1
|
Wang W, Jiang H, Tan Z, Yu L, Chen J, Xiao Q, Rong Q, Zhou C. Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium. Molecules 2025; 30:347. [PMID: 39860216 PMCID: PMC11767991 DOI: 10.3390/molecules30020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd2+ by modified biochar under different pH and dosages. A350 and C350 had pore changes, and B350 had a smoother surface. The polarity and Zeta potential of A350, B350, and C350 differed. B350 and C350's kinetic adsorption fit the pseudo second order model, A350's fit both the pseudo first and second order. Their isothermal adsorption fit Langmuir (B350, C350) and Freundlich (A350). Intraparticle diffusion was three-stage with single-layer chemical adsorption. The pH increase raised removal and adsorption of CK350, A350, B350, and C350. The dosage increase hiked removal but cut unit adsorption. A350 had the highest max adsorption (57.845 mg/g). All modifications enhanced Cd2+ adsorption, and the effect could be altered by adjusting pH and dosage.
Collapse
Affiliation(s)
- Wanjing Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haiyan Jiang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zebin Tan
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luyao Yu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jie Chen
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingliang Xiao
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinlei Rong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Chunhuo Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Bi W, Yin Y, Ding C, Tu X, Zhou Z, Wang X. Insights into the antagonistic effects of calcium on cadmium accumulation in peanuts (Arachis hypogaea L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122003. [PMID: 39083937 DOI: 10.1016/j.jenvman.2024.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Peanut (Arachis hypogaea L.) plant has a high requirement for calcium (Ca) during its growth and development, and possesses the ability to accumulate cadmium (Cd) from soil. However, the precise mechanisms underlying the antagonistic effects between Ca and Cd remain unclear. This study aimed to explore the dynamic changes in Cd accumulation in peanut seedlings by varying the Ca-to-Cd concentration ratio (CRCa/Cd) from 250 to 3500. Additionally, the influence of ion channel competition and cell wall fixation in the root on Cd accumulation in peanuts was explored by analyzing Cd chemical forms, subcellular distribution, pectin content, and Cd2+ fluxes using a non-invasive micro-test technique (NMT). The findings revealed that Cd accumulation in peanut seedlings was significantly lower when the CRCa/Cd was higher than 2000. In the Ca-pretreated seedlings (cell wall fixation treatment), Cd content in the shoots and roots decreased by 18.9% and 25.0%, respectively, compared with the simultaneous exposure to Ca and Cd (ion channel competition treatment). Cd2+ influx in peanut roots decreased by 55.8% in the Ca-pretreated group. However, increasing the competitive strength of Ca2+ and Cd2+ did not affect Cd2+ influx under normal Ca conditions (>2 mM Ca). Meanwhile, Ca pretreatment significantly increased Cd distribution in the root cell wall, pectate, and protein-binding forms, while significantly reducing Cd distribution in root soluble components and inorganic Cd forms. The pectin content in the roots increased by 128% and 226% in the Ca and Cd simultaneous exposure treatment and Ca pretreatment, respectively. These results suggest that Ca pretreatment enhanced Cd retention in the root cell wall. Overall, exogenous Ca effectively mitigated Cd accumulation in peanut plants when the CRCa/Cd was below 2000, and Ca2+ channels partially facilitate the entry of Cd2+ into peanut roots. Under normal Ca supply conditions, exogenous Ca reduced Cd accumulation in peanuts primarily through root cell wall fixation rather than ion channel competition. Our findings provide insights into the mechanism by which Ca alleviates the uptake and transfer of Cd in peanuts.
Collapse
Affiliation(s)
- Weidong Bi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuepeng Yin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangming Tu
- Agricultural Ecology and Resource Protection Agency of Jiangxi Province, Nanchang, 330046, China
| | - Zhigao Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Xingxiang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, China
| |
Collapse
|
3
|
Liu H, Wang H, Nie Z, Tao Z, Peng H, Shi H, Zhao P, Liu H. Combined application of arbuscular mycorrhizal fungi and selenium fertilizer increased wheat biomass under cadmium stress and shapes rhizosphere soil microbial communities. BMC PLANT BIOLOGY 2024; 24:359. [PMID: 38698306 PMCID: PMC11067182 DOI: 10.1186/s12870-024-05032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.
Collapse
Affiliation(s)
- Haiyang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Haoquan Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Zhaojun Nie
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Zhikang Tao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Hongyu Peng
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Jahantigh M, Jahromi MG, Sefidkon F, Diyanat M, Weisany W. Co-application of biochar and selenium nanoparticles improves yield and modifies fatty acid profile and essential oil composition of fennel (Foeniculum vulgare Mill.) under cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31331-31342. [PMID: 38630399 DOI: 10.1007/s11356-024-33270-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 10/27/2024]
Abstract
Fatty acids and essential oils (EOs) are the primary variables that influence the quality of fennel (Foeniculum vulgare Mill.). Soil toxicity to cadmium (Cd) is the main environmental issue facing fennel, and priming methods like soil amendments and nanoparticles (NPs) are commonly utilized to deal with it. The goal of the current study was to examine the effects of biochar (BC) and selenium nanoparticles (Se NPs) on fennel plants in Cd-contaminated soils. The pot experiment was conducted with Cd stress at 0, 10, and 20 mg kg-1 soil, BC at 5% (v/v), and foliar-spraying Se NPs at 40 mg L-1 as a factorial completely randomized design (CRD) at a greenhouse condition in 2022. The findings demonstrated that Cd toxicity significantly decreased plant performance, while BC and Se NPs enhanced it. Without BC and Se NPs, Cd toxicity at 20 mg kg-1 soil decreased biological yield (39%), seed yield (37%), EO yield (32%), and monounsaturated fatty acids (14%), while increased saturated fatty acid (26%) and polyunsaturated fatty acids (40%) of fennel. The main EO profile was anethole (65.32-73.25%), followed by limonene (16.12-22.07%), fenchone (5.57-6.83%), and estragole (2.25-3.65%), which mainly were oxygenated monoterpenes. The combined application of BC and Se NPs improved the yield, EO production, and fatty acid profile of fennel plants under Cd stress, increasing the plants' resistance to Cd toxicity.
Collapse
Affiliation(s)
- Masoumeh Jahantigh
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Sefidkon
- Department of Medicinal Plants, Agricultural Research Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands, Tehran, Iran
| | - Marjan Diyanat
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Huang Z, Meng S, Huang J, Zhou W, Song X, Hao P, Tang P, Cao Y, Zhang F, Li H, Tang Y, Sun B. Transcriptome Analysis Reveals the Mechanism of Exogenous Selenium in Alleviating Cadmium Stress in Purple Flowering Stalks ( Brassica campestris var. purpuraria). Int J Mol Sci 2024; 25:1800. [PMID: 38339079 PMCID: PMC10855379 DOI: 10.3390/ijms25031800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| |
Collapse
|
6
|
Chen P, Shaghaleh H, Hamoud YA, Wang J, Pei W, Yuan X, Liu J, Qiao C, Xia W, Wang J. Selenium-Containing Organic Fertilizer Application Affects Yield, Quality, and Distribution of Selenium in Wheat. Life (Basel) 2023; 13:1849. [PMID: 37763253 PMCID: PMC10532816 DOI: 10.3390/life13091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to investigate the effect on wheat yield of applying organic fertilizers (OF) with five different selenium (Se) concentrations. The mineral nutrients, cadmium (Cd) content, and the distribution of Se in wheat plants were also measured. The results showed that wheat yields reached a maximum of 9979.78 kg ha-1 in Mengcheng (MC) County and 8868.97 kg ha-1 in Dingyuan (DY) County, Anhui Province, China when the application amount of selenium-containing organic fertilizer (SOF) was up to 600 kg ha-1. Among the six mineral nutrients measured, only the calcium (Ca) content of the grains significantly increased with an increase in the application amount of SOF in the two regions under study. Cd content showed antagonistic effects with the Se content of wheat grains, and when the SOF was applied at 1200 kg ha-1, the Cd content of the grains was significantly reduced by 30.1% in MC and 67.3% in DY, compared with under the Se0 treatment. After application of SOF, the Se content of different parts of the wheat plant ranked root > grain > spike-stalk > glume > leaf > stem. In summary, SOF application at a suitable concentration could increase wheat yields and significantly promote the Ca content of the grains. Meanwhile, the addition of Se effectively inhibited the level of toxic Cd in the wheat grains.
Collapse
Affiliation(s)
- Peng Chen
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing 210098, China;
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
| | - Jing Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Wenxia Pei
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Xianfu Yuan
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Jianjian Liu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Cece Qiao
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Wenhui Xia
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| |
Collapse
|
7
|
The Synergistic Effect of Biochar-Combined Activated Phosphate Rock Treatments in Typical Vegetables in Tropical Sandy Soil: Results from Nutrition Supply and the Immobilization of Toxic Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116431. [PMID: 35682013 PMCID: PMC9180871 DOI: 10.3390/ijerph19116431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022]
Abstract
Sandy soils in tropical areas are more vulnerable to potential toxic elements as a result of their low nutrition. The composite addition of biochar and phosphate material is considered a promising method of immobilizing toxic metals in sandy soils, but the synergistic effects of this process still need to be further explored, especially in typical tropical vegetables. In this study, a pot experiment was conducted to evaluate the agronomic and toxic metal-immobilization effects of single amendments (phosphate rock, activated phosphate rock, and biochar) and combined amendments, including biochar mixed with phosphate rock (BCPR) and biochar mixed with activated phosphate rock (BCAPR), on vegetables grown in tropical sandy soil. Among these amendments, the composite amendment BCAPR was the most effective for increasing Ca, Mg, and P uptake based on water spinach (Ipomoea aquatica L.) and pepper (Capsicum annuum L.), showing increased ratios of 22.5%, 146.0%, and 136.0%, respectively. The SEM-EDS and FTIR analysis verified that the activation process induced by humic acid resulted in the complexation and chelation of the elements P, Ca, and Mg into bioavailable forms. Furthermore, the retention of available nutrition elements was enhanced due to the strong adsorption capacity of the biochar. In terms of cadmium (Cd) and lead (Pb) passivation, the formation of insoluble mineral precipitates reduced the mobility of these metals within the BCAPR treatments, with the maximum level of extractable Cd (86.6%) and Pb (39.2%) reduction being observed in the tropical sandy soil. These results explore the use of sustainable novel cost-effective and highly efficient bi-functional mineral-based soil amendments for metal passivation and plant protection.
Collapse
|