1
|
Scaturro M, Lanni A, Mancini F, Girolamo A, Fillo S, Ciammaruconi A, Lista F, Cocuzza CE, Musumeci R, Ginevra C, Descours G, Jarraud S, Iera J, Visca P, Ricci ML. Antimicrobial susceptibility and epidemiological types of Legionella pneumophila human isolates from Italy (1987-2020). J Glob Antimicrob Resist 2025; 41:181-188. [PMID: 39824283 DOI: 10.1016/j.jgar.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
OBJECTIVES Although antimicrobial resistance has not yet emerged as an overarching problem for Legionella pneumophila (L. pneumophila) infection, the description of clinical and environmental strains resistant to fluoroquinolones and macrolides is a cause of concern. This study aimed to investigate the antimicrobial susceptibility of L. pneumophila human isolates in Italy. METHODS A total of 204 L. pneumophila clinical isolates were tested for sensitivity to 9 antibiotics using the broth microdilution assay (BMD). All isolates were typed by sequence-based typing, and Legionella pneumophila serogroup 1 (Lp1) isolates by monoclonal antibody subgrouping. Minimum inhibitory concentration (MIC) data were correlated with the possible source of infection and geographical distribution. The presence of the lpeAB efflux pump genes was also investigated. The genome sequences of a subpopulation of isolates showing reduced susceptibility to azithromycin were also analysed. RESULTS The L. pneumophila isolates did not show significant resistance to the tested antibiotics, although a trend toward reduced sensitivity to azithromycin was observed in a subpopulation of 46 strains, most of which belonged to sequence type 1 (ST1), the second most widespread ST in Italy. An amplicon of the expected size overlapping the lpeAB genes was obtained only in the 46-subpopulation above mentioned. In 4 of the 46 isolates, sequencing analysis showed the occurrence of amino-acid substitutions already described in other strains. No further mutation was found. CONCLUSIONS The presence of L. pneumophila strains with reduced susceptibility or resistance to azithromycin should be monitored to predict future trends and suggest to physicians a combined therapy with fluoroquinolones when a poor response to azithromycin is observed. © 2025 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy.
Collapse
Affiliation(s)
- Maria Scaturro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Antonietta Girolamo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | | | | | - Clementina Elvezia Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy; MicroMiB Biorepository, University of Milano-Bicocca, Associated Member of the JRU MIRRI-IT, Monza, Italy
| | - Rosario Musumeci
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy; MicroMiB Biorepository, University of Milano-Bicocca, Associated Member of the JRU MIRRI-IT, Monza, Italy
| | - Christophe Ginevra
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, University of Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Ghislaine Descours
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, University of Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sophie Jarraud
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, University of Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jessica Iera
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Visca
- Department of Science, University of Roma Tre, Rome, Italy
| | - Maria Luisa Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland.
| |
Collapse
|
2
|
Yang X, Liu Z, Liu X, Li Q, Huang H, Wei Y, Sun T. Severe pneumonia due to concurrent Legionella pneumophila and Acinetobacter baumannii infections: a case report. BMC Pulm Med 2025; 25:29. [PMID: 39833778 PMCID: PMC11749207 DOI: 10.1186/s12890-025-03481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Legionella pneumophila is an uncommon pathogen causing community-acquired atypical pneumonia. Acinetobacter baumannii is a major pathogen responsible for hospital-acquired pneumonia, but it rarely causes serious infections in a community setting. Without prompt and appropriate treatments, infection from either of these two pathogens can cause a high mortality rate. Concurrent infection from both L. pneumophila and A. baumannii can cause serious outcomes, but it has rarely been reported previously. CASE PRESENTATION A 45-year-old male presented to our hospital with a productive cough and fever after staying in a local hotel. His chest computed tomography (CT) scan showed bilateral lower-lobe infiltration and left pleural effusion. Empirical antibiotics, including piperacillin-tazobactam, levofloxacin, meropenem, and doxycycline, were administered to him to treat community-acquired pneumonia. However, his condition deteriorated very rapidly, and he required endotracheal intubation and mechanical ventilation for respiratory support. Finally, metagenomic next-generation sequencing (mNGS) of his bronchoalveolar lavage fluid identified L. pneumophila and A. baumannii. The sputum culture demonstrated multidrug-resistant A. baumannii. He was diagnosed with pneumonia by concurrent infections from both L. pneumophila and A. baumannii. After careful consideration of the antibiotic susceptibility results and the antibacterial mechanism of each antibiotic, we switched the antibiotics to omadacycline and cefoperazone/sulbactam. His clinical symptoms gradually subsided. The repeat chest CT image showed no infiltration or pleural effusion. CONCLUSIONS Community-acquired pneumonia can be caused by concurrent infections of both L. pneumophila and A. baumannii. Close clinical monitoring, early pathogen detection and antibiotic susceptability tests, and appropriate antibiotic regimen adjustments should be applied to these patients who failed initial antibiotic treatments.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China
| | - Zhongda Liu
- Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China
| | - Xiaojing Liu
- Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China
| | - Quan Li
- Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China
| | - Hui Huang
- Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China
| | - Yibo Wei
- Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China
| | - Tao Sun
- Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
3
|
Lang H, Marschang RE, Bismarck D, Heusinger A, Müller E, Felten M. Antibiotic susceptibility situation of environmental Legionella pneumophila isolates in Southern Germany. JOURNAL OF WATER AND HEALTH 2024; 22:2414-2422. [PMID: 39733365 DOI: 10.2166/wh.2024.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/16/2024] [Indexed: 12/31/2024]
Abstract
Antimicrobial resistance is an emerging problem in hospitals and long-term healthcare facilities. Early detection of susceptibility pattern changes in pathogenic bacteria can prevent treatment failures. Therefore, this study chose to investigate the antibiotic susceptibility situation of Legionella pneumophila isolates from hospitals and long-term healthcare facilities in Southern Germany. Serogroups and minimal inhibitory concentrations (MICs) of nine antibiotics were determined from 41 L. pneumophila strains. In total, 28% of the collected strains belonged to the more pathogenic serogroup 1, whereas 72% belonged to serogroups 2-14. Among the tested antibiotics, rifampicin had the lowest MIC90 value. The MIC90 values can be summarized in the following order: rifampicin < levofloxacin < moxifloxacin < ciprofloxacin < clarithromycin < azithromycin < erythromycin < doxycycline < tigecycline.
Collapse
Affiliation(s)
- Hannah Lang
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany E-mail:
| | | | - Doris Bismarck
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| | - Anton Heusinger
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| | - Elisabeth Müller
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| | - Martin Felten
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| |
Collapse
|
4
|
Pereira BB, Marrafa M, Cruz C, Rodrigues L, Nunes F, Monteiro S, Santos R, Carneiro RN, Neto C, Aguilar J, Ferreiro NR, Passanha M, Candeias G, Fernandes A, Paixão P, Chasqueira MJ. Antimicrobial Resistance Genes in Legionella from Artificial Water Systems: Findings from a Two-Year Study. Antibiotics (Basel) 2024; 13:1121. [PMID: 39766511 PMCID: PMC11672855 DOI: 10.3390/antibiotics13121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Legionella species are the causative agent of Legionnaires' disease and, as ubiquitous waterborne bacteria, are prone to antimicrobial resistance gene (ARG) acquisition and dissemination due to the antimicrobial contamination of natural environments. Given the potential health risks associated with ARGs, it is crucial to assess their presence in the Legionella population. METHODS The ARGs lpeAB and tet56 were detected in 348 samples, isolates, and DNA extracts using conventional PCR. In a subset of lpeAB-positive isolates, azithromycin (AZT) MIC values were obtained using the EUCAST protocol and LpeAB activity was evaluated through an efflux pump inhibition assay. RESULTS The lpeAB gene was found in 19% (66/348) of samples, with higher detection rates in the L. pneumophila and L. pneumophila sg1 subgroups, at 30% and 41%, respectively. A positive association between lpeAB and L. pneumophila sg1 was found. The MIC values of the lpeAB-positive isolates ranged from 0.064 to 2 mg/L. LpeAB inhibition resulted in 2- and 4-fold MIC reductions in 10 of the 13 isolates analyzed. One sample each of L. longbeacheae and L. bozemanae was found to possess the tet56 gene. CONCLUSIONS The lpeAB gene is predominant in L. pneumophila sg1. A few isolates with the lpeAB gene exhibited MIC values below the EUCAST tentative highest MIC values for wild-type isolates. Expanding ARG monitoring in Legionella is essential to assess the public health risk of Legionnaires' disease.
Collapse
Affiliation(s)
- Bernardo Beirão Pereira
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Mário Marrafa
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Carolina Cruz
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Lúcia Rodrigues
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Filipa Nunes
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Silvia Monteiro
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Civil Engineering Reasearch and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Civil Engineering Reasearch and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rui Neves Carneiro
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | - Célia Neto
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | - Joana Aguilar
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | | | - Margarida Passanha
- Laboratório Regional de Saúde Pública do Alentejo, 7000-811 Évora, Portugal
| | - Gonçalo Candeias
- Laboratório Regional de Saúde Pública do Alentejo, 7000-811 Évora, Portugal
| | - Aida Fernandes
- Laboratório Regional de Saúde Pública Dra. Laura Ayres, 8135-014 Almancil, Portugal
| | - Paulo Paixão
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
- Comprehensive Health Reasearch Center, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Jesus Chasqueira
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
- Comprehensive Health Reasearch Center, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
5
|
Minetti C, Barton R, Farley C, Spiller OB, Rodrigues R, Gonçalves P. Antimicrobial susceptibility testing reveals reduced susceptibility to azithromycin and other antibiotics in Legionella pneumophila serogroup 1 isolates from Portugal. Eur J Clin Microbiol Infect Dis 2024; 43:1297-1308. [PMID: 38696083 PMCID: PMC11271438 DOI: 10.1007/s10096-024-04789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUD Although not fully investigated, studies show that Legionella pneumophila can develop antibiotic resistance. As there is limited data available for Portugal, we determined the antibiotic susceptibility profile of Portuguese L. pneumophila serogroup 1 (LpnSg1) isolates against antibiotics used in the clinical practice in Portugal. METHODS Minimum inhibitory concentrations (MICs) were determined for LpnSg1 clinical (n = 100) and related environmental (n = 7) isolates, collected between 2006-2022 in the context of the National Legionnaire´s Disease Surveillance Programme, against azithromycin, clarithromycin, erythromycin, levofloxacin, ciprofloxacin, moxifloxacin, rifampicin, doxycycline, tigecycline, and amoxicillin/clavulanic acid, using three different assays. Isolates were also PCR-screened for the presence of the lpeAB gene. RESULTS Twelve isolates had azithromycin MICs above the EUCAST tentative highest WT MIC, 9 of which were lpeAB negative; for erythromycin and clarithromycin, all isolates tested within the susceptible range. The number of isolates with MICs above the tentative highest WT MIC for the remaining antibiotics was: ciprofloxacin: 7; levofloxacin: 17; moxifloxacin: 8; rifampicin: 11; doxycycline: 82; tigecycline: 4. EUCAST breakpoints are not available for amoxicillin/clavulanic acid. We estimated the ECOFFs and one isolate had a MIC eightfold higher than the E-test ECOFF. Additionally, a clinical isolate generated three colonies growing on the E-test inhibition zone that resulted in MICs fourfold higher than for the parental isolate. CONCLUSIONS We report, for the first time, elevated MICs against first-line and other antibiotics (including azithromycin, fluoroquinolones and amoxicillin/clavulanic acid commonly used to treat pneumonia patients in Portugal) in Portuguese L. pneumophila strains. Results point towards decreased susceptibility in circulating strains, justifying further investigation.
Collapse
Affiliation(s)
- Corrado Minetti
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Rachael Barton
- Department of Medical Microbiology, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Caitlin Farley
- Department of Medical Microbiology, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Owen Brad Spiller
- Department of Medical Microbiology, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Raquel Rodrigues
- Water Microbiology Laboratory, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Paulo Gonçalves
- National Reference Laboratory for Legionella, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal.
| |
Collapse
|
6
|
Cristino S, Pascale MR, Marino F, Derelitto C, Salaris S, Orsini M, Squarzoni S, Grottola A, Girolamini L. Characterization of a Novel Species of Legionella Isolated from a Healthcare Facility: Legionella resiliens sp. nov. Pathogens 2024; 13:250. [PMID: 38535593 PMCID: PMC10975825 DOI: 10.3390/pathogens13030250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 02/11/2025] Open
Abstract
Two Legionella-like isolates, 8cVS16T and 9fVS26, were isolated from a water distribution system (WDS) in a healthcare facility. Cells were Gram- and Ziehl Neelsen-stain-negative, rod-shaped, motile, and exhibited a blue-white fluorescence under Wood's lamp at 365 nm. The strains grew in a range of 32-37 °C on BCYE with L-cysteine (Cys+), GVPC, and MWY agar medium, with a positive reaction for oxidase, catalase, and gelatinase. The dominant fatty acids were summed features 3 (C16:1ω7c/C16:1ω6c) (27.7%), C16:0 iso (17.5%), and C16:0 (16.3%), and Q13 as the major ubiquinone. The mip and rpoB gene sequences showed a similarity of 96.7% and 92.4%, with L. anisa (ATCC 35292T). The whole genomes sequencing (WGS) performed displayed a GC content of 38.21 mol% for both. The digital DNA-DNA hybridization (dDDH) analysis demonstrated the separation of the two strains from the phylogenetically most related L. anisa (ATCC 35292T), with ≤43% DNA-DNA relatedness. The Average Nucleotide Identity (ANI) between the two strains and L. anisa (ATCC 35292T) was 90.74%, confirming that the two isolates represent a novel species of the genus Legionella. The name proposed for this species is Legionella resiliens sp. nov., with 8cVS16T (=DSM 114356T = CCUG 76627T) as the type strain.
Collapse
Affiliation(s)
- Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy; (M.R.P.); (F.M.); (C.D.); (L.G.)
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Legionella Infections (ESGLI), 4001 Basel, Switzerland;
| | - Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy; (M.R.P.); (F.M.); (C.D.); (L.G.)
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Federica Marino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy; (M.R.P.); (F.M.); (C.D.); (L.G.)
| | - Carlo Derelitto
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy; (M.R.P.); (F.M.); (C.D.); (L.G.)
| | - Silvano Salaris
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Via Loredan, 18, 35121 Padova, Italy;
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology and Genomics of Microorganisms, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Stefano Squarzoni
- Unit of Bologna, CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Antonella Grottola
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Legionella Infections (ESGLI), 4001 Basel, Switzerland;
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Unit of Molecular Virology and Microbiology, Modena University Hospital, 41124 Modena, Italy
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy; (M.R.P.); (F.M.); (C.D.); (L.G.)
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Legionella Infections (ESGLI), 4001 Basel, Switzerland;
| |
Collapse
|
7
|
Crépin A, Thiroux A, Alafaci A, Boukerb AM, Dufour I, Chrysanthou E, Bertaux J, Tahrioui A, Bazire A, Rodrigues S, Taupin L, Feuilloley M, Dufour A, Caillon J, Lesouhaitier O, Chevalier S, Berjeaud JM, Verdon J. Sensitivity of Legionella pneumophila to phthalates and their substitutes. Sci Rep 2023; 13:22145. [PMID: 38092873 PMCID: PMC10719263 DOI: 10.1038/s41598-023-49426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.
Collapse
Affiliation(s)
- Alexandre Crépin
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Audrey Thiroux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Aurélien Alafaci
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Amine M Boukerb
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Izelenn Dufour
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Eirini Chrysanthou
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Joanne Bertaux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Marc Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Jocelyne Caillon
- Faculté de Médecine, EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Université de Nantes, Nantes, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
8
|
Cruz C, Rodrigues L, Fernandes F, Santos R, Paixão P, Chasqueira MJ. Antibiotic susceptibility pattern of Portuguese environmental Legionella isolates. Front Cell Infect Microbiol 2023; 13:1141115. [PMID: 37153155 PMCID: PMC10160366 DOI: 10.3389/fcimb.2023.1141115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Legionnaires' Disease is a pneumonia caused by Legionella spp., currently treated empirically with fluoroquinolones and macrolides. In this study, we aim to describe the antibiotic susceptibility pattern of environmental Legionella recovered in the south of Portugal. Methods Minimal inhibitory concentration (MIC) determination of 57 Legionella isolates (10 Lp sg 1, 32, Lp sg 2-14 15 L. spp) was achieved by broth microdilution, as described by EUCAST, for azithromycin, clarithromycin, ciprofloxacin, levofloxacin, and doxycycline. Results Fluoroquinolones were the most active antibiotic, displaying the lowest MIC values in contrast to doxycycline which had the highest. MIC90 and epidemiological cut-off (ECOFF) values were, respectively, 0.5/1 mg/L for azithromycin, 0.125/0.25 mg/L for clarithromycin, 0.064/0.125 mg/L for ciprofloxacin, 0.125/0.125 mg/L for levofloxacin and 16/32 mg/L for doxycycline. Discussion MIC distributions were higher than reported by EUCAST for all antibiotics. Interestingly, two phenotypically resistant isolates with high-level quinolone resistance were identified. This is the first time that MIC distributions, lpeAB and tet56 genes have been investigated in Portuguese environmental isolates of Legionella.
Collapse
Affiliation(s)
- Carolina Cruz
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Lúcia Rodrigues
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Filipa Fernandes
- Laboratório de Análises de Água, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises de Água, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Paixão
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Maria Jesus Chasqueira
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
McNab E, Rether A, Hsiang T. Development of a microplate absorbance assay for assessing fungicide sensitivity of filamentous fungi and comparison to an amended agar assay. J Microbiol Methods 2023; 204:106653. [PMID: 36503052 DOI: 10.1016/j.mimet.2022.106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Assessment of the sensitivity of non-sporulating fungi to fungicides through amended-media assays is labor intensive. As an alternative, we developed an absorbance assay using 96-well microplates to assess the sensitivity of Clarireedia jacksonii, a non-sporulating fungus, to the fungicide propiconazole based on the change in absorbance corresponding to fungal growth. This microplate assay can allow for the assessment of multiple isolates of C. jacksonii at different concentrations of a fungicide with many technical replications in a single plate. Three methods for inoculating microplate wells were compared. The "microplug" method was the simplest to perform, requiring only a micropipette with 1 ml tips. EC50 values from this microplate assay were compared to those of a traditional amended agar assay using 30 isolates of C. jacksonii with varying sensitivity to propiconazole. The non-transformed relationship between the two assays was low but weakly significant (R2 = 0.137, p = 0.037). However, correlation of log10 transformed EC50 values from both assays revealed a stronger and highly significant relationship (R2 = 0.56, p < 0.001). Additionally, the microplate assay appears to be more sensitive in detecting resistance (EC50 > 0.1 μg/ml), and revealed five of the assessed isolates to be resistant to propiconazole that were not found as such with the amended agar assay. These results imply that EC50 results from the microplate assay were not exactly equivalent to the amended agar assay for estimating EC50 values, but it may be useful in assigning or confirming general sensitivity classifications.
Collapse
Affiliation(s)
- Edward McNab
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrea Rether
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
10
|
Yang JL, Sun H, Zhou X, Yang M, Zhan XY. Antimicrobial susceptibility profiles and tentative epidemiological cutoff values of Legionella pneumophila from environmental water and soil sources in China. Front Microbiol 2022; 13:924709. [PMID: 36312931 PMCID: PMC9597688 DOI: 10.3389/fmicb.2022.924709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Legionnaires’ disease (LD), caused by Legionella, including the most prevalent Legionella pneumophila, has been treated primarily with antibiotics. Environmental water and soil are the reservoirs for L. pneumophila. Studying antimicrobial susceptibility using a large number of isolates from various environmental sources and regions could provide an unbiased result. In the present study, antimicrobial susceptibility of 1464 environmental L. pneumophila isolates that were derived from various environmental water and soil sources of 12 cities in China to rifampin (RIF), erythromycin (ERY), clarithromycin (CLA), azithromycin (AZI), ciprofloxacin (CIP), moxifloxacin (MOX), levofloxacin (LEV), and doxycycline (DOX) was investigated, and minimum inhibitory concentration (MIC) data were obtained. We show that regarding macrolides, ERY was least active (MIC90 = 0.5 mg/L), while CLA was most active (MIC90 = 0.063 mg/L). A total of three fluoroquinolones have similar MICs on L. pneumophila. Among these antimicrobials, RIF was the most active agent, while DOX was the most inactive one. We observed different susceptibility profiles between serogroup 1 (sg1) and sg2-15 or between water and soil isolates from different regions. The ECOFFs were ERY and AZI (0.5 mg/L), RIF (0.002 mg/L), CIP, CLA and MOX (0.125 mg/L), LEV (0.063 mg/), and DOX (32 mg/L). Overall, two fluoroquinolone-resistant environmental isolates (0.14%) were first documented based on the wild-type MIC distribution. Not all azithromycin-resistant isolates (44/46, 95.65%) harbored the lpeAB efflux pump. The MICs of the ERY and CLA on the lpeAB + isolates were not elevated. These results suggested that the lpeAB efflux pump might be only responsible for AZI resistance, and undiscovered AZI-specific resistant mechanisms exist in L. pneumophila. Based on the big MIC data obtained in the present study, the same defense strategies, particularly against both CLA and RIF, may exist in L. pneumophila. The results determined in our study will guide further research on antimicrobial resistance mechanisms of L. pneumophila and could be used as a reference for setting clinical breakpoints and discovering antimicrobial-resistant isolates in the clinic, contributing to the antibiotic choice in the treatment of LD.
Collapse
|
11
|
Ginevra C, Beraud L, Pionnier I, Sallabery K, Bentayeb H, Simon B, Allam C, Chastang J, Ibranosyan M, Decroix V, Campese C, Jarraud S, Descours G. Detection of highly macrolide-resistant Legionella pneumophila strains from a hotel water network using systematic whole-genome sequencing. J Antimicrob Chemother 2022; 77:2167-2170. [PMID: 35678276 DOI: 10.1093/jac/dkac173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Implementation of an antibiotic resistance detection tool in Legionella daily surveillance at the French National Reference Centre for Legionella. METHODS Systematic WGS of Legionella pneumophila isolates and bioinformatics detection of specific mutations linked to antibiotic resistance. Phenotypic validation of antibiotic resistance detected by WGS was performed by the broth microdilution method. RESULTS More than 3000 L. pneumophila strains were screened for antibiotic resistance. A macrolide resistance-associated A2052G mutation in the 23S rRNA gene was identified in the genome of eight isolates from a hotel water network. High-level macrolide resistance (i.e. MICs of 1024-2048 mg/L for azithromycin and erythromycin) with no cross-resistance to other antimicrobials was phenotypically confirmed by antimicrobial susceptibility testing for the eight isolates. CONCLUSIONS Systematic WGS of L. pneumophila is a powerful tool for first-line high-throughput screening of antibiotic resistance before phenotypic validation.
Collapse
Affiliation(s)
- Christophe Ginevra
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Centre National de Référence des Légionelles, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Plateforme GenEPII, Lyon, France
| | - Laetitia Beraud
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Centre National de Référence des Légionelles, Lyon, France
| | | | | | - Houcine Bentayeb
- Centre Hospitalier Saint-Quentin, Service de Pneumologie, Saint-Quentin, France
| | - Bruno Simon
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Plateforme GenEPII, Lyon, France
| | - Camille Allam
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Centre National de Référence des Légionelles, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Joelle Chastang
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Centre National de Référence des Légionelles, Lyon, France
| | - Marine Ibranosyan
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Centre National de Référence des Légionelles, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Véronique Decroix
- Centre Hospitalier Saint-Quentin, Laboratoire de Biologie Médicale, Saint-Quentin, France
| | - Christine Campese
- Santé Publique France, Unité des infections respiratoires et vaccinations, Saint-Maurice, France
| | - Sophie Jarraud
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Centre National de Référence des Légionelles, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Plateforme GenEPII, Lyon, France
| | - Ghislaine Descours
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Institut des Agents Infectieux, Centre National de Référence des Légionelles, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| |
Collapse
|
12
|
Legionnaires' Disease: Update on Diagnosis and Treatment. Infect Dis Ther 2022; 11:973-986. [PMID: 35505000 PMCID: PMC9124264 DOI: 10.1007/s40121-022-00635-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Legionellosis is the infection caused by bacteria of the genus Legionella, including a non-pneumonic influenza-like syndrome, and Legionnaires’ disease is a more serious illness characterized by pneumonia. Legionellosis is becoming increasingly important as a public health problem throughout the world; although it is an underreported disease, studies have consistently documented a high incidence. In addition, health costs associated with the disease are high. Diagnosis of Legionnaires’ disease is based mainly on the detection of Legionella pneumophila serogroup 1 antigen in urine. However, there have been advances in detection tests for patients with legionellosis. New methodologies show greater sensitivity and specificity, detect more species and serogroups of Legionella spp., and have the potential for use in epidemiological studies. Testing for Legionella spp. is recommended at hospital admission for severe community-acquired pneumonia, and antibiotics directed against Legionella spp. should be included early as empirical therapy. Inadequate or delayed antibiotic treatment in Legionella pneumonia has been associated with a worse prognosis. Either a fluoroquinolone (levofloxacin or moxifloxacin) or a macrolide (azithromycin preferred) is the recommended first-line therapy for Legionnaires’ disease; however, little information is available regarding adverse events or complications, or about the duration of antibiotic therapy and its association with clinical outcomes. Most published studies evaluating antibiotic treatment for Legionnaires’ disease are observational and consequently susceptible to bias and confounding. Well-designed studies are needed to assess the usefulness of diagnostic tests regarding clinical outcomes, as well as randomized trials comparing fluoroquinolones and macrolides or combination therapy that evaluate outcomes and adverse events.
Collapse
|
13
|
Gattuso G, Rizzo R, Lavoro A, Spoto V, Porciello G, Montagnese C, Cinà D, Cosentino A, Lombardo C, Mezzatesta ML, Salmeri M. Overview of the Clinical and Molecular Features of Legionella Pneumophila: Focus on Novel Surveillance and Diagnostic Strategies. Antibiotics (Basel) 2022; 11:370. [PMID: 35326833 PMCID: PMC8944609 DOI: 10.3390/antibiotics11030370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is one of the most threatening nosocomial pathogens. The implementation of novel and more effective surveillance and diagnostic strategies is mandatory to prevent the occurrence of legionellosis outbreaks in hospital environments. On these bases, the present review is aimed to describe the main clinical and molecular features of L. pneumophila focusing attention on the latest findings on drug resistance mechanisms. In addition, a detailed description of the current guidelines for the disinfection and surveillance of the water systems is also provided. Finally, the diagnostic strategies available for the detection of Legionella spp. were critically reviewed, paying the attention to the description of the culture, serological and molecular methods as well as on the novel high-sensitive nucleic acid amplification systems, such as droplet digital PCR.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Vincenzoleo Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Giuseppe Porciello
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Concetta Montagnese
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Diana Cinà
- Health Management of the “Cannizzaro” Emergency Hospital of Catania, 95126 Catania, Italy;
- Clinical Pathology and Clinical Molecular Biology Unit, “Garibaldi Centro” Hospital, ARNAS Garibaldi, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| |
Collapse
|
14
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|