1
|
Park H, Noll A, Kim S, Nussbaum MA. Passive arm-support and back-support exoskeletons have distinct phase-dependent effects on physical demands during cart pushing and pulling: An exploratory study. APPLIED ERGONOMICS 2025; 126:104510. [PMID: 40117782 DOI: 10.1016/j.apergo.2025.104510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Arm-support exoskeletons (ASEs) and back-support exoskeletons (BSEs) can be effective in reducing physical demands during various occupational tasks, yet evidence of their effects in pushing and pulling tasks remains limited. We examined the effects of using a passive ASE and a BSE on task completion time, shoulder and trunk kinematics, and muscle activity in the shoulder and back while pushing and pulling a moderately loaded (100 kg) cart. Forty volunteers (24 M and 16 F) completed the study. Using the BSE substantially reduced thoracic and lumbar erector spinae muscle activity for males, especially during the initial and ending phases of pushing (by up to ∼31.4 %) and pulling (by up to ∼25.4 %) compared to the No Device (ND) condition. In contrast, using the ASE showed no significant benefits, with females experiencing an increase in anterior deltoid muscle activity (by up to ∼46.3 %) compared to ND. Findings from this study help to understand the effects of BSEs and ASEs in pushing and pulling tasks and support the development of more versatile exoskeletons.
Collapse
Affiliation(s)
- Hanjun Park
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alex Noll
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Banks JJ, Quirk DA, Chung J, Cherin JM, Walsh CJ, Anderson DE. The effect of a soft active back support exosuit on trunk motion and thoracolumbar spine loading during squat and stoop lifts. ERGONOMICS 2025; 68:223-236. [PMID: 38389220 PMCID: PMC11339243 DOI: 10.1080/00140139.2024.2320355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Back support exosuits aim to reduce tissue demands and thereby risk of injury and pain. However, biomechanical analyses of soft active exosuit designs have been limited. The objective of this study was to evaluate the effect of a soft active back support exosuit on trunk motion and thoracolumbar spine loading in participants performing stoop and squat lifts of 6 and 10 kg crates, using participant-specific musculoskeletal models. The exosuit did not change overall trunk motion but affected lumbo-pelvic motion slightly, and reduced peak compressive and shear vertebral loads at some levels, although shear increased slightly at others. This study indicates that soft active exosuits have limited kinematic effects during lifting, and can reduce spinal loading depending on the vertebral level. These results support the hypothesis that a soft exosuit can assist without limiting trunk movement or negatively impacting skeletal loading and have implications for future design and ergonomic intervention efforts.
Collapse
Affiliation(s)
- Jacob J. Banks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - David A. Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Jason M. Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Conor J. Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Dennis E. Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Thevenot C, Pierre X, Mornieux G. Effects of an occupational soft-back exoskeleton during order picking: a field study in logistics. ERGONOMICS 2025:1-14. [PMID: 39773360 DOI: 10.1080/00140139.2024.2447867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The use of exoskeletons is increasingly considered as a solution to reduce workers' exposure to physical risk factors, such as low-back disorders. The aim of this study was to evaluate the effects of the CORFOR® occupational soft-back exoskeleton on trunk muscle activity and kinematics during an order picking manual task performed in the field. 10 workers, with at least 4 weeks' experience using the exoskeleton, performed a 1.5-hour order picking task with and without the exoskeleton. Trunk muscle activity, upper-body kinematics and the exoskeleton's acceptance were assessed. Erector spinae muscle activity was significantly reduced by 7.5% with the use of the exoskeleton. Moreover, trunk flexor muscles activity, trunk kinematics, or low-back pain were not affected. Further, the acceptance of the exoskeleton was rated as favourable. Thus, at least in the test company, the integration of the CORFOR® exoskeleton for order picking tasks is promising.
Collapse
Affiliation(s)
- Clement Thevenot
- DevAH, Université de Lorraine, Nancy, France
- Lidl France, Châtenay-Malabry, France
| | | | - Guillaume Mornieux
- DevAH, Université de Lorraine, Nancy, France
- Faculty of Sport Sciences, Université de Lorraine, Nancy, France
| |
Collapse
|
4
|
Hess A, Jacobs JV, Sullivan S, Roberts Williams DO, Awad LN, Dalton D, Walsh CJ, Quirk DA. Active back exosuits demonstrate positive usability perceptions that drive intention-to-use in the field among logistic warehouse workers. APPLIED ERGONOMICS 2025; 122:104400. [PMID: 39388886 DOI: 10.1016/j.apergo.2024.104400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Back exosuits offer the potential to reduce occupational back injuries but require in-field acceptance and use to realize this potential. For this study, 146 employees trialed an active back exosuit in the field for 4 h, completing an acceptance usability survey. Comparing the 80% of employees willing to continue wearing this device (N = 117) to those who were not (N = 29) revealed that employees willing to wear this device for a longer-term study generally were more likely to perceive this back exosuit to be effective (helpful) and compatible (minimally disruptive) to their everyday work. Using an optimal tree approach, we demonstrate that intent-to-use could be predicted with 78% accuracy by interacting features of perceived exosuit effectiveness and work compatibility. This study reinforces the importance of task matching, noticeable relief, and unobtrusive design to facilitate short-term employee acceptance of industrial wearable robotic technology.
Collapse
Affiliation(s)
- Adam Hess
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Jesse V Jacobs
- Risk Control Services, Liberty Mutual Insurance, Boston, MA, USA
| | - Sarah Sullivan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | | | - Lou N Awad
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Diane Dalton
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Conor J Walsh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
| | - D Adam Quirk
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Cardoso A, Ribeiro A, Carneiro P, Colim A. Evaluating Exoskeletons for WMSD Prevention: A Systematic Review of Applications and Ergonomic Approach in Occupational Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1695. [PMID: 39767533 PMCID: PMC11675588 DOI: 10.3390/ijerph21121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
This review provides a comprehensive analysis of studies investigating the impact of occupational exoskeletons on work-related musculoskeletal disorder (WMSD) risk factors. The primary objective is to examine the methodologies used to assess the effectiveness of these devices across various occupational tasks. A systematic review was conducted following the PRISMA guidelines, covering studies published between 2014 and 2024. A total of 49 studies were included, identified through searches conducted in Scopus and Web of Science databases, with the search string launched in August 2024. The review identifies a growing body of research on passive and active exoskeletons, with a notable focus on laboratory-based evaluations. The results indicate that direct measurement and self-report methods are the preferred approaches in these domains. Ergonomic limitations and user discomfort remain concerns in some cases. The findings of this review may influence stakeholders by providing insights into the potential benefits of adopting exoskeletons and improving workplace ergonomics to reduce WMSD risks. Additionally, the identification of WMSD assessment methods will be valuable for validating the use of these technologies in the workplace. The review concludes with recommendations for future research, emphasizing the need for more real-world assessments and improved exoskeleton designs to enhance user comfort and efficacy.
Collapse
Affiliation(s)
- André Cardoso
- DTx Digital Transformation Colab, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal; (A.C.)
- Algoritmi Research Centre/LASI, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Andreia Ribeiro
- Bosch Car Multimédia S.A., Manufacturing Engineering, 4705-820 Braga, Portugal;
| | - Paula Carneiro
- Algoritmi Research Centre/LASI, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Ana Colim
- DTx Digital Transformation Colab, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal; (A.C.)
| |
Collapse
|
6
|
Favennec A, Moissenet F, Frère J, Mornieux G. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Comput Methods Biomech Biomed Engin 2024:1-9. [PMID: 39492646 DOI: 10.1080/10255842.2024.2422925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024]
Abstract
The aim of this study was to append a passive soft back exoskeleton to a validated musculoskeletal model and assess its effectiveness in reducing lumbar loads. Fifteen participants lifted a box, with and without wearing a CORFOR® exoskeleton. A full body OpenSim model was used to estimate lumbar joint moments and reaction forces, as well as low back muscles forces. Wearing the exoskeleton reduced the peak flexion moment, muscles forces, as well as peak compressive and shear forces. This musculoskeletal modelling study shows that wearing the exoskeleton may reduce lumbar spine loads and may contribute to prevent low back disorders.
Collapse
Affiliation(s)
| | - Florent Moissenet
- Biomechanics Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Julien Frère
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, 38000 Grenoble, France
| | - Guillaume Mornieux
- Université de Lorraine, UR3450 DevAH, Nancy, France
- Université de Lorraine, Faculty of Sport Sciences, Nancy, France
| |
Collapse
|
7
|
Raghuraman RN, Barbieri DF, Aviles J, Srinivasan D. Age and gender differences in the perception and use of soft vs. rigid exoskeletons for manual material handling. ERGONOMICS 2024; 67:1453-1470. [PMID: 38613461 DOI: 10.1080/00140139.2024.2338268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
We investigated age and gender differences in the perception and use of soft (Apex) vs. rigid (Paexo Back) passive back-support exoskeletons (BSE) for repetitive lifting and lowering. A gender-balanced sample of 20 young (18-30 years) and 16 old (45-60 years) individuals were recruited. In the first session, participants' self-reported maximum acceptable load (MAL) was assessed using a psychophysical approach. Changes in muscle activity and kinematics due to BSE use in repetitive lifting/lowering tasks were also assessed. Overall, both BSEs increased MAL (by ∼7%), and reduced trunk extensor muscle activity across all groups (by ∼7-18%), compared to the control condition. Both BSEs promoted more squatting postures, increased quadriceps muscle activity (by ∼34%) and abdominal muscle activity during asymmetric tasks (by 5-20%). Some age and gender differences were significant, particularly for the trunk kinematics when using the Apex. Future work should include more diverse user groups in studying willingness to adopt BSEs and characterising their consequent effects on the body.
Collapse
Affiliation(s)
| | | | - Jessica Aviles
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
8
|
Quirk DA, Chung J, Applegate M, Cherin JM, Dalton DM, Awad LN, Walsh CJ. Evaluating adaptiveness of an active back exosuit for dynamic lifting and maximum range of motion. ERGONOMICS 2024; 67:660-673. [PMID: 37482538 PMCID: PMC10803634 DOI: 10.1080/00140139.2023.2240044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Back exosuits deliver mechanical assistance to reduce the risk of back injury, however, minimising restriction is critical for adoption. We developed the adaptive impedance controller to minimise restriction while maintaining assistance by modulating impedance based on the user's movement direction and nonlinear sine curves. The objective of this study was to compare active assistance, delivered by a back exosuit via our adaptive impedance controller, to three levels of assistance from passive elastics. Fifteen participants completed five experimental blocks (4 exosuits and 1 no-suit) consisting of a maximum flexion and a constrained lifting task. While a higher stiffness elastic reduced back extensor muscle activity by 13%, it restricted maximum range of motion (RoM) by 13°. The adaptive impedance approach did not restrict RoM while reducing back extensor muscle activity by 15%, when lifting. This study highlights an adaptive impedance approach might improve usability by circumventing the assistance-restriction trade-off inherent to passive approaches.Practitioner summary: This study demonstrates a soft active exosuit that delivers assistance with an adaptive impedance approach can provide reductions in overall back muscle activity without the impacts of restricted range of motion or perception of restriction and discomfort.
Collapse
Affiliation(s)
- D. Adam Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Megan Applegate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Jason M Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
| | - Diane M. Dalton
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | - Lou N. Awad
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | - Conor J. Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| |
Collapse
|
9
|
Mohamed Refai MI, Moya-Esteban A, van Zijl L, van der Kooij H, Sartori M. Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace. WEARABLE TECHNOLOGIES 2024; 5:e6. [PMID: 38510984 PMCID: PMC10952052 DOI: 10.1017/wtc.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Low-back pain is a common occupational hazard for industrial workers. Several studies show the advantages of using rigid and soft back-support passive exoskeletons and exosuits (exos) to reduce the low-back loading and risk of injury. However, benefits of using these exos have been shown to be task-specific. Therefore, in this study, we developed a benchmarking approach to assess exos for an industrial workplace at Hankamp Gears B.V. We assessed two rigid (Laevo Flex, Paexo back) and two soft (Auxivo Liftsuit 1.0, and Darwing Hakobelude) exos for tasks resembling the workplace. We measured the assistive moment provided by each exo and their respective influence on muscle activity as well as the user's perception of comfort and exertion. Ten participants performed four lifting tasks (Static hold, Asymmetric, Squat, and Stoop), while their electromyography and subjective measures were collected. The two rigid exos provided the largest assistance during the Dynamic tasks. Reductions in erector spinae activity were seen to be task-specific, with larger reductions for the two rigid exos. Overall, Laevo Flex offered a good balance between assistive moments, reductions in muscle activity, as well as user comfort and reductions in perceived exertion. Thus, we recommend benchmarking exos for intended use in the industrial workplace. This will hopefully result in a better adoption of the back-support exoskeletons in the workplace and help reduce low-back pain.
Collapse
Affiliation(s)
| | - Alejandro Moya-Esteban
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Lynn van Zijl
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
10
|
Schwartz M, Desbrosses K, Theurel J, Mornieux G. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6468. [PMID: 37569010 PMCID: PMC10418652 DOI: 10.3390/ijerph20156468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The aim of this study was to assess, for both men and women, the consequences of using different back-support exoskeletons during various manual material tasks (MMH) on the activity of back muscles and trunk kinematics. Fifteen men and fourteen women performed MMH involving a 15 kg load (a static task, a symmetric lifting task, and an asymmetric lifting task). Four exoskeleton conditions were tested: without equipment (CON) and with three exoskeletons passive (P-EXO), and active (A-EXO1 and A-EXO2)). The electromyographic activity of the lower trapezius (TZ), latissimus dorsi (LD), erector spinae (ES), gluteus maximus (GM), and biceps femoris (BF) muscles was recorded. Trunk kinematics were evaluated to provide average thoracic, lumbar, and hip angles. The use of the P-EXO decreased the activity of LD, GM, and BF from -12 to -27% (p < 0.01) compared to CON, mostly during the static task. The A-EXO1 and A-EXO2 reduced the muscle activity of all studied muscles from -7 to -62% (p < 0.01) compared to CON and from -10 to -52% (p < 0.005) compared to the P-EXO, independently of the modalities of the experimental tasks. A statistical interaction between the sex and exoskeleton was only observed in a few rare conditions. Occupational back-support exoskeletons can reduce trunk extensor muscle activity compared to no equipment being used. However, these reductions were modulated by the exoskeleton technology (passive vs. active), design (weight and anthropomorphism), and the modalities of the task performed (static vs. dynamic). Our results also showed that the active exoskeletons could modify the trunk kinematics.
Collapse
Affiliation(s)
- Mathilde Schwartz
- Working Life Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 54500 Vandœuvre-les-Nancy, France
| | - Kévin Desbrosses
- Working Life Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 54500 Vandœuvre-les-Nancy, France
| | - Jean Theurel
- Working Life Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 54500 Vandœuvre-les-Nancy, France
| | - Guillaume Mornieux
- Développement Adaptation et Handicap (DevAH), Université de Lorraine, 54000 Nancy, France
- Faculty of Sport Sciences, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
11
|
Maurice P, Cuny-Enault F, Ivaldi S. Influence of a passive back support exoskeleton on simulated patient bed bathing: results of an exploratory study. ERGONOMICS 2023; 66:859-873. [PMID: 36154913 DOI: 10.1080/00140139.2022.2129097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/20/2022] [Indexed: 05/24/2023]
Abstract
Low-back pain is a major concern among healthcare workers. One cause is the frequent adoption of repetitive forward bent postures in their daily activities. Occupational exoskeletons have the potential to assist workers in such situations. However, their efficacy is largely task-dependent, and their biomechanical benefit in the healthcare sector has rarely been evaluated. The present study investigates the effects of a passive back support exoskeleton in a simulated patient bed bathing task. Nine participants performed the task on a medical manikin, with and without the exoskeleton. Results show that working with the exoskeleton induced a significantly larger trunk forward flexion, by 13 deg in average. Due to this postural change, using the exoskeleton did not affect substantially the muscular and cardiovascular demands nor the perceived effort. These results illustrate that postural changes induced by exoskeleton use, whether voluntary or not, should be considered carefully since they may cancel out biomechanical benefits expected from the assistance. Practitioner summary: Low-back pain is a major concern among nurses, associated with bent postures. We observed that using a passive back-support exoskeleton during the typical patient bed bathing activity results in a larger trunk flexion, without changing muscular, cardiovascular or perceived physical effort.
Collapse
Affiliation(s)
| | | | - Serena Ivaldi
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| |
Collapse
|
12
|
Liang CJ, Cheng MH. Trends in Robotics Research in Occupational Safety and Health: A Scientometric Analysis and Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105904. [PMID: 37239630 DOI: 10.3390/ijerph20105904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Robots have been deployed in workplaces to assist, work alongside, or collaborate with human workers on various tasks, which introduces new occupational safety and health hazards and requires research efforts to address these issues. This study investigated the research trends for robotic applications in occupational safety and health. The scientometric method was applied to quantitatively analyze the relationships between robotics applications in the literature. The keywords "robot", "occupational safety and health", and their variants were used to find relevant articles. A total of 137 relevant articles published during 2012-2022 were collected from the Scopus database for this analysis. Keyword co-occurrence, cluster, bibliographic coupling, and co-citation analyses were conducted using VOSviewer to determine the major research topics, keywords, co-authorship, and key publications. Robot safety, exoskeletons and work-related musculoskeletal disorders, human-robot collaboration, and monitoring were four popular research topics in the field. Finally, research gaps and future research directions were identified based on the analysis results, including additional efforts regarding warehousing, agriculture, mining, and construction robots research; personal protective equipment; and multi-robot collaboration. The major contributions of the study include identifying the current trends in the application of robotics in the occupational safety and health discipline and providing pathways for future research in this discipline.
Collapse
Affiliation(s)
- Ci-Jyun Liang
- Division of Safety Research, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Marvin H Cheng
- Division of Safety Research, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
13
|
Schwartz M, Desbrosses K, Theurel J, Mornieux G. Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters. Eur J Appl Physiol 2022; 122:2575-2583. [PMID: 36074202 DOI: 10.1007/s00421-022-05034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022]
Abstract
The objective of this laboratory study was to assess the cardiorespiratory consequences related to the use of different back-support exoskeletons during a repetitive lifting task. Fourteen women and thirteen men performed a dynamic stoop lifting task involving full flexion/extension of the trunk in the sagittal plane. This task was repeated for 5 min with a 10 kg load to handle. Four conditions were tested: with a passive exoskeleton (P-EXO), with two active exoskeletons (A-EXO1 and A-EXO2), as well as without exoskeleton (FREE). The oxygen consumption rate and cardiac costs were measured continuously. Results showed a significantly lower (p < 0.05) oxygen consumption rate for all exoskeletons as compared to FREE (12.6 ± 2.2 ml/kg/min). The values were also significantly lower (p < 0.001) for A-EXO1 (9.1 ± 1.8 ml/kg/min) compared to A-EXO2 (11.0 ± 1.8 ml/kg/min) and P-EXO (11.8 ± 2.4 ml/kg/min). Compared to FREE (59.7 ± 12.9 bpm), the cardiac cost was significantly reduced (p < 0.001) only for A-EXO1 (45.1 ± 11.5 bpm). Several factors can explain these differences on the cardiorespiratory parameters observed between exoskeletons: the technology used (passive vs active), the torque provided by the assistive device, the weight of the system, but also the level of anthropomorphism (related to the number of joints used by the exoskeleton). Our results also highlighted the lack of interaction between the exoskeleton and sex. Thereby, the three back-support exoskeletons tested appeared to reduce the overall physical workload associated with a repetitive lifting task both for men and women.
Collapse
Affiliation(s)
- M Schwartz
- Working Life Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 Rue du Morvan, 54500, Vandœuvre-Les-Nancy, France.
- Université de Lorraine, DevAH, 54000, Nancy, France.
| | - K Desbrosses
- Working Life Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 Rue du Morvan, 54500, Vandœuvre-Les-Nancy, France
| | - J Theurel
- Working Life Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 Rue du Morvan, 54500, Vandœuvre-Les-Nancy, France
| | - G Mornieux
- Université de Lorraine, DevAH, 54000, Nancy, France
- Faculty of Sport Sciences, Université de Lorraine, Nancy, France
| |
Collapse
|
14
|
Poliero T, Fanti V, Sposito M, Caldwell DG, Natali CD. Active and Passive Back-Support Exoskeletons: A Comparison in Static and Dynamic Tasks. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3188439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tommaso Poliero
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Vasco Fanti
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Matteo Sposito
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Darwin G. Caldwell
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Christian Di Natali
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
15
|
Elstub LJ, Fine SJ, Zelik KE. Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13115. [PMID: 34948723 PMCID: PMC8701000 DOI: 10.3390/ijerph182413115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Exoskeletons and exosuits (exos) are wearable devices that physically assist movement. User comfort is critically important for societal adoption of exos. Thermal comfort (a person's satisfaction with their thermal environment) represents a key design challenge. Exos must physically attach/interface to the body to apply forces, and these interfaces inevitably trap some heat. It is envisioned that thermal comfort could be improved by designing mode-switching exo interfaces that temporarily loosen around a body segment when assistive forces are not being applied. To inform exo design, a case series study (N = 4) based on single-subject design principles was performed. Our objective was to assess individual responses to skin temperature and thermal comfort during physical activity with a Loose leg-sleeve interface compared with a Form-Fitting one, and immediately after a Form-Fitting sleeve switched to Loose. Skin under the Loose sleeve was 2-3 °C (4-6 °F) cooler after 25 min of physical activity, and two of four participants reported the Loose sleeve improved their thermal comfort. After completion of the physical activity, the Form-Fitting sleeve was loosened, causing a 2-4 °C (3-8 °F) drop in skin temperature underneath for all participants, and two participants to report slightly improved thermal comfort. These findings confirmed that an exo that can quickly loosen its interface when assistance is not required-and re-tighten when it is- has the potential to enhance thermal comfort for some individuals and environments. More broadly, this study demonstrates that mode-switching mechanisms in exos can do more than adjust physical assistance: they can also exploit thermodynamics and facilitate thermoregulation in a way that enhances comfort for exo users.
Collapse
Affiliation(s)
- Laura J. Elstub
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; (S.J.F.); (K.E.Z.)
| | - Shimra J. Fine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; (S.J.F.); (K.E.Z.)
| | - Karl E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; (S.J.F.); (K.E.Z.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|