1
|
Kim WI, Pak SW, Lee SJ, Park SH, Shin IS, Moon C, Yu WJ, Kim SH, Kim JC. In vitro study of silver nanoparticles-induced embryotoxicity using a rat whole embryo culture model. Toxicol Res 2025; 41:189-197. [PMID: 40013083 PMCID: PMC11850682 DOI: 10.1007/s43188-024-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Recently, our in vivo experiment showed that silver nanoparticles (AgNPs) did not cause developmental toxicity. However, the putative influences of direct exposure of AgNPs on the embryo-fetuses could not be elucidated because the embryo-fetus was exposed to AgNPs through their dams. In this study, the potential impact of AgNPs on embryonic development during the critical phase of organogenesis was examined utilizing a rat whole embryo culture model. This system could separate the direct effects of AgNPs from those that are maternally mediated. To evaluate the embryotoxic potential of AgNPs, embryos were exposed to 1.67, 5, and 15 μg/mL of AgNPs for 48 h. At the conclusion of the culture period, embryonic growth and development were assessed, and morphological abnormalities were systematically evaluated. Also, apoptosis induced by AgNPs was evaluated by TUNEL and immunohistochemistry for caspase-3. At 15 μg/mL, a retardation in embryonic growth and differentiation, accompanied by a heightened frequency of morphological abnormalities, including abnormal axial rotation, open neural tube, absent optic vesicle, and growth retarded were observed in a dose-dependent manner. At this concentration, caspase-3-positive cells appeared in the treated embryonic tissues compared to controls. At 5 μg/mL, AgNPs also caused a decrease in the embryonic otic system, somite number, and total morphological score. No adverse effects on embryonic growth and development associated with the treatment were observed at 1.67 μg/mL. The findings demonstrated that the direct exposure of AgNPs to rat embryos induces developmental delays and morphological abnormalities, and that AgNPs can induce a direct developmental toxicity and caspase-dependent apoptosis in rat embryos.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Wook-Jun Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 56212 Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212 Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
2
|
Murugan S, Senthilvelan T, Govindasamy M, Thangavel K. A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria. Curr Microbiol 2025; 82:90. [PMID: 39825917 DOI: 10.1007/s00284-025-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics. These natural compounds exhibit a diverse range of bioactive properties, including antibacterial, anti-inflammatory, and antioxidant activities, and have the potential to overcome bacterial resistance mechanisms. However, their limited solubility, bioavailability, and stability have limited their therapeutic potential. Nanotechnology, particularly the utilization of biogenic nanoparticles, offers the potential to overcome these limitations by enhancing the biosafety, stability, and controlled release of phytochemical compounds, thereby enabling a more effective combination of resistant pathogens. This review examines current research on the combinatorial application of phytochemicals and biogenic nanoparticles, with emphasis on their capacity to address AMR. This study presents a novel perspective on the concurrent utilization of phytochemicals and biogenic nanoparticles, which may enhance antibacterial efficacy while mitigating toxicity. This review provides specific and innovative insights into the novelty, sustainability, and eco-friendly aspects of these approaches to address multidrug-resistant infections, highlighting their role in emerging as a transformative strategy for AMR management through the integration of natural and biogenic resources.
Collapse
Affiliation(s)
- Shibasini Murugan
- Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - T Senthilvelan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamilnadu, 600124, India
| | - Mani Govindasamy
- International Ph.D Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Science and Technology, New Taipei, 24303, Taiwan
- Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan
| | - Kavitha Thangavel
- Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
3
|
Senze M, Kowalska-Góralska M, Czyż K. Effect of Aluminum Concentration in Water on Its Toxicity and Bioaccumulation in Zooplankton (Chaoborus and Chironomus) and Carp (Cyprinus carpio L.) Roe. Biol Trace Elem Res 2024; 202:5259-5275. [PMID: 38233675 DOI: 10.1007/s12011-024-04062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
An attempt to evaluate aluminum toxicity to living organisms was undertaken in the study. A laboratory experiment was conducted to determine aluminum bioaccumulation and toxicity in Chironomus and Chaoborus larvae and in Cyprinus carpio L. roe depending on aluminum concentration in water reflecting natural chemical composition. Water was examined for temperature, pH, electrical conductivity, dissolved oxygen, color, nitrate nitrogen, nitrite nitrogen, sulfates by spectrophotometric method; total hardness and chlorides by titration method; and calcium, magnesium, sodium by flame atomic absorption spectrometry, total aluminum by electrothermal atomic absorption spectrometry. Determination of aluminum levels in water, roe, and zooplankton was carried out after mineralization using electrothermal atomic absorption spectrometry. Aluminum bioaccumulation factor in roe was determined with respect to concentration in water. Moreover, acute toxicity (LC50) was calculated. In the roe experiment, aluminum concentration in water at the end of the experiment was 0.0635-0.1283 mgAl∙dm-3. The lowest values were noted for the control sample and the highest for water with 0.03 mgAl∙dm-3 aluminum content. The final aluminum level in roe was, like in water, the highest in roe treated with 0.03 mgAl∙dm-3 (18.95 mgAl∙kg-1), and the lowest in roe treated with 3.00 mgAl∙dm-3 (6.96 mgAl∙kg-1). Aluminum bioaccumulation in roe was the strongest in the control. Survival rate ranged from 2.00 to 97.00%, which shows higher sensitivity of roe to aluminum concentration. LC50 value for Chaoborus was 0.6464 mgAl⋅dm-3, and for Chironomus 0.2076 mgAl⋅dm-3 indicating that Chironomus is more sensitive to aluminum toxic effects. Concentration of 3.0 mgAl∙dm-3 caused the highest mortality. Aluminum in both species at each concentration reached the highest levels after one day (24 h), 254.58 mg⋅kg-1 for Chaoborus and 3107 mg⋅kg-1 for Chironomus. After another day, aluminum levels decreased. This demonstrated the differential accumulation of aluminum depending on the species, which predisposes Chironomus as a better indicator organism. This type of research is important from the point of view of aquaculture, which is a targeted activity with a high degree of economic importance, but is also important for aquatic organisms living in natural conditions. Fish reproduction takes place in both types of waters, so all these reservoirs regardless of their source of destination should be inspected.
Collapse
Affiliation(s)
- Magdalena Senze
- Institute of Animal Breeding, Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Poland, Ul. Chełmońskiego 38C, 51-630, Wrocław, Poland.
| | - Monika Kowalska-Góralska
- Institute of Animal Breeding, Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Poland, Ul. Chełmońskiego 38C, 51-630, Wrocław, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Department of Sheep and Fur Animals Breeding, Wrocław University of Environmental and Life Sciences, Ul. Kożuchowska 5B, 51-631, Wrocław, Poland
| |
Collapse
|
4
|
Garncarek-Musiał M, Maruszewska A, Kowalska-Góralska M, Mijowska E, Zielinkiewicz K, Dziewulska K. Comparative study of influence of Cu, CuO nanoparticles and Cu 2+ on rainbow trout (Oncorhynchus mykiss W.) spermatozoa. Sci Rep 2024; 14:22242. [PMID: 39333544 PMCID: PMC11437131 DOI: 10.1038/s41598-024-72956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The same elements can yield disparate nanoproducts that may elicit different harmful effects in cells and organisms. This study aimed to compare the effects of copper (Cu NPs) and copper oxide (CuO NPs) nanoparticles and Cu2+ (from CuSO4) on the physico-biochemical variables of rainbow trout spermatozoa. The cell death assay, along with the activation of caspases 8 and 9, the level of reactive oxygen species (ROS), and the percentage of cells exhibiting a high mitochondrial membrane potential (MMP) were quantified over 24-hour incubation. Interestingly, during exposure, all copper products induced cell apoptosis. However, Cu NPs had a stronger effect than CuO NPs, while the impact of the Cu in ionic form was found to be between the other two compounds. The extrinsic and intrinsic apoptotic pathways were activated, as evidenced by the activation of caspases 8 and 9. Initially, caspase activation increased without a corresponding decrease in MMPs but prolonged exposure resulted in a significant decrease in MMP levels. In all treated cells, the ROS levels increased over time. Further studies are needed to confirm the lower CuO NPs' toxicity compared to Cu NPs because their effect on cells also depends on many other parameters such as size or shape.
Collapse
Affiliation(s)
- Małgorzata Garncarek-Musiał
- Doctoral School, Institute of Biology, University of Szczecin, Mickiewicza 18, Szczecin, 70- 383, Poland
- Institute of Biology, Department of Hydrobiology, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland
| | - Agnieszka Maruszewska
- Institute of Biology, Department of Physiology and Biochemistry, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland
- Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, Szczecin, 71- 415, Poland
| | - Monika Kowalska-Góralska
- Faculty of Biology and Animal Science, Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, Wrocław, 51-630, Poland
| | - Ewa Mijowska
- Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Piastow Ave. 45, Szczecin, 70-310, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, Szczecin, Poland
| | - Klaudia Zielinkiewicz
- Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Piastow Ave. 45, Szczecin, 70-310, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, Szczecin, Poland
| | - Katarzyna Dziewulska
- Institute of Biology, Department of Hydrobiology, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland.
- Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, Szczecin, 71- 415, Poland.
| |
Collapse
|
5
|
Garncarek-Musiał M, Dziewulska K, Kowalska-Góralska M. Effect of different sizes of nanocopper particles on rainbow trout (Oncorhynchus mykiss W.) spermatozoa motility kinematics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173763. [PMID: 38839004 DOI: 10.1016/j.scitotenv.2024.173763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In recent years, nanocopper (Cu NPs) has gained attention due to its antimicrobial properties and potential for industrial, agricultural, and consumer applications. But it also has several effects on the aquatic environment. Widespread use of various nanoproducts has raised concerns about impacts of different nanoparticle size on environment and biological objects. Spermatozoa is a model for studying the ecotoxic effects of pollutants on cells and organisms. This study aimed to investigate the effects of different sizes of copper nanoparticles on rainbow trout spermatozoa motility, and to compare their effects with copper ionic solution. Computer assisted sperm analysis (CASA) was used to detect movement parameters at activation of gametes (direct effect) with milieu containing nanocopper of primary particle size of 40-60, 60-80 and 100 nm. The effect of the elements ions was also tested using copper sulfate solution. All products was prepared in concentration of 0, 1, 5, 50, 125, 250, 350, 500, 750, and 1000 mg Cu L-1. Six motility parameters were selected for analysis. The harmful effect of Cu NPS nanoparticle was lower than ionic form of copper but the effect depends on the motility parameters. Ionic form caused complete immobilization (MOT = 0 %, IC100) at 350 mg Cu L-1 whilst Cu NPs solution only decreased the percentage of motile sperm (MOT) up to 76.4 % at highest concentration tested of 1000 mg Cu L-1 of 40-60 nm NPs. Cu NPs of smaller particles size had more deleterious effect than the bigger one particularly in percentage of MOT and for curvilinear velocity (VCL). Moreover, nanoparticles decrease motility duration (MD). This may influence fertility because the first two parameters positively correlate with fertilization rate. However, the ionic form of copper has deleterious effect on the percentage of MOT and linearity (LIN), but in some concentrations it slightly increases VCL and MD.
Collapse
Affiliation(s)
- Małgorzata Garncarek-Musiał
- University of Szczecin, Doctoral School, Mickiewicza 18, 70-383 Szczecin, Poland; University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland.
| | - Katarzyna Dziewulska
- University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
| | - Monika Kowalska-Góralska
- Wrocław University of Environmental and Life Sciences, Faculty of Biology and Animal Science, Institute of Animal Breeding, Department of Limnology and Fishery, Chełmońskiego 38c, 51-630 Wrocław, Poland.
| |
Collapse
|
6
|
Garncarek M, Dziewulska K, Kowalska-Góralska M. The Effect of Copper and Copper Oxide Nanoparticles on Rainbow Trout ( Oncorhynchus mykiss W.) Spermatozoa Motility after Incubation with Contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8486. [PMID: 35886337 PMCID: PMC9319033 DOI: 10.3390/ijerph19148486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023]
Abstract
The study aimed to analyse the effect of copper nanoparticles of similar particle size of Cu and CuO and copper ions (CuSO4) on the motility parameters of rainbow trout spermatozoa after long-term exposure and compare its harmful effect. Nanoproducts of Cu and CuO (Cu NPs, CuO NPs) of primary particle size around 50 nm and ionic solution of CuSO4 were used for the study. Suspension of concentrations 0, 1, 5, 10, 25, and 50 mg Cu·L-1 of Cu NPs, CuO NPs, and CuSO4 was dissolved in an artificial seminal plasma. Milt was mixed with the prepared solution and stored in a fridge, at 6 °C, for 96 h. At the defined incubation time, spermatozoa were activated for movement, and six motility parameters were evaluated using an automated system (CASA). Increasing concentrations of Cu NPs, CuO NPs, and CuSO4 in an incubation medium in parallel decreased the percentage of motile sperm (MOT). The effect of Cu NPs and ionic copper on MOT was more deleterious than that of CuO NPs. Copper products slightly increased the velocity (VCL) compared to the control, particularly up to 24 h of storage. Linearity (LIN) was improved by three tested products, particularly CuO NPs. Generally, the motility duration was prolonged when the sperm was incubated with copper products compared to the control. Nanoproducts made from different compounds of the same elements of similar particle size have a different effect on cells. Cu NPs were more harmful than CuO NPs. The effect of Cu NPs was similar to an ionic form of CuSO4. When incubated, the copper nanoproducts and ionic form exert a slightly positive effect on spermatozoa velocity, linearity, and motility duration, particularly up to 24 h of storage.
Collapse
Affiliation(s)
- Małgorzata Garncarek
- Institute of Biology, Doctoral School, University of Szczecin, 70-383 Szczecin, Poland;
| | - Katarzyna Dziewulska
- Department of Hydrobiology, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Monika Kowalska-Góralska
- Department of Limnology and Fishery, Institute of Animal Breeding, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| |
Collapse
|
7
|
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation. SCOPE AND APPROACH Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells. KEY FINDINGS AND CONCLUSIONS Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Monika Kowalska-Góralska
- Department of Limnology and Fisheries, Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - P Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 7a, 51-631 Wrocław, Poland.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
8
|
Survival of Embryos and Fry of Sea Trout ( Salmo trutta m . trutta) Growing from Eggs Exposed to Different Concentrations of Selenium during Egg Swelling. Animals (Basel) 2021; 11:ani11102921. [PMID: 34679941 PMCID: PMC8532871 DOI: 10.3390/ani11102921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Adequate selenium (Se) availability enhances the health and growth of organisms, but overdose of it can be harmful and pathogenic. The study's objective was to analyse the impact of short-term exposure of sea trout fertilised eggs to inorganic selenium (SeO2) at concentrations from 0 to 32 mg Se L-1 to find the optimal and toxic dose of Se on early fish development. Se accumulated in the body, embryos' survival rate, and growth in the first four months of life was examined. Swelling of fertilised eggs in water supplemented with Se at a concentration from 0.5 to 8 mg Se L-1 was associated with a slightly positive impact on the hatching rate. At higher Se concentration, a harmful effect on the survival of the embryo was observed. The survival of fry was similar in all groups, while the fry length and weight correlated positively with Se concentration in its body. Immersion of fertilised eggs in water enriched with Se during egg swelling can constitute a method to supplement the element to non-feeding stages of fish. In selenium-poor areas, this innovative method can be implemented in aquaculture to improve breeding outcomes. Se concentration should be adjusted to the chemical compound, fish species, and Se's content in the yolk.
Collapse
|