of hospitalizations for osteoporotic fractures. Female patients and patients aged 65 + years appeared to be more vulnerable to TRAPs, suggesting that poor air quality is a modifiable risk factor for osteoporotic fractures.
Collapse
Affiliation(s)
- Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shengwen Yu
- Department of Orthopedics, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, 266033, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Bo Yu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Dejia Li
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Alli AS, Clark SN, Wang J, Bennett J, Hughes AF, Ezzati M, Brauer M, Nimo J, Bedford-Moses J, Baah S, Cavanaugh A, Agyei-Mensah S, Owusu G, Baumgartner J, Arku RE. High-resolution patterns and inequalities in ambient fine particle mass (PM 2.5) and black carbon (BC) in the Greater Accra Metropolis, Ghana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162582. [PMID: 36870487 PMCID: PMC10131145 DOI: 10.1016/j.scitotenv.2023.162582] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 06/02/2023]
Abstract
Growing cities in sub-Saharan Africa (SSA) experience high levels of ambient air pollution. However, sparse long-term city-wide air pollution exposure data limits policy mitigation efforts and assessment of the health and climate effects. In the first study of its kind in West Africa, we developed high resolution spatiotemporal land use regression (LUR) models to map fine particulate matter (PM2.5) and black carbon (BC) concentrations in the Greater Accra Metropolitan Area (GAMA), one of the fastest sprawling metropolises in SSA. We conducted a one-year measurement campaign covering 146 sites and combined these data with geospatial and meteorological predictors to develop separate Harmattan and non-Harmattan season PM2.5 and BC models at 100 m resolution. The final models were selected with a forward stepwise procedure and performance was evaluated with 10-fold cross-validation. Model predictions were overlayed with the most recent census data to estimate the population distribution of exposure and socioeconomic inequalities in exposure at the census enumeration area level. The fixed effects components of the models explained 48-69 % and 63-71 % of the variance in PM2.5 and BC concentrations, respectively. Spatial variables related to road traffic and vegetation explained the most variability in the non-Harmattan models, while temporal variables were dominant in the Harmattan models. The entire GAMA population is exposed to PM2.5 levels above the World Health Organization guideline, including even the Interim Target 3 (15 μg/m3), with the highest exposures in poorer neighborhoods. The models can be used to support air pollution mitigation policies, health, and climate impact assessments. The measurement and modelling approach used in this study can be adapted to other African cities to bridge the air pollution data gap in the region.
Collapse
Affiliation(s)
- Abosede S Alli
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Sierra N Clark
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jiayuan Wang
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - James Bennett
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | | - Majid Ezzati
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Regional Institute for Population Studies, University of Ghana, Accra, Ghana
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - James Nimo
- Department of Physics, University of Ghana, Accra, Ghana
| | | | - Solomon Baah
- Department of Physics, University of Ghana, Accra, Ghana
| | | | - Samuel Agyei-Mensah
- Department of Geography and Resource Development, University of Ghana, Accra, Ghana
| | - George Owusu
- Institute of Statistical, Social & Economic Research, University of Ghana, Accra, Ghana
| | - Jill Baumgartner
- Institute for Health and Social Policy, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Raphael E Arku
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
5
|
Muttoo S, Jeena PM, Röösli M, de Hoogh K, Meliefste K, Tularam H, Olin AC, Carlsen HK, Mentz G, Asharam K, Naidoo RN. Effect of short-term exposure to ambient nitrogen dioxide and particulate matter on repeated lung function measures in infancy: A South African birth cohort. ENVIRONMENTAL RESEARCH 2022; 213:113645. [PMID: 35700764 DOI: 10.1016/j.envres.2022.113645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The developing lung is highly susceptible to environmental toxicants, with both short- and long-term exposure to ambient air pollutants linked to early childhood effects. This study assessed the short-term exposure effects of nitrogen dioxide (NO2) and particulate matter (PM10) on lung function in infants aged 6 weeks, 6, 12 and 24 months, the early developmental phase of child growth. METHODS Lung function was determined by multiple breath washout and tidal breathing measurement in non-sedated infants. Individual exposure to NO2 and PM10 was determined by hybrid land use regression and dispersion modelling, with two-week average estimates (preceding the test date). Linear mixed models were used to adjust for the repeated measures design and an age*exposure interaction was introduced to obtain effect estimates for each age group. RESULTS There were 165 infants that had lung function testing, with 82 of them having more than one test occasion. Exposure to PM10 (μg/m3) resulted in a decline in tidal volume at 6 weeks [-0.4 ml (-0.9; 0.0), p = 0.065], 6 months [-0.5 ml (-1.0; 0.0), p = 0.046] and 12 months [-0.3 ml (-0.7; 0.0), p = 0.045]. PM10 was related to an increase in respiratory rate and minute ventilation, while a decline was observed for functional residual capacity for the same age groups, though not statistically significant for these outcomes. Such associations were however less evident for exposure to NO2, with inconsistent changes observed across measurement parameters and age groups. CONCLUSION Our study suggests that PM10 results in acute lung function impairments among infants from a low-socioeconomic setting, while the association with NO2 is less convincing.
Collapse
Affiliation(s)
- S Muttoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| | - P M Jeena
- Discipline of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa.
| | - M Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - K de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - K Meliefste
- Institute for Risk Assessment Sciences, Utrecht, the Netherlands.
| | - H Tularam
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| | - A C Olin
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - H K Carlsen
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - G Mentz
- University Michigan, Ann Arbor, MI, USA.
| | - K Asharam
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| | - R N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
6
|
Chen W, Zhang F, Luo S, Lu T, Zheng J, He L. Three-Dimensional Landscape Pattern Characteristics of Land Function Zones and Their Influence on PM 2.5 Based on LUR Model in the Central Urban Area of Nanchang City, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11696. [PMID: 36141965 PMCID: PMC9517176 DOI: 10.3390/ijerph191811696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
China's rapid urbanization and industrialization process has triggered serious air pollution. As a main air pollutant, PM2.5 is affected not only by meteorological conditions, but also by land use in urban area. The impacts of urban landscape on PM2.5 become more complicated from a three-dimensional (3D) and land function zone point of view. Taking the urban area of Nanchang city, China, as a case and, on the basis of the identification of urban land function zones, this study firstly constructed a three-dimensional landscape index system to express the characteristics of 3D landscape pattern. Then, the land-use regression (LUR) model was applied to simulate PM2.5 distribution with high precision, and a geographically weighted regression model was established. The results are as follows: (1) the constructed 3D landscape indices could reflect the 3D characteristics of urban landscape, and the overall 3D landscape indices of different urban land function zones were significantly different; (2) the effects of 3D landscape spatial pattern on PM2.5 varied significantly with land function zone type; (3) the effects of 3D characteristics of landscapes on PM2.5 in different land function zones are expressed in different ways and exhibit a significant spatial heterogeneity. This study provides a new idea for reducing air pollution by optimizing the urban landscape pattern.
Collapse
Affiliation(s)
- Wenbo Chen
- East China University of Technology, Nanchang 330013, China
- Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake, Ministry of Natural Resources, Nanchang 330013, China
| | - Fuqing Zhang
- East China University of Technology, Nanchang 330013, China
| | - Saiwei Luo
- The Key Laboratory of Landscape and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Taojie Lu
- The Key Laboratory of Landscape and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiao Zheng
- The Key Laboratory of Landscape and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei He
- School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China
| |
Collapse
|
7
|
Shezi B, Jafta N, Asharam K, Tularam H, Jeena P, Naidoo RN. Maternal exposure to indoor PM 2.5 and associated adverse birth outcomes in low socio-economic households, Durban, South Africa. INDOOR AIR 2022; 32:e12934. [PMID: 34546595 DOI: 10.1111/ina.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The association between in utero exposure to indoor PM2.5 and birth outcomes is not conclusive. We assessed the association between in utero exposure to indoor PM2.5 , birth weight, gestational age, low birth weight, and/or preterm delivery. Homes of 800 pregnant women were assessed using a structured walkthrough questionnaire. PM2.5 measurements were undertaken in 300 of the 800 homes for a period of 24 h. Repeated sampling was conducted in 30 of these homes to determine PM2.5 predictors that can reduce within-and/or between-home variability. A predictive model was used to estimate PM2.5 levels in unmeasured homes (n = 500). The mean (SD) for PM2.5 was 37 µg/m3 (29) with a median of 28µg/m3 . The relationship between PM2.5 exposure, birth weight, gestational age, low birth weight, and preterm delivery was assessed using multivariate linear and logistic regression models. We explored infant sex as a potential effect modifier, by creating an interaction term between PM2.5 and infant sex. The odds ratio of low birth weight and preterm delivery was 1.75 (95%CI: 1.47, 2.09) and 1.21 (95%CI: 1.06, 1.39), respectively, per interquartile increase (18 µg/m3 ) in PM2.5 exposure. The reduction in birth weight and gestational age was 75 g (95%CI: 107.89, 53.15) and 0.29 weeks (95%CI: 0.40, 0.19) per interquartile increase in PM2.5 exposure. Infant sex was an effect modifier for PM2.5 on birth weight and gestational age, and the reduction in birth weight and gestational age was 103 g (95%CI: 142.98, 64.40) and 0.38 weeks (95% CI: 0.53, 0.23), respectively, for boys, and 54 g (95%CI: 91.78,15.62) and 0.23 weeks (95%CI:0.37, 0.08), respectively, for girls. Exposure to PM2.5 is associated with adverse pregnancy outcomes. To protect the population during their reproductive period, public health policy should focus on indoor PM2.5 levels.
Collapse
Affiliation(s)
- Busisiwe Shezi
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Environment and Health Research Unit, South African Medical Research Council, Durban, South Africa
| | - Nkosana Jafta
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Kareshma Asharam
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Hasheel Tularam
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Prakash Jeena
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Air Pollution Measurements and Land-Use Regression in Urban Sub-Saharan Africa Using Low-Cost Sensors—Possibilities and Pitfalls. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollution is recognized as the most important environmental factor that adversely affects human and societal wellbeing. Due to rapid urbanization, air pollution levels are increasing in the Sub-Saharan region, but there is a shortage of air pollution monitoring. Hence, exposure data to use as a base for exposure modelling and health effect assessments is also lacking. In this study, low-cost sensors were used to assess PM2.5 (particulate matter) levels in the city of Adama, Ethiopia. The measurements were conducted during two separate 1-week periods. The measurements were used to develop a land-use regression (LUR) model. The developed LUR model explained 33.4% of the variance in the concentrations of PM2.5. Two predictor variables were included in the final model, of which both were related to emissions from traffic sources. Some concern regarding influential observations remained in the final model. Long-term PM2.5 and wind direction data were obtained from the city’s meteorological station, which should be used to validate the representativeness of our sensor measurements. The PM2.5 long-term data were however not reliable. Means of obtaining good reference data combined with longer sensor measurements would be a good way forward to develop a stronger LUR model which, together with improved knowledge, can be applied towards improving the quality of health. A health impact assessment, based on the mean level of PM2.5 (23 µg/m3), presented the attributable burden of disease and showed the importance of addressing causes of these high ambient levels in the area.
Collapse
|