1
|
Kuzo N, Piras M, Lutz UC, Haen E, Eap CB, Hiemke C, Paulzen M, Schoretsanitis G. Therapeutic Reference Range for Clozapine Plasma Levels in Parkinson's Disease or Dementia: A Systematic Review and Individual Participant Data Meta-analysis. PHARMACOPSYCHIATRY 2025. [PMID: 40245933 DOI: 10.1055/a-2560-4028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Clozapine is a recommended treatment for psychotic symptoms in patients with Parkinson's disease (PD) and/or dementia. However, the therapeutic reference range for clozapine in these patients has not been established hitherto.The study was performed in three university hospitals in Germany and Switzerland, including clozapine-treated patients with PD and/or dementia. The primary outcome was tolerability based on reports of adverse drug reactions and/or changes in laboratory tests or electrocardiogram and/or clozapine discontinuation. We meta-analyzed demographic and pharmacokinetic parameters in patients tolerating clozapine well versus not. A meta-analytic summary receiver operating characteristic (SROC) to establish the clozapine upper level associated with poor tolerability was estimated.We analyzed a total of 99 patients suffering from PD (56.6%) and/or dementia (49.5%) with a mean age of 70.3±9.5 years and 41.4% females; poor tolerability was reported in 26 of 99 patients (26.3%). When comparing patients with and without poor tolerability, there were no differences in age, body mass index, sex, smoking, or clozapine dose, nor did we find statistically significant differences in clozapine levels (standardized mean difference 0.46, 95% confidence interval - 0.04 to 0.96, p=0.07), and heterogeneity was low (I2=0.0%). Clozapine blood levels above 193 ng/mL were associated with poor tolerability (SROC area-under-curve 0.6, sensitivity 39.7%, specificity 79.9%).One of four patients with PD and/or dementia treated with clozapine did not tolerate clozapine well, which was associated with a trend toward elevated clozapine concentrations. Monitoring drug levels may help to improve tolerability in these patients.
Collapse
Affiliation(s)
- Nazar Kuzo
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Switzerland
| | - Ulrich C Lutz
- Department of Addiction Therapy and Withdrawal, Clinic Schloß Winnenden, Germany
- University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Ekkehard Haen
- Department of Psychiatry and Psychotherapy, Clinical Pharmacology, University of Regensburg, Germany
- Department of Pharmacology and Toxicology, University of Regensburg, Germany
- Clinical Pharmacology, Institute AGATE gGmbH, Pentling, Germany
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Switzerland
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Germany
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA - Translational Brain Medicine, Aachen, Germany
- Alexianer Center for Mental Health Aachen, Aachen, Germany
| | - Georgios Schoretsanitis
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, Switzerland
- The Zucker Hillside Hospital, Department of Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| |
Collapse
|
2
|
Bártová P, Augste E, Strouhal F, Krhut J, Slovák M, Dvorak RV, Peter L, Schmidt M, Školoudík D. Home-based peroneal electrical transcutaneous NeuroModulation (peroneal eTNM®) in Parkinson's disease as "add-on" treatment - Results of a pilot study. Clin Park Relat Disord 2025; 12:100321. [PMID: 40271391 PMCID: PMC12017861 DOI: 10.1016/j.prdoa.2025.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Currently, there is no causal cure for Parkinson's disease (PD), and medications and other therapeutic procedures only allow for the reduction of symptoms. Noninvasive neuromodulation is among the potentially promising treatments for PD patients. The present pilot study aimed to evaluate the safety and efficacy of peroneal electrical Transcutaneous NeuroModulation (peroneal eTNM®) in the treatment of PD symptoms with a particular emphasis on disease-related quality of life. Methods Twelve patients with clinically established Parkinsońs disease (8 males; mean age 59.5 ± 11.6 years) were enrolled. In addition to state-of-the-art background pharmacotherapy for PD, patients were treated with peroneal eTNM® daily for 30 min for 6 weeks followed by 6 weeks of follow-up without stimulation. The primary endpoint was safety and tolerability, the secondary endpoint was the response of the condition on the 'add-on' peroneal eTNM®. Results Peroneal eTNM® proved to be feasible for home treatment in the PD population. Treatment-related adverse events were not reported throughout the study. Along with an excellent safety profile, peroneal eTNM® showed considerable positive trends in terms of improvement in quality of life as measured by EQ-5D-5L questionnaire. There was a definitive trend toward a reduction in Section III of the Unified Parkinson's Disease Rating Scale showing positive changes in tremor-related items. At the end of the study, 50 % of the patients were considered clinical responders. Conclusions Larger and more rigorously designed studies are needed to validate the utility and position of peroneal eTNM® in the treatment of patients with PD.
Collapse
Affiliation(s)
- Petra Bártová
- Center for Health Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Eva Augste
- Center for Health Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Filip Strouhal
- Center for Health Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jan Krhut
- Department of Urology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Surgical Studies, Faculty of Medicine, Ostrava University, Ostrava, Czech Republic
| | | | | | - Lukáš Peter
- STIMVIA, Ostrava, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University, Ostrava, Czech Republic
| | - Martin Schmidt
- STIMVIA, Ostrava, Czech Republic
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB – Technical University, Ostrava, Czech Republic
| | - David Školoudík
- Center for Health Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
3
|
Rabbani SA, El-Tanani M, Sharma S, El-Tanani Y, Kumar R, Saini M, Yadav M, Khan MA, Parvez S. RNA-Based Therapies for Neurodegenerative Diseases Targeting Pathogenic Proteins. Eur J Neurosci 2025; 61:e70110. [PMID: 40237615 DOI: 10.1111/ejn.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
Neurodegeneration is featured by the gradual stagnation of neuronal function and structure, leading to significant motor and cognitive impairments. The primary histopathological features underlying these conditions include the cumulation of pathological protein aggregates, chronic inflammation, and neuronal cell death. Alzheimer's disease (AD) and Parkinson's disease (PD) are prominent examples of neurodegenerative diseases (NDDs). As of 2023, over 65 million people worldwide are affected by AD and PD, with the prevalence of these conditions steadily increasing over time. Interestingly, there are no effective therapies available to halt or slow NDD progression. Most approved treatments are focused on symptom management and are often associated with substantial side effects. Given these limitations, the development of novel therapeutic approaches targeting the molecular mechanisms underlying these disorders is essential. Notably, RNA-based therapeutics have recently emerged as a potential therapeutic approach for managing various neurological diseases, offering the potential for innovative molecular interventions in NDD. In this review, we have discussed the pathogenic role of various protein aggregates in NDD and highlighted emerging RNA-based strategies aimed at targeting these pathological proteins.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | | | - Rakesh Kumar
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Department of Pharmacy, Jagannath University, Bahadurgarh, Haryana, India
| | - Manita Saini
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Monu Yadav
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Wang Q, Wang Z, Mizuguchi K, Takao T. Biological age prediction using a DNN model based on pathways of steroidogenesis. SCIENCE ADVANCES 2025; 11:eadt2624. [PMID: 40085695 PMCID: PMC11908500 DOI: 10.1126/sciadv.adt2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Aging involves the progressive accumulation of cellular damage, leading to systemic decline and age-related diseases. Despite advances in medicine, accurately predicting biological age (BA) remains challenging due to the complexity of aging processes and the limitations of current models. This study introduces a method for predicting BA using a deep neural network (DNN) based on pathways of steroidogenesis. We analyzed 22 steroids from 148 serum samples of individuals aged 20 to 73, using 98 samples for model training and 50 for validation. Our model reflects the often-overlooked fact that aging heterogeneity expands over time and uncovers sex-specific variations in steroidogenesis. This study leveraged key markers, including cortisol (COL), which underscore the role of stress-related and sex-specific steroids in aging. The resulting model establishes a biologically meaningful and robust framework for predicting BA across diverse datasets, offering fresh insights and supporting more targeted strategies in aging research and disease management.
Collapse
Affiliation(s)
| | - Zi Wang
- Corresponding author. (Z.W.); (T.T.)
| | - Kenji Mizuguchi
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Santos García D, Pagonabarraga Mora J, Escamilla Sevilla F, García Ruiz PJ, Infante Ceberio J, Kulisevsky Bojarski J, Linazasoro Cristóbal G, Luquín Piudo MR, Martínez Castrillo JC, Jesús Maestre S, Vela Desojo L, Campos Lucas FJ, Caballero Martínez F, Mir P. Dopamine agonist therapy in Parkinson's disease: Spanish expert consensus on its use in different clinical situations. Neurologia 2025; 40:171-181. [PMID: 37419211 DOI: 10.1016/j.nrleng.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Different types of therapies were proven effective for the medical management of motor and non-motor symptoms in Parkinson's disease (PD). We aimed to gain consensus on the dopamine agonist (DA) therapy use in different clinical scenarios of Parkinson's disease (PD) patients. METHODS This consensus study was based on the nominal group technique. Initially, a consensus group comprising 12 expert neurologists in the PD field identified the topics to be addressed and elaborated different evidence-based preliminary statements. Next, a panel of 48 Spanish neurologists expressed their opinion on an internet-based systematic voting program. Finally, initial ideas were reviewed and rewritten according to panel contribution and were ranked by the consensus group using a Likert-type scale. The analysis of data was carried out by using a combination of both qualitative and quantitative methods. The consensus was achieved if the statement reached ≥ 3.5 points in the voting process. RESULTS The consensus group produced 76 real-world recommendations. The topics addressed included 12 statements related to DA therapy in early PD, 20 statements concerning DA treatment strategy in patients with motor complications, 11 statements associated with DA drugs and their side effects, and 33 statements regarding DA therapy in specific clinical scenarios. The consensus group did not reach a consensus on 15 statements. CONCLUSION The findings from this consensus method represent an exploratory step to help clinicians and patients in the appropriate use of DA in different stages and clinical situations of PD.
Collapse
Affiliation(s)
- D Santos García
- Servicio de Neurología, CHUAC (Complejo Hospitalario Universitario de A Coruña), As Xubias 84, 15006 A Coruña, Spain.
| | - J Pagonabarraga Mora
- Hospital de la Santa Creu i Sant Pau, C/de St. Antoni Maria Claret, 167, 08025 Barcelona, Spain
| | - F Escamilla Sevilla
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas, 2, 18014 Granada, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain
| | - P J García Ruiz
- Hospital Universitario Fundación Jiménez Díaz, Av. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - J Infante Ceberio
- Servicio de Neurología, Hospital Universitario de Marqués de Valdecilla-IDIVAL, Calle Cardenal Herrera Oria, 39011 Santander, Cantabria, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Cantabria, Santander, Spain
| | - J Kulisevsky Bojarski
- Hospital de la Santa Creu i Sant Pau, C/de St. Antoni Maria Claret, 167, 08025 Barcelona, Spain
| | | | - M R Luquín Piudo
- Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008 Pamplona, Navarra, Spain
| | - J C Martínez Castrillo
- Hospital Universitario Ramón y Cajal, IRYCIS, Carretera M-607, 9, 100, 28034 Madrid, Spain
| | - S Jesús Maestre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Av. Manuel Siurot, S/n, 41013 Sevilla, Spain
| | - L Vela Desojo
- Hospital Universitario Fundación Alcorcón, C/ Budapest, 1, 28922 Alcorcón, Madrid, Spain
| | - F J Campos Lucas
- Facultad de Medicina, Universidad Francisco de Vitoria, Carretera Pozuelo, km 1800, 28223 Majadahonda, Madrid, Spain
| | - F Caballero Martínez
- Facultad de Medicina, Universidad Francisco de Vitoria, Carretera Pozuelo, km 1800, 28223 Majadahonda, Madrid, Spain
| | - P Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot, S/n, 41013 Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Calle Valderrebollo, 5, 28031 Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Av. de Sánchez Pizjuán, s/n, 41009 Sevilla, Spain
| |
Collapse
|
6
|
Saadati S, Sepahvand A, Razzazi M. Cloud and IoT based smart agent-driven simulation of human gait for detecting muscles disorder. Heliyon 2025; 11:e42119. [PMID: 39906796 PMCID: PMC11791118 DOI: 10.1016/j.heliyon.2025.e42119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
Motion disorders affect a significant portion of the global population. While some symptoms can be managed with medications, these treatments often impact all muscles uniformly, not just the affected ones, leading to potential side effects including involuntary movements, confusion, and decreased short-term memory. Currently, there is no dedicated application for differentiating healthy muscles from abnormal ones. Existing analysis applications, designed for other purposes, often lack essential software engineering features such as a user-friendly interface, infrastructure independence, usability and learning ability, cloud computing capabilities, and AI-based assistance. This research proposes a computer-based methodology to analyze human motion and differentiate between healthy and unhealthy muscles. First, an IoT-based approach is proposed to digitize human motion using smartphones instead of hardly accessible wearable sensors and markers. The motion data is then simulated to analyze the neuromusculoskeletal system. An agent-driven modeling method ensures the naturalness, accuracy, and interpretability of the simulation, incorporating neuromuscular details such as Henneman's size principle, action potentials, motor units, and biomechanical principles. The results are then provided to medical and clinical experts to aid in differentiating between healthy and unhealthy muscles and for further investigation. Additionally, a deep learning-based ensemble framework is proposed to assist in the analysis of the simulation results, offering both accuracy and interpretability. A user-friendly graphical interface enhances the application's usability. Being fully cloud-based, the application is infrastructure-independent and can be accessed on smartphones, PCs, and other devices without installation. This strategy not only addresses the current challenges in treating motion disorders but also paves the way for other clinical simulations by considering both scientific and computational requirements.
Collapse
Affiliation(s)
- Sina Saadati
- Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Abdolah Sepahvand
- Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammadreza Razzazi
- Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
7
|
Alotaibi S, Alfayez L, Alkhudhair M. Parkinson's Disease: Current Treatment Modalities and Emerging Therapies. Cureus 2024; 16:e75647. [PMID: 39803037 PMCID: PMC11725288 DOI: 10.7759/cureus.75647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Herein, we review the literature on Parkinson's disease (PD) management and summarize the progress in medical, surgical, and assisted therapeutic modalities for motor and non-motor symptoms. A thorough search strategy was implemented to retrieve all relevant articles and identify the best evidence from different databases including Scopus, PubMed, Google Scholar, the Cochrane Database of Systematic Reviews, and Evidence-Based Medicine reviews from the International Parkinson and Movement Disorder Society. Multiple terms, such as Parkinson, tremor, predominant, Parkinson management, deep brain stimulation, LCIG, ablative surgery for PD, medical management of PD, and assistive devices for PD, were used for screening. A total of 160 articles were gathered; irrelevant papers and older articles were excluded. After initial exclusion, we had 140 articles to review from 1980 to 2022. Five articles were found to be duplicated, and another five articles were excluded as they did not have additional information on management that could be used in this research paper. We found that management options and assistive devices for PD are improving, with new therapeutic options emerging every year. Medical therapy is the most common therapy as it corrects dopamine deficiency which is the main factor implicated in PD; other surgical treatment options are available in cases of chronic progressive disease course. This article adds significant value to the literature as it includes the history and the role of most Parkinson's disease management options.
Collapse
Affiliation(s)
- Shabab Alotaibi
- Neurology, Movement Disorder and Neuromodulation, King Saud Medical City, Riyadh, SAU
| | - Lujain Alfayez
- Neurology, Neurology Center, Prince Sultan Military Medical City, Riyadh, SAU
| | | |
Collapse
|
8
|
Frost ED, Shi SX, Byroju VV, Pitton Rissardo J, Donlon J, Vigilante N, Murray BP, Walker IM, McGarry A, Ferraro TN, Hanafy KA, Echeverria V, Mitrev L, Kling MA, Krishnaiah B, Lovejoy DB, Rahman S, Stone TW, Koola MM. Galantamine-Memantine Combination in the Treatment of Parkinson's Disease Dementia. Brain Sci 2024; 14:1163. [PMID: 39766362 PMCID: PMC11674513 DOI: 10.3390/brainsci14121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain. Due to its limited efficacy and side effect profile, rivastigmine is often not prescribed, leaving patients with no treatment options. PD has several derangements in neurotransmitter pathways (dopaminergic neurons in the nigrostriatal pathway, kynurenine pathway (KP), acetylcholine, α7 nicotinic receptor, and N-methyl-D-aspartate (NMDA) receptors) and rivastigmine is only partially effective as it only targets one pathway. Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, affects the pathophysiology of PDD in multiple ways. Both galantamine (α7 nicotinic receptor) and memantine (antagonist of the NMDA subtype of the glutamate receptor) are KYNA modulators. When used in combination, they target multiple pathways. While randomized controlled trials (RCTs) with each drug alone for PD have failed, the combination of galantamine and memantine has demonstrated a synergistic effect on cognitive enhancement in animal models. It has therapeutic potential that has not been adequately assessed, warranting future randomized controlled trials. In this review, we summarize the KYNA-centric model for PD pathophysiology and discuss how this treatment combination is promising in improving cognitive function in patients with PDD through its action on KYNA.
Collapse
Affiliation(s)
- Emma D. Frost
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | - Swanny X. Shi
- Department of Neurology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Vishnu V. Byroju
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | | | - Jack Donlon
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | | | | | - Ian M. Walker
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Andrew McGarry
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Thomas N. Ferraro
- Department of Biomedical Sciences, Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Khalid A. Hanafy
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Valentina Echeverria
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL 33744, USA
- Medicine Department, Universidad San Sebastián, Concepción 4081339, Bío Bío, Chile
| | - Ludmil Mitrev
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Mitchel A. Kling
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Balaji Krishnaiah
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David B. Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK
| | - Maju Mathew Koola
- Department of Public Safety and Correctional Services, Baltimore, MD 21215, USA
| |
Collapse
|
9
|
Soni D, Jamwal S, Chawla R, Singh SK, Singh D, Singh TG, Khurana N, Kanwal A, Dureja H, Patil UK, Singh R, Kumar P. Nutraceuticals Unveiled a Multifaceted Neuroprotective Mechanisms for Parkinson’s Disease: Elixir for the Brain. FOOD REVIEWS INTERNATIONAL 2024; 40:3079-3102. [DOI: 10.1080/87559129.2024.2337766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rakesh Chawla
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences & Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Deependra Singh
- Univesity Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Raipur, Chhattisgarh, India
| | | | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
10
|
Müller T. Evaluating pimavanserin tartrate as a treatment in Parkinson's disease. Expert Opin Pharmacother 2024; 25:1999-2003. [PMID: 39403823 DOI: 10.1080/14656566.2024.2417733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION Pimavanserin is an efficacious, atypical neuroleptic. It ameliorates the frequency and severity of hallucinations and delusions in patients with Parkinson's disease with psychosis. Most antipsychotic drugs directly block dopamine receptors and thus worsen motor behavior. In contrast, pimavanserin reduces the activity of excitatory serotonin receptor subtypes. They stimulate dopaminergic pathways in the mesolimbic system. As a result, onset of psychosis may occur particularly in patients on a chronic dopamine-substituting treatment regimen, like in Parkinson's disease. AREAS COVERED This narrative drug evaluation describes the properties and effects of pimavanserin. It is approved for the treatment of psychosis in Parkinson's disease. A literature search was performed using the terms dopamine, levodopa, psychosis, and Parkinson's disease without standardized selection of cited references. EXPERT OPINION An essential advantage of pimavanserin is the focus in the pivotal trials on the treatment of psychosis in patients with Parkinson's disease. Main competitors for the use in clinical practice are the atypical neuroleptic compounds quetiapine and clozapine. Both share considerable structural and pharmacological similarities, i.e. certain anticholinergic properties. They are recommended in guidelines. Once pimavanserin will become available as a generic drug, its use will probably increase worldwide.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, Germany
| |
Collapse
|
11
|
Kaur T, Sidana P, Kaur N, Choubey V, Kaasik A. Unraveling neuroprotection in Parkinson's disease: Nrf2-Keap1 pathway's vital role amidst pathogenic pathways. Inflammopharmacology 2024; 32:2801-2820. [PMID: 39136812 DOI: 10.1007/s10787-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological condition characterized by progressive degeneration of dopaminergic neurons and the presence of Lewy bodies, primarily composed of alpha-synuclein and ubiquitin. The pathophysiology of PD encompasses alpha-synuclein aggregation, oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired autophagy and ubiquitin-proteasome systems. Among these, the Keap1-Nrf2 pathway is a key regulator of antioxidant defense mechanisms. Nrf2 has emerged as a crucial factor in managing oxidative stress and inflammation, and it also influences ubiquitination through p62 expression. Keap1 negatively regulates Nrf2 by targeting it for degradation via the ubiquitin-proteasome system. Disruption of the Nrf2-Keap1 pathway in PD affects cellular responses to oxidative stress and inflammation, thereby playing a critical role in disease progression. In addition, the role of neuroinflammation in PD has gained significant attention, highlighting the interplay between immune responses and neurodegeneration. This review discusses the various mechanisms responsible for neuronal degeneration in PD, with a special emphasis on the neuroprotective role of the Nrf2-Keap1 pathway. Furthermore, it explores the implications of inflammopharmacology in modulating these pathways to provide therapeutic insights for PD.
Collapse
Affiliation(s)
- Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Palak Sidana
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Cavalu S, Saber S, Ramadan A, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Youssef ME. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders. FASEB J 2024; 38:e70030. [PMID: 39221499 DOI: 10.1096/fj.202400823r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
13
|
Koszła O, Sołek P. Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways. Cell Commun Signal 2024; 22:421. [PMID: 39215343 PMCID: PMC11365204 DOI: 10.1186/s12964-024-01791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The primary challenge in today's world of neuroscience is the search for new therapeutic possibilities for neurodegenerative disease. Central to these disorders lies among other factors, the aberrant folding, aggregation, and accumulation of proteins, resulting in the formation of toxic entities that contribute to neuronal degeneration. This review concentrates on the key proteins such as β-amyloid (Aβ), tau, and α-synuclein, elucidating the intricate molecular events underlying their misfolding and aggregation. We critically evaluate the molecular mechanisms governing the elimination of misfolded proteins, shedding light on potential therapeutic strategies. We specifically examine pathways such as the endoplasmic reticulum (ER) and unfolded protein response (UPR), chaperones, chaperone-mediated autophagy (CMA), and the intersecting signaling of Keap1-Nrf2-ARE, along with autophagy connected through p62. Above all, we emphasize the significance of these pathways as protein quality control mechanisms, encompassing interventions targeting protein aggregation, regulation of post-translational modifications, and enhancement of molecular chaperones and clearance. Additionally, we focus on current therapeutic possibilities and new, multi-target approaches. In conclusion, this review systematically consolidates insights into emerging therapeutic strategies predicated on protein aggregates clearance.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland.
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland
- Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, Lublin, 20-950, Poland
| |
Collapse
|
14
|
Guzmán-Sastoque P, Sotelo S, Esmeral NP, Albarracín SL, Sutachan JJ, Reyes LH, Muñoz-Camargo C, Cruz JC, Bloch NI. Assessment of CRISPRa-mediated gdnf overexpression in an In vitro Parkinson's disease model. Front Bioeng Biotechnol 2024; 12:1420183. [PMID: 39175618 PMCID: PMC11338903 DOI: 10.3389/fbioe.2024.1420183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Parkinson's disease (PD) presents a significant challenge in medical science, as current treatments are limited to symptom management and often carry significant side effects. Our study introduces an innovative approach to evaluate the effects of gdnf overexpression mediated by CRISPRa in an in vitro model of Parkinson's disease. The expression of gdnf can have neuroprotective effects, being related to the modulation of neuroinflammation and pathways associated with cell survival, differentiation, and growth. Methods We have developed a targeted delivery system using a magnetite nanostructured vehicle for the efficient transport of genetic material. This system has resulted in a substantial increase, up to 200-fold) in gdnf expression in an In vitro model of Parkinson's disease using a mixed primary culture of astrocytes, neurons, and microglia. Results and Discussion The delivery system exhibits significant endosomal escape of more than 56%, crucial for the effective delivery and activation of the genetic material within cells. The increased gdnf expression correlates with a notable reduction in MAO-B complex activity, reaching basal values of 14.8 μU/μg of protein, and a reduction in reactive oxygen species. Additionally, there is up to a 34.6% increase in cell viability in an In vitro Parkinson's disease model treated with the neurotoxin MPTP. Our study shows that increasing gdnf expression can remediate some of the cellular symptoms associated with Parkinson's disease in an in vitro model of the disease using a novel nanostructured delivery system.
Collapse
Affiliation(s)
| | - Sebastián Sotelo
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Natalia P. Esmeral
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Sonia Luz Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon-Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Natasha I. Bloch
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
15
|
Khafajah Y, Shaheen M, Natour DE, Merheb M, Matar R, Borjac J. Neuroprotective Effects of Zinc Oxide Nanoparticles in a Rotenone-Induced Mouse Model of Parkinson's Disease. Nanotheranostics 2024; 8:497-505. [PMID: 38961888 PMCID: PMC11217785 DOI: 10.7150/ntno.95863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/11/2024] [Indexed: 07/05/2024] Open
Abstract
Goals of the investigation: This work aimed to evaluate the neuroprotective effects of zinc oxide (ZnO) nanoparticles in an experimental mouse model of rotenone-induced PD and investigate the therapeutic effects of ZnO, cobalt ferrite nanoparticles, and their combination. Methods: The levels of dopamine, norepinephrine, epinephrine, and serotonin were assessed using ELISA in the control and experimental model of PD mice. The dopa-decarboxylase expression level was assayed by real-time PCR. The expression level of tyrosine hydroxylase (TH) was assessed by western blot analysis. Results: Our data showed that levels of dopamine decreased in PD mice compared to normal. ZnO NP increased dopamine levels in normal and PD mice (37.5% and 29.5%; respectively, compared to untreated mice). However, ZnO NP did not cause any change in norepinephrine and epinephrine levels either in normal or in PD mice. Levels of serotonin decreased by 64.0%, and 51.1% in PD mice treated with cobalt ferrite and dual ZnO- cobalt ferrite NPs; respectively, when compared to PD untreated mice. The mRNA levels of dopa-decarboxylase increased in both normal and PD mice treated with ZnO NP. Its level decreased when using cobalt ferrite NP and the dual ZnO-cobalt ferrite NP when compared to untreated PD mice. A significant decrease in TH expression by 0.25, 0.68, and 0.62 folds was observed in normal mice treated with ZnO, cobalt ferrite, and the dual ZnO-cobalt ferrite NP as compared to normal untreated mice. In PD mice, ZnO administration caused a non-significant 0.15-fold decrease in TH levels while both cobalt ferrite and the dual ZnO-cobalt ferrite NP administration caused a significant 0.3 and 0.4-fold decrease respectively when compared to untreated PD mice. Principal conclusion: This study reveals that ZnO NPs may be utilized as a potential intervention to elevate dopamine levels to aid in PD treatment.
Collapse
Affiliation(s)
- Yasmeen Khafajah
- Beirut Arab University, Department of Biological Sciences, Faculty of Science, Debbieh, Lebanon
| | - Mariam Shaheen
- Beirut Arab University, Department of Biological Sciences, Faculty of Science, Debbieh, Lebanon
| | - Dania El Natour
- Beirut Arab University, Department of Internal Medicine, Faculty of Medicine, Beirut, Lebanon
| | - Maxime Merheb
- Liwa College, College of Medical and Health Sciences, United Arab Emirates
| | - Rachel Matar
- American University of Ras Al Khaimah, School of Arts and Sciences, United Arab Emirates
| | - Jamilah Borjac
- Beirut Arab University, Department of Biological Sciences, Faculty of Science, Debbieh, Lebanon
| |
Collapse
|
16
|
Yedke NG, Soni D, Kumar P. Effect of Bacille-Calmette-Guerin vaccine against rotenone-induced Parkinson's disease: Role of neuroinflammation and neurotransmitters. Fundam Clin Pharmacol 2024; 38:538-549. [PMID: 38041521 DOI: 10.1111/fcp.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is an extrapyramidal movement disorder associated with a hypokinetic condition generated by impairment in dopaminergic neuronal viability in the nigrostriatal region of the brain. Current medications can only provide symptomatic management; to date, no permanent cure is available. To compensate for this lacuna, researchers are gaining interest in antigen-based therapy, and Bacille-Calmette-Guerin (BCG) is one of the vaccines with a high safety margin that acts by stimulating immunoreactive T-cells in the CNS and reducing expression of pro-inflammatory cytokines including interleukin (IL)-1β and tumor necrotic factor (TNF-α) to produce neuroprotection. A previous study reported that BCG exerts a neuroprotective effect against several neurodegenerative disorders, such as Alzheimer's disease. OBJECTIVE The objective of this study is to explore the neuroprotective effect of the BCG vaccine against the rotenone model of PD. METHODS Rotenone (1.5 mg/kg, s.c) for 28 days, and BCG vaccine (2 × 107 cfu, i.p) single dose was injected to rats, and behavioral assessments were performed on the 21st and 28th day. On the 29th day, rats were sacrificed, and brains were isolated for biochemical and neurochemical estimation. RESULTS BCG vaccine significantly restored rotenone-induced motor deficits (open field test, narrow beam walk, and rotarod), biochemical levels (GSH, SOD, catalase, MDA, and nitrite), neurotransmitters (dopamine, 5-hydroxy tryptamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, hemovanillic acid, and 5-hydroxy indoleacetic acid), and levels of inflammatory cytokines (IL-1β and TNF-α) in the striatum. It also prevents histopathological changes by reducing eosinophilic lesions in the striatum. CONCLUSION From the results, we conclude that BCG vaccine showed neuroprotection through antioxidant and anti-inflammatory effect. Thus, in the future, it can be used as a neuroprotective agent for other neurological disorders, including PD.
Collapse
Affiliation(s)
- Narhari Gangaram Yedke
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
17
|
Ullah I, Zhao L, Uddin S, Zhou Y, Wang X, Li H. Nicotine-mediated therapy for Parkinson's disease in transgenic Caenorhabditis elegans model. Front Aging Neurosci 2024; 16:1358141. [PMID: 38813528 PMCID: PMC11135287 DOI: 10.3389/fnagi.2024.1358141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Parkinson's disease resultant in the degeneration of Dopaminergic neurons and accumulation of α-synuclein in the substantia nigra pars compacta. The synthetic therapeutics for Parkinson's disease have moderate symptomatic benefits but cannot prevent or delay disease progression. In this study, nicotine was employed by using transgenic Caenorhabditis elegans Parkinson's disease models to minimize the Parkinson's disease symptoms. The results showed that the nicotine at 100, 150, and 200 μM doses reduced degeneration of Dopaminergic neurons caused by 6-hydroxydopamine (14, 33, and 40%), lowered the aggregative toxicity of α-synuclein by 53, 56, and 78%, respectively. The reduction in food-sensing behavioral disabilities of BZ555 was observed to be 18, 49, and 86%, respectively, with nicotine concentrations of 100 μM, 150 μM, and 200 μM. Additionally, nicotine was found to enhance Daf-16 nuclear translocation by 14, 31, and 49%, and dose-dependently increased SOD-3 expression by 10, 19, and 23%. In summary, the nicotine might a promising therapy option for Parkinson's disease.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yangtao Zhou
- Department of Neurology, Clinical Center for Parkinson's Disease, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Isaacson SH, Pahwa R, Pagan F, Abler V, Truong D. Retrospective analyses evaluating the mortality risk associated with pimavanserin or other atypical antipsychotics in patients with Parkinson disease psychosis. Clin Park Relat Disord 2024; 10:100256. [PMID: 38770047 PMCID: PMC11103413 DOI: 10.1016/j.prdoa.2024.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Parkinson's disease (PD) is associated with increased mortality risk (MR), reflecting progression of motor and nonmotor symptoms. PD psychosis (PDP), a common nonmotor symptom, increases with prolonged disease and elevates the MR of PD even further. Pimavanserin is the only FDA-approved treatment for PDP. This review summarizes real-world evidence around the MR of patients with PDP treated with pimavanserin versus off-label atypical antipsychotics. Methods A PubMed search was conducted using the following search terms: pimavanserin AND antipsychotic AND mortality AND Parkinson's disease AND psychosis. Inclusion criteria specified the entry of retrospective, observational, and open-label studies comparing pimavanserin to atypical antipsychotics or untreated controls. Results A total of 10 of the 32 articles met inclusion criteria. Among five comparisons of pimavanserin with atypical antipsychotics, two were large (n = 21,719; n = 21,975), representative, Medicare-database studies, which demonstrated comparable or lower all-cause pimavanserin MR. Among three pimavanserin versus control studies, two reported lower or comparable pimavanserin MR and one, long-term care study reported higher MR for pimavanserin versus non-pimavanserin treated patients with unknown PDP status. Two open-label extensions reported pimavanserin mortality rates of 6.45 and 18.8 deaths per 100 patient-years, which are comparable to, or lower than, mortality rates for PD, PDP, and other atypical antipsychotics. Most studies (70 %; 7 of 10) demonstrated pimavanserin's MR was lower than or similar to other atypical antipsychotics or untreated controls. Conclusions Pimavanserin did not increase the MR in PDP. Pimavanserin's MR appears to be comparable to or lower than other atypical antipsychotics prescribed for PDP, including quetiapine.
Collapse
Affiliation(s)
- Stuart H. Isaacson
- Parkinson’s Disease and Movement Disorders of Boca Raton, 951 NW 13th Street, Bldg. 5-E, Boca Raton, FL 33486, USA
| | - Rajesh Pahwa
- Department of Neurology, University of Kansas Medical Center, 2060 W 39th Ave, Kansas City, KS 66103, USA
| | - Fernando Pagan
- Department of Neurology, Georgetown University Medical Center, 3900 Reservoir Rd NW, Washington, DC 20007, USA
| | - Victor Abler
- Acadia Pharmaceuticals Inc, 12830 El Camino Real, San Diego, CA 92130, USA
| | - Daniel Truong
- The Parkinson and Movement Disorder Institute, 9940 Talbert Ave #100, Fountain Valley, CA 92708, USA
- Department of Psychiatry and Neuroscience, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Lee DH, Woo BS, Park YH, Lee JH. General Treatments Promoting Independent Living in Parkinson's Patients and Physical Therapy Approaches for Improving Gait-A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:711. [PMID: 38792894 PMCID: PMC11123276 DOI: 10.3390/medicina60050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
This study delves into the multifaceted approaches to treating Parkinson's disease (PD), a neurodegenerative disorder primarily affecting motor function but also manifesting in a variety of symptoms that vary greatly among individuals. The complexity of PD symptoms necessitates a comprehensive treatment strategy that integrates surgical interventions, pharmacotherapy, and physical therapy to tailor to the unique needs of each patient. Surgical options, such as deep brain stimulation (DBS), have been pivotal for patients not responding adequately to medication, offering significant symptom relief. Pharmacotherapy remains a cornerstone of PD management, utilizing drugs like levodopa, dopamine agonists, and others to manage symptoms and, in some cases, slow down disease progression. However, these treatments often lead to complications over time, such as motor fluctuations and dyskinesias, highlighting the need for precise dosage adjustments and sometimes combination therapies to optimize patient outcomes. Physical therapy plays a critical role in addressing the motor symptoms of PD, including bradykinesia, muscle rigidity, tremors, postural instability, and akinesia. PT techniques are tailored to improve mobility, balance, strength, and overall quality of life. Strategies such as gait and balance training, strengthening exercises, stretching, and functional training are employed to mitigate symptoms and enhance functional independence. Specialized approaches like proprioceptive neuromuscular facilitation (PNF), the Bobath concept, and the use of assistive devices are also integral to the rehabilitation process, aimed at improving patients' ability to perform daily activities and reducing the risk of falls. Innovations in technology have introduced robotic-assisted gait training (RAGT) and other assistive devices, offering new possibilities for patient care. These tools provide targeted support and feedback, allowing for more intensive and personalized rehabilitation sessions. Despite these advancements, high costs and accessibility issues remain challenges that need addressing. The inclusion of exercise and activity beyond structured PT sessions is encouraged, with evidence suggesting that regular physical activity can have neuroprotective effects, potentially slowing disease progression. Activities such as treadmill walking, cycling, and aquatic exercises not only improve physical symptoms but also contribute to emotional well-being and social interactions. In conclusion, treating PD requires a holistic approach that combines medical, surgical, and therapeutic strategies. While there is no cure, the goal is to maximize patients' functional abilities and quality of life through personalized treatment plans. This integrated approach, along with ongoing research and development of new therapies, offers hope for improving the management of PD and the lives of those affected by this challenging disease.
Collapse
Affiliation(s)
- Dae-Hwan Lee
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Bong-Sik Woo
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Yong-Hwa Park
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Jung-Ho Lee
- Department of Physical Therapy, University of Kyungdong, 815, Gyeonhwon-ro, Munmak-eup, Wonju-si 26495, Gangwon-do, Republic of Korea
| |
Collapse
|
20
|
Riasi A, Delrobaei M, Salari M. A decision support system based on recurrent neural networks to predict medication dosage for patients with Parkinson's disease. Sci Rep 2024; 14:8424. [PMID: 38600209 PMCID: PMC11006681 DOI: 10.1038/s41598-024-59179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
Using deep learning has demonstrated significant potential in making informed decisions based on clinical evidence. In this study, we deal with optimizing medication and quantitatively present the role of deep learning in predicting the medication dosage for patients with Parkinson's disease (PD). The proposed method is based on recurrent neural networks (RNNs) and tries to predict the dosage of five critical medication types for PD, including levodopa, dopamine agonists, monoamine oxidase-B inhibitors, catechol-O-methyltransferase inhibitors, and amantadine. Recurrent neural networks have memory blocks that retain crucial information from previous patient visits. This feature is helpful for patients with PD, as the neurologist can refer to the patient's previous state and the prescribed medication to make informed decisions. We employed data from the Parkinson's Progression Markers Initiative. The dataset included information on the Unified Parkinson's Disease Rating Scale, Activities of Daily Living, Hoehn and Yahr scale, demographic details, and medication use logs for each patient. We evaluated several models, such as multi-layer perceptron (MLP), Simple-RNN, long short-term memory (LSTM), and gated recurrent units (GRU). Our analysis found that recurrent neural networks (LSTM and GRU) performed the best. More specifically, when using LSTM, we were able to predict levodopa and dopamine agonist dosage with a mean squared error of 0.009 and 0.003, mean absolute error of 0.062 and 0.030, root mean square error of 0.099 and 0.053, and R-squared of 0.514 and 0.711, respectively.
Collapse
Affiliation(s)
- Atiye Riasi
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mehdi Delrobaei
- Department of Mechatronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada.
| | - Mehri Salari
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Kispotta S, Das D, Prusty SK. A recent update on drugs and alternative approaches for parkinsonism. Neuropeptides 2024; 104:102415. [PMID: 38402775 DOI: 10.1016/j.npep.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Parkinson's disease, often known as PD, is a more common age-related neurological disorder that affects a huge number of older adults worldwide. Parkinson's disease is predominantly a movement-related pathosis and is distinguished by the deposition of intra-neuronal aggregates, as the alpha-synuclein gene is expressed as Lewy bodies (LB) causing dopaminergic neurons to die. Stress in early life may contribute to the development of depression, and depression in patients may result in the development of Parkinson's disease as they mature. Depression is a non-motor condition that leads to motor symptoms, such as Parkinson's disease. PD Patients are currently utilizing a variety of other therapies like utilizing nutritional supplements, herbal remedies, vitamins, and massage. When a patient's functional ability is impaired, drug treatment is usually initiated according to the individual's condition and the severity of signs and symptoms. The current marketed anti-Parkinson drugs, has low brain distribution and failing to repair dopaminergic neurons or delaying the progression of the disease these negative effects were unavoidable. To overcome these disadvantages, this review considers the inclusion of drugs used in Parkinson's disease, focusing on strategies to reuse existing compounds to speed up drug development, their capacity to traverse the BBB, and drug dispersion in the brain. We look at cellular therapies and repurposed drugs. We also investigate the mechanisms, effectiveness, as well as safety of several new medications that are being repositioned for Parkinson's disease pharmacotherapy. In this study, we focus on global trends in Parkinson's disease research. We hope to raise awareness about the present state of major factors for disability worldwide, including yearly prevalence's from international and national statistics. The pathophysiology of Parkinsonism and also analyze existing therapies for Parkinson's disease, moreover new and innovative drug therapies, and to assess the prospects for disease modification.
Collapse
Affiliation(s)
- Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Debajyoti Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Shakti Ketan Prusty
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
22
|
Di Minno A, Ullah H, De Lellis LF, Buccato DG, Baldi A, Cuomo P, El-Seedi HR, Khalifa SAM, Xiao X, Piccinocchi R, Piccinocchi G, Sacchi R, Daglia M. Efficacy and Tolerability of a Scutellaria lateriflora L. and Cistus × incanus L.-Based Chewing Gum on the Symptoms of Gingivitis: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:862. [PMID: 38542772 PMCID: PMC10975933 DOI: 10.3390/nu16060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 01/15/2025] Open
Abstract
Preclinical studies have shown that the combination of Cistus × incanus L. and Scutellaria lateriflora L. extracts exerts beneficial effects on oral health against gingivitis. Thus, this study aimed to assess the tolerability of a chewing gum and its efficacy on gingivitis in a double-blind, placebo-controlled clinical trial. Enrolled subjects (n = 60, 18-70 years) were randomized to receive two chewing gums or a placebo daily for 3 months. At baseline (t0) and monthly (t1, t2, and t3) timepoints, the Quantitative Gingival Bleeding Index (QGBI), the Modified Gingival Index (MGI), and the Oral Health 15 items (OH-15)] were employed to assess potential improvements in gingivitis. Pain was self-quantified via the Visual Analogue Scale (VAS), and the Clinical Global Impression Scale for Severity of illness (CGI-S) helped in evaluating the oral general conditions. This study is listed on the ISRCTN registry. At t3, the QGBI, MGI, OH-15, VAS, and CGI-S values decreased in the treated but not in the placebo group (β = 0.6 ± 0.1, t176 = 3.680, p < 0.001; β = 0.87 ± 0.21, t115 = 4.263, p < 0.001; β = 5.3 ± 2.5, t172 = 2.086, p = 0.038; β = 3.16 ± 0.51, t88 = 6.253, p < 0.001; and β = 1.09 ± 0.32, t83 = 3.419, p < 0.001, respectively). A significant improvement in gingival health occurred after a 3-month intervention with the chewing gums containing S. lateriflora and C. incanus extracts.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Hammad Ullah
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Alessandra Baldi
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
| | - Paola Cuomo
- Department of Agriculture, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Roberto Piccinocchi
- Level 1 Medical Director Anaesthesia and Resuscitation Azienda Universitaria Ospedaliera Vanvitelli, Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 80138 Naples, Italy;
| | - Gaetano Piccinocchi
- Comegen Azienda Universitaria Ospedaliera Vanvitelli, Società Cooperativa Sociale di Medici di Medicina Generale, Viale Maria Bakunin 41, 80125 Naples, Italy;
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy;
| | - Maria Daglia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (L.F.D.L.); (D.G.B.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
Ullah I, Uddin S, Zhao L, Wang X, Li H. Autophagy and UPS pathway contribute to nicotine-induced protection effect in Parkinson's disease. Exp Brain Res 2024:10.1007/s00221-023-06765-9. [PMID: 38430248 DOI: 10.1007/s00221-023-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/11/2023] [Indexed: 03/03/2024]
Abstract
The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
24
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
25
|
Carrick FR, Hernandez LSAV, Sugaya K. Amelioration of Motor Performance and Nigrostriatal Dopamine Cell Volume Using a Novel Far-Infrared Ceramic Blanket in an A53T Alpha-Synuclein Transgenic Parkinson's Disease Mouse Model. Curr Issues Mol Biol 2023; 45:9823-9837. [PMID: 38132459 PMCID: PMC10742635 DOI: 10.3390/cimb45120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
We had attended a Parkinson's Disease (PD) patient for a non-healing wound who reported a marked decrease in his hand tremor and freezing of gait when his wound was exposed to a ceramic far-field infrared (cFIR) blanket. PD is the most frequent motor disorder and the second most frequent neurodegenerative disease after Alzheimer's Disease (AD). The tremor, rigidity, and slowness of movement associated with Parkinson's disease (PD) affect up to 10 million people throughout the world, and the major contributing factor to the pathogenesis of PD is the accumulation and propagation of pathological α-synuclein (α-Syn) and the death of dopaminergic cells in the Nigrostriatal system. Efforts to slow or stop its spreading have resulted in the development and use of dopaminergic drug replacement therapy. Unfortunately, there is a loss of about 70-80% of substantia nigral dopaminergic neurons in patients by the time they are diagnosed with PD, and various dopaminergic drugs provide only temporary relief of their motor symptoms. There are limitations in treating PD with many conventional medications, necessitating a combination of pharmaceutical and non-pharmacological therapy as an essential adjunct to better address the health and welfare of PD patients. We used male adult A53T alpha-synuclein transgenic mice exposed to a ceramic far-infrared blanket. Motor activity was assessed using the rotarod apparatus, and mouse brains were examined to quantify the fluorescence intensities of the immunostained samples. A53T alpha-synuclein transgenic mice had a significantly shorter time stay on the rotating bar than the wild-type mice (B6C3H). The rotarod performance was significantly improved in A53T alpha-synuclein transgenic mice exposed to cFIR as well as B6C3H healthy wild mice exposed to cFIR. There was a significant statistical and substantive increase in the cellular composition of the Striatum and substantia nigra of cFIR-treated mice. Improvement in motor performance is seen in PD mice and wild mice and is associated with increases in cell volume in the substantia nigra and striatum after treatment.
Collapse
Affiliation(s)
- Frederick Robert Carrick
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32827, USA;
- MGH Institute for Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA
| | | | - Kiminobu Sugaya
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
26
|
Burns J, Buck AC, D’ Souza S, Dube A, Bardien S. Nanophytomedicines as Therapeutic Agents for Parkinson's Disease. ACS OMEGA 2023; 8:42045-42061. [PMID: 38024675 PMCID: PMC10652730 DOI: 10.1021/acsomega.3c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Phytochemicals are promising therapeutics for various neurodegenerative disorders, including Parkinson's disease (PD). However, their efficacy, pharmacokinetic properties, and penetration across the blood-brain barrier can be improved using delivery systems such as nanoparticles. We reviewed recently published work in which nanoparticles were used to deliver phytochemicals toward PD treatment. The studies show that nanoparticles not only improve the pharmacological effect of the phytochemicals but also enable targeting to the brain and crossing of the blood-brain barrier. Various ligands were added to the nanoparticles to improve blood-brain barrier transportation. The promising findings from the published studies reveal that more research into nanophytomedicine approaches as therapeutic targets for PD is warranted, especially since they have the potential to protect against key features of PD, including α-synuclein aggregation, mitochondrial dysfunction, and dopaminergic neuronal death. Furthermore, future directions should involve smart designs to tailor nanoparticles for improved therapeutic delivery by modifying their features, such as architecture, surface and material properties, targeting ligands, and responsiveness.
Collapse
Affiliation(s)
- Jessica Burns
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Amy Claire Buck
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Sarah D’ Souza
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Admire Dube
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Soraya Bardien
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
- South
African Medical Research Council/Stellenbosch University Genomics
of Brain Disorders Research Unit, Stellenbosch
University, Stellenbosch, Cape Town 7600, South Africa
| |
Collapse
|
27
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
28
|
Maselli F, D’Antona S, Utichi M, Arnaudi M, Castiglioni I, Porro D, Papaleo E, Gandellini P, Cava C. Computational analysis of five neurodegenerative diseases reveals shared and specific genetic loci. Comput Struct Biotechnol J 2023; 21:5395-5407. [PMID: 38022694 PMCID: PMC10651457 DOI: 10.1016/j.csbj.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (ND) are heterogeneous disorders of the central nervous system that share a chronic and selective process of neuronal cell death. A computational approach to investigate shared genetic and specific loci was applied to 5 different ND: Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS), and Lewy body dementia (LBD). The datasets were analyzed separately, and then we compared the obtained results. For this purpose, we applied a genetic correlation analysis to genome-wide association datasets and revealed different genetic correlations with several human traits and diseases. In addition, a clumping analysis was carried out to identify SNPs genetically associated with each disease. We found 27 SNPs in AD, 6 SNPs in ALS, 10 SNPs in PD, 17 SNPs in MS, and 3 SNPs in LBD. Most of them are located in non-coding regions, with the exception of 5 SNPs on which a protein structure and stability prediction was performed to verify their impact on disease. Furthermore, an analysis of the differentially expressed miRNAs of the 5 examined pathologies was performed to reveal regulatory mechanisms that could involve genes associated with selected SNPs. In conclusion, the results obtained constitute an important step toward the discovery of diagnostic biomarkers and a better understanding of the diseases.
Collapse
Affiliation(s)
- Francesca Maselli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Salvatore D’Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Mattia Utichi
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Lyngby, Technical University of Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Matteo Arnaudi
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Lyngby, Technical University of Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Isabella Castiglioni
- Department of Physics ‘‘Giuseppe Occhialini”, University of Milan, Bicocca, Italy
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Elena Papaleo
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Lyngby, Technical University of Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Claudia Cava
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Italy
| |
Collapse
|
29
|
Wu CH, Lin KL, Long CY, Feng CW. The Neuroprotective Effect of Isotetrandrine on Parkinson's Disease via Anti-Inflammation and Antiapoptosis In Vitro and In Vivo. PARKINSON'S DISEASE 2023; 2023:8444153. [PMID: 37854894 PMCID: PMC10581844 DOI: 10.1155/2023/8444153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Parkinson's disease (PD) is one of the most influential diseases in the world, and the current medication only can relieve the clinical symptoms but not slow the progression of PD. Therefore, we intend to examine the neuroprotective activity of plant-derived compound isotetrandrine (ITD) in vitro and in vivo. In vitro, cells were cotreated with ITD and LPS to detect the inflammatory-related protein and mRNA. In vivo, zebrafish were pretreated with ITD and inhibitors prior to 6-OHDA treatment. Then, the behavior was monitored at 5 dpf. Our result showed ITD inhibited LPS-induced upregulation of iNOS, COX-2 protein expression, and iL-6, inos, cox-2, and cd11b mRNA expression in BV2 cells. The data in zebrafish also demonstrated a significant improvement of ITD on the 6-OHDA-induced locomotor deficiency. ITD also improved 6-OHDA-induced apoptosis in zebrafish PD. We also pharmacologically validated the mechanism with three inhibitors, including LY294002, PI3K inhibitor; LY32141996, ERK inhibitor, SnPP, and HO-1 inhibitors. All of these inhibitors could abolish the neuroprotective effect of ITD partially in locomotor activity. Besides, the molecular level also showed the same trend. Treatment of these inhibitors could significantly abolish ITD-induced antineuroinflammatory and antioxidative stress effects in zebrafish PD. Our study showed ITD possessed a neuroprotective activity in zebrafish PD. The mRNA level also supported our arguments. The neuroprotection of ITD might be through antineuroinflammation and antiapoptosis pathways via PI3K, ERK, and HO-1.
Collapse
Affiliation(s)
- Ching-Hu Wu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Ling Lin
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Siao-Gang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
30
|
Pires PC, Paiva-Santos AC, Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals (Basel) 2023; 16:1424. [PMID: 37895895 PMCID: PMC10610493 DOI: 10.3390/ph16101424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Psychiatric and neurodegenerative disorders are amongst the most prevalent and debilitating diseases, but current treatments either have low success rates, greatly due to the low permeability of the blood-brain barrier, and/or are connected to severe side effects. Hence, new strategies are extremely important, and here is where liposome-derived nanosystems come in. Niosomes, transfersomes, and ethosomes are nanometric vesicular structures that allow drug encapsulation, protecting them from degradation, and increasing their solubility, permeability, brain targeting, and bioavailability. This review highlighted the great potential of these nanosystems for the treatment of Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, anxiety, and depression. Studies regarding the encapsulation of synthetic and natural-derived molecules in these systems, for intravenous, oral, transdermal, or intranasal administration, have led to an increased brain bioavailability when compared to conventional pharmaceutical forms. Moreover, the developed formulations proved to have neuroprotective, anti-inflammatory, and antioxidant effects, including brain neurotransmitter level restoration and brain oxidative status improvement, and improved locomotor activity or enhancement of recognition and working memories in animal models. Hence, albeit being relatively new technologies, niosomes, transfersomes, and ethosomes have already proven to increase the brain bioavailability of psychoactive drugs, leading to increased effectiveness and decreased side effects, showing promise as future therapeutics.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
31
|
He A, Wang M, Li X, Chen H, Lim K, Lu L, Zhang C. Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2023; 24:11054. [PMID: 37446231 DOI: 10.3390/ijms241311054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDDs) threatening the lives of millions of people worldwide, including especially elderly people. Currently, due to the lack of a timely diagnosis and proper intervention strategy, AD and PD largely remain incurable. Innovative diagnosis and therapy are highly desired. Exosomes are small vesicles that are present in various bodily fluids, which contain proteins, nucleic acids, and active biomolecules, and which play a crucial role especially in intercellular communication. In recent years, the role of exosomes in the pathogenesis, early diagnosis, and treatment of diseases has attracted ascending attention. However, the exact role of exosomes in the pathogenesis and theragnostic of AD and PD has not been fully illustrated. In the present review, we first introduce the biogenesis, components, uptake, and function of exosomes. Then we elaborate on the involvement of exosomes in the pathogenesis of AD and PD. Moreover, the application of exosomes in the diagnosis and therapeutics of AD and PD is also summarized and discussed. Additionally, exosomes serving as drug carriers to deliver medications to the central nervous system are specifically addressed. The potential role of exosomes in AD and PD is explored, discussing their applications in diagnosis and treatment, as well as their current limitations. Given the limitation in the application of exosomes, we also propose future perspectives for better utilizing exosomes in NDDs. Hopefully, it would pave ways for expanding the biological applications of exosomes in fundamental research as well as theranostics of NDDs.
Collapse
Affiliation(s)
- Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Hong Chen
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
32
|
Azimullah S, Meeran MFN, Ayoob K, Arunachalam S, Ojha S, Beiram R. Tannic Acid Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Inflammation, Oxidative Stress, Apoptosis, and Glutamate Toxicity in Rats. Int J Mol Sci 2023; 24:9876. [PMID: 37373023 DOI: 10.3390/ijms24129876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD), a movement disorder, is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. The etiopathogenesis of PD involves increased oxidative stress, augmented inflammation, impaired autophagy, accumulation of α-synuclein, and α-Glutamate neurotoxicity. The treatment of PD is limited and there is a lack of agents to prevent the disease/delay its progression and inhibit the onset of pathogenic events. Many agents of natural and synthetic origin have been investigated employing experimental models of PD, mimicking human PD. In the present study, we assessed the effect of tannic acid (TA) in a rodent model of PD induced by rotenone (ROT), a pesticide and an environmental toxin of natural origin reported to cause PD in agricultural workers and farmers. Rotenone (2.5 mg/kg/day, i.p.) was administered for 28 days, and TA (50 mg/kg, orally) was administered 30 min before ROT injections. The study results showed an increase in oxidative stress, as evidenced by the depletion of endogenous antioxidants and enhanced formation of lipid peroxidation products, along with the onset of inflammation following a rise in inflammatory mediators and proinflammatory cytokines. ROT injections have also augmented apoptosis, impaired autophagy, promoted synaptic loss, and perturbed α-Glutamate hyperpolarization in rats. ROT injections also induced the loss of dopaminergic neurons subsequent to the activation of microglia and astrocytes. However, TA treatment was observed to reduce lipid peroxidation, prevent loss of endogenous antioxidants, and inhibit the release and synthesis of proinflammatory cytokines, in addition to the favorable modulation of apoptosis and autophagic pathways. Treatment with TA also attenuated the activation of microglia and astrocytes along with preservation of dopaminergic neurons following reduced loss of dopaminergic neurodegeneration and inhibition of synaptic loss and α-Glutamate cytotoxicity. The effects of TA in ROT-induced PD were attributed to the antioxidant, anti-inflammatory, antiapoptotic, and neurogenesis properties. Based on the present study findings, it can be concluded that TA may be a promising novel therapeutic candidate for pharmaceutical as well as nutraceutical development owing to its neuroprotective properties in PD. Further regulatory toxicology and translational studies are suggested for future clinical usage in PD.
Collapse
Affiliation(s)
- Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khatija Ayoob
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
33
|
Fadzil MAM, Mustar S, Rashed AA. The Potential Use of Honey as a Neuroprotective Agent for the Management of Neurodegenerative Diseases. Nutrients 2023; 15:nu15071558. [PMID: 37049399 PMCID: PMC10096917 DOI: 10.3390/nu15071558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
As the global population ages, there is an increasing research on managing neurodegenerative diseases that mainly affect the elderly. Honey is one of the natural products and functional foods widely studied for its neuroprotective properties. This review investigates honey's effectiveness as a neuroprotective agent through in vitro, in vivo, and clinical research. The articles were browsed from three databases (PubMed, ScienceDirect, and Scopus) between the years of 2012 and 2022 using the keywords "honey" crossed with "neurodegenerative". Out of the 16 articles, six in vitro, eight in vivo, one combination study, and one clinical intervention were compiled. Among the various types of honey studied, the Tualang and Thyme honey exhibited the highest antioxidant, anti-inflammatory, and anticholinesterase activity, leading to the prevention and management of multiple neurodegenerative diseases such as Alzheimer's disease. The neuroprotective properties of honey are primarily attributed to its high polyphenol content, with quercetin and gallic acid being the most prominent. This review compiled considerable evidence of the anti-neurodegenerative properties of honey presented by in vitro and in vivo studies. However, more clinical intervention studies are required to support these findings further.
Collapse
Affiliation(s)
- Mohammad Adi Mohammad Fadzil
- Nutrition Unit (NU), Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| | - Suraiami Mustar
- Nutrition Unit (NU), Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit (NU), Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia (MOH), No. 1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia
| |
Collapse
|
34
|
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13:986668. [PMID: 36339626 PMCID: PMC9632735 DOI: 10.3389/fphar.2022.986668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.
Collapse
Affiliation(s)
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
35
|
Soni D, Kumar P. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol Rep 2022; 74:557-569. [PMID: 35882765 DOI: 10.1007/s43440-022-00390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Movement disorders are neurological conditions characterized by involuntary motor movements, such as dystonia, ataxia, chorea myoclonus, tremors, Huntington's disease (HD), and Parkinson's disease (PD). It is classified into two categories: hypokinetic and hyperkinetic movements. Globally, movement disorders are a major cause of death. The pathophysiological process is initiated by excessive ROS generation, mitochondrial dysfunction, neuroinflammation, and neurotransmitters imbalance that lead to motor dysfunction in PD and HD patients. Several endogenous targets including Nrf2 maintain oxidative balance in the body. Activation of Nrf2 signaling is regulated by the enzyme glycogen synthase kinase (GSK-3β). In the cytoplasm, inhibition of GSK-3β regulates cellular proliferation, homeostasis, and apoptotic process by stimulating the nuclear factor erythroid 2 (Nrf2) pathway which is involved in the elevation of the cellular antioxidant enzymes which controls the ROS generation. The activation of Nrf2 increases the expression of antioxidant response elements (ARE), such as (Hemeoxygenase-1) HO-1, which decreases excessive cellular stress, mitochondrial dysfunction, apoptosis, and neuronal degeneration, which is the major cause of motor dysfunction. The present review explores the GSK-3β-mediated neuroprotection in various movement disorders through the Nrf2/HO-1 antioxidant pathway. This review provides a link between GSK-3β and the Nrf2/HO-1 signaling pathway in the treatment of PD and HD. In addition to that it highlights various GSK-3β inhibitors and the Nrf2/HO-1 activators, which exert robust neuroprotection against motor disorders. Therefore, the present review will help in the discovery of new therapy for PD and HD patients.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
36
|
Zhang S, Du Y, Cai L, Chen M, Song Y, He L, Gong N, Lin Q. Obstacles to home-based dietary management for caregivers of children with citrin deficiency: a qualitative study. Orphanet J Rare Dis 2022; 17:256. [PMID: 35804387 PMCID: PMC9264664 DOI: 10.1186/s13023-022-02437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dietary management is the most important and effective treatment for citrin deficiency, as well as a decisive factor in the clinical outcome of patients. However, the dietary management ability of caregivers of children with citrin deficiency is generally poor, especially in East Asia where carbohydrate-based diets are predominant. The aim of this study was to identify the difficulties that caregivers encounter in the process of home-based dietary management, and the reasons responsible for these challenges. Results A total of 26 caregivers of children with citrin deficiency were recruited, including 24 mothers, one father, and one grandmother. Grounded theory was employed to identify three themes (covering 12 sub-themes) related to the dilemma of dietary management: dietary management that is difficult to implement; conflicts with traditional concepts; and the notion that children are only a part of family life. The first theme describes the objective difficulties that caregivers encounter in the process of dietary management; the second theme describes the underlying reasons responsible for the non-adherent behavior of caregivers; the third theme further reveals the self-compromise by caregivers in the face of multiple difficulties. Conclusions This study reflects the adverse effects of multi-dimensional contradictions on the adherence of caregivers to dietary management. These findings reveal that the dietary management of citrin deficiency is not only a rational process, rather it is deeply embedded in family, social, and dietary traditions.
Collapse
Affiliation(s)
- Shuxian Zhang
- School of Nursing, Jinan University, Guangzhou City, 510632, Guangdong Prov., China
| | - Yun Du
- The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Prov., China
| | - Lingli Cai
- School of Nursing, Jinan University, Guangzhou City, 510632, Guangdong Prov., China
| | - Meixue Chen
- School of Nursing, Jinan University, Guangzhou City, 510632, Guangdong Prov., China
| | - Yuanzong Song
- The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Prov., China
| | - Lilan He
- The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Prov., China
| | - Ni Gong
- School of Nursing, Jinan University, Guangzhou City, 510632, Guangdong Prov., China.
| | - Qingran Lin
- School of Nursing, Jinan University, Guangzhou City, 510632, Guangdong Prov., China. .,The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Prov., China.
| |
Collapse
|
37
|
Scorza FA, de Almeida ACG, Finsterer J, Hajjar LA. The implication of cardio-oncology on Parkinson's disease: answers begin to emerge. Clinics (Sao Paulo) 2022; 77:100085. [PMID: 35932506 PMCID: PMC9357833 DOI: 10.1016/j.clinsp.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil.
| | - Antonio-Carlos G de Almeida
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Josef Finsterer
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Klinikum Landstrasse, Messerli Institute, Vienna, Austria
| | - Ludhmila A Hajjar
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Instituto do Câncer, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|