1
|
Quds R, Sharma M, Mahmood R. Cytoprotective effect of l-carnitine against mancozeb-induced oxidative damage in human erythrocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106301. [PMID: 40015893 DOI: 10.1016/j.pestbp.2025.106301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
Mancozeb is a commonly used fungicide that protects crops from numerous fungal pathogens. However, due to its widespread application, mancozeb has emerged as a significant human health hazard. Mancozeb causes oxidative damage to human cells, including erythrocytes. In this study, we have investigated the cytoprotective potential of the dietary antioxidant, l-carnitine, on mancozeb-induced oxidative damage in human erythrocytes. Incubation of erythrocytes with 100 μM mancozeb for 24 h caused a substantial elevation of markers of hemoglobin, lipid and protein oxidation. Intracellular levels of reactive oxygen and nitrogen species were considerably increased, and the antioxidant defense system of erythrocytes was severely compromised. Several enzymes catalyzing vital metabolic processes in erythrocytes were significantly inhibited. Mancozeb damaged the plasma membrane, increasing osmotic fragility and cell lysis. Membrane damage resulted in morphological transformation of the normal biconcave erythrocytes to echinocytes and stomatocytes. Erythrocytes incubated with l-carnitine (100-750 μM) for 2 h prior to mancozeb treatment showed a marked reduction in oxidative damage. l-carnitine effectively neutralized free radicals and reactive species, thereby significantly diminishing oxidative stress. The activities of antioxidant and metabolic enzymes were also restored. Preincubation with l-carnitine stabilized the erythrocyte membrane and maintained its standard biconcave shape. Incubation of erythrocytes with l-carnitine alone did not alter any of the above parameters. Thus, l-carnitine can serve as an effective protectant against pesticide-induced cytotoxicity in human erythrocytes.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
2
|
Liviz CDAM, Maciel GM, Pinheiro DF, Lima NF, Ribeiro IS, Haminiuk CWI. Pesticide residues in grapes and wine: An overview on detection, health risks, and regulatory challenges. Food Res Int 2025; 203:115771. [PMID: 40022316 DOI: 10.1016/j.foodres.2025.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 03/03/2025]
Abstract
Grapes are fruits widely grown and known throughout the world, and they have significant economic and nutritional value. However, grapes are highly susceptible to attack by pests and insects, which reduces production and product quality. Pesticides are the most utilized solution for meeting global consumption demands and avoiding losses, and they can be used at any production stage. Although the benefits of using pesticides in grape production are evident, the prescribed limits must be observed to minimize their harmful effects on human health, as the accumulation of these compounds in the body over the long term can decrease life expectancy. This review of the literature intends to give a comprehensive analysis of pesticide residues in grape juice and wine, investigate analytical methodologies for pesticide detection, and set maximum residue limits (MRLs). Furthermore, the impacts of pesticide use and exposure to residues on the gut microbiota and adverse effects on human health were examined. Finally, insights into advances in detection and removal methods to mitigate the impact of pesticide residues in grape wine were presented. This review considers future perspectives in the field, including the development of safe and sustainable pesticides, with the improvement of international regulations to ensure food safety, aiming to expand pre-existing knowledge to provide more sustainable agricultural practices, encouraging global wine production. The target audience for this review includes researchers and academics, professionals in the agricultural and wine industry, regulators and government authorities, health professionals, and health and food safety-conscious consumers.
Collapse
Affiliation(s)
- Cleber do Amaral Mafessoni Liviz
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil
| | - Débora Fernandes Pinheiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Isabela Sampaio Ribeiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | | |
Collapse
|
3
|
Ma J, Xiang S, Shi Y, Xie X, Chai A, Li L, Li B, Fan T. Application of ultra-low-volume spray for the control of vegetable disease in greenhouse: Investigation of formulation performance and potential dermal exposure. PEST MANAGEMENT SCIENCE 2024; 80:2761-2772. [PMID: 38314954 DOI: 10.1002/ps.7983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The use of pesticides in greenhouse vegetable cultivation is necessary and significant. However, traditional pesticide application methods such as the use of backpack sprayers with water-diluted pesticides have certain drawbacks, e.g., uneven distribution, high labor intensity, and safety risks. RESULTS In this work, fluazinam ultra-low-volume liquids (Flu-ULVs) were prepared using oily solvents as carriers. The effects of different oils on the physical properties of the preparations were investigated. The Flu-ULV can be sprayed directly using a hand-held ultra-low-volume (ULV) sprayer without dilution with water. Compared with commercial water-based suspension concentrates of fluazinam, the Flu-ULV samples showed better wetting of tomato leaves, better atomization, and more uniform droplet distribution. At a dosage of 300 mL/ha, the coverage rate of tomato leaves ranged from 32.47% to 79.3%, with a droplet deposition density of 556 to 2017 droplets/cm2. Application of Flu-ULVs provided 70.86% control efficacy against gray mold in tomatoes, which was higher than those achieved with reference products. Dermal exposure to Flu-ULVs was also evaluated in greenhouse experiments. The coverage rates for all parts of the operator's body ranged from 0.02% to 0.07%, with deposition volumes of 2.23 to 12.26 μg/cm2. CONCLUSION Ground ULV spraying of fluazinam was proved to be an effective and safe management option for the control of tomato gray mold in greenhouses. This study laid a foundation for the use of ultra-low volume spray to control vegetable diseases in greenhouse, especially those induced by high humidity environment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayi Ma
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Quds R, Iqbal Z, Arif A, Mahmood R. Mancozeb-induced cytotoxicity in human erythrocytes: enhanced generation of reactive species, hemoglobin oxidation, diminished antioxidant power, membrane damage and morphological changes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105453. [PMID: 37248021 DOI: 10.1016/j.pestbp.2023.105453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Mancozeb is an ethylene bis-dithiocarbamate fungicide extensively used in agriculture to safeguard crops from various fungal diseases. The general population is exposed to mancozeb through consumption of contaminated food or water. Here, we have investigated the effect of mancozeb on isolated human erythrocytes under in vitro conditions. Erythrocytes were treated with different concentrations of mancozeb (0, 5, 10, 25, 50, 100 μM) and incubated for 24 h at 37 °C. Analysis of biochemical parameters and cell morphology showed dose-dependent toxicity of mancozeb in human erythrocytes. Mancozeb treatment caused hemoglobin oxidation and heme degradation. Protein and lipid oxidation were enhanced, while a significant decrease was seen in reduced glutathione and total sulfhydryl content. A significant increase in the generation of reactive oxygen and nitrogen species was detected in mancozeb-treated erythrocytes. The antioxidant capacity and the activity of key antioxidant enzymes were greatly diminished, while crucial metabolic pathways were inhibited in erythrocytes. Damage to the erythrocyte membrane on mancozeb treatment was apparent from increased cell lysis and osmotic fragility, along with the impairment of the plasma membrane redox system. Mancozeb also caused morphological alterations and transformed the normal discoid-shaped erythrocytes into echinocytes and stomatocytes. Thus, mancozeb induces oxidative stress in human erythrocytes, impairs the antioxidant defense system, oxidizes cellular components, that will adversely affect erythrocyte structure and function.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
5
|
Akhtar M, Trombetta LD. Low Level Mancozeb Exposure Causes Copper Bioaccumulation in the Renal Cortex of Rats Leading to Tubular Injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104148. [PMID: 37182728 DOI: 10.1016/j.etap.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Mancozeb is a widely-used, broad-spectrum contact dithiocarbamate fungicide. Dithiocarbamates are known to trans-chelate metals. This study was designed to evaluate the potential of Mancozeb to mobilize and bioaccumulate essential trace metals in various tissues. Long-Evans rats were orally gavaged with 0, 50, or 100mg/kg/day of Mancozeb for 28 days. Mancozeb caused a significant increase in copper and manganese in the hippocampus and manganese in the liver. Exceedingly higher level of copper was detected in the renal cortex using ICP-OES in both dose groups. This was confirmed histologically in the tubular epithelial cells. In addition, copper-associated protein levels were also increased. Copper bioaccumulation in the renal cortex was accompanied by oxidative damage and tubular insult indicated by increased 4-HNE, KIM-1, and NGAL immunoreactivity. These findings demonstrate that low-dose Mancozeb exposure is a potential risk for kidney injury due to copper overload and warrants further in vivo and human population-based investigations.
Collapse
Affiliation(s)
- Mumtaz Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|