1
|
Calaf GM. Role of organophosphorous pesticides and acetylcholine in breast carcinogenesis. Semin Cancer Biol 2021; 76:206-217. [PMID: 33766648 DOI: 10.1016/j.semcancer.2021.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Several studies have addressed the association between cancer in humans and agricultural pesticide exposure. Evidence indicates that exposure to organophosphorous pesticides such as parathion and malathion occurs as a result of occupational factors since they are extensively used to control insects. On the other hand, estrogens have been considered beneficial to the organism; however, epidemiological studies have pointed out an increased breast cancer risk in both humans and animals. Experimental female rat mammary gland cancer models were developed after exposure to parathion, malathion, eserine, an acetylcholinesterase inhibitor, and estrogen allowing the analysis of the signs of carcinogenicity as alteration of cell proliferation, receptor expression, genomic instability, and cell metabolism in vivo and in vitro. Thus, pesticides increased proliferative ducts followed by ductal carcinoma; and 17β-estradiol increased proliferative lobules followed by lobular carcinomas. The combination of both pesticides and either eserine or estrogen induced tumors with both types of structures followed by mammary gland tumors and metastasis to the lung and kidneys after 240 days of a 5-day treatment. Studies also showed that these pesticides and eserine decreased three to five times the acetylcholinesterase activity in the serum compared to controls whereas terminal end buds increased in number, being inhibited by atropine. Genomic instability was analyzed in such tissues (mp53, CYP1A2, c-myc, c-fos, ERα, M2R) and pesticides increased protein expression that was stimulated by estrogens but inhibited by atropine. Eserine also transformed the epithelium of the rat mammary gland in the presence of estrogen and increased the number of terminal end buds after treatment inducing mammary carcinomas. Then, enzymatic digestion of such structures gave rise to cells with increased DNA synthesis and induced anchorage independence. Thus, there were changes in the epithelium of the mammary gland influencing breast carcinogenesis. Furthermore, these substances and acetylcholine also showed the signs of carcinogenicity in vitro as cell proliferation, receptor expression (ERα, ErbB2, M2R), genomic instability (c-myc, mp53, ERα, M2R), and cell metabolism. A unique cellular model is also presented here based on the use of MCF-10 F, a non-tumorigenic cell line that represents a valuable clinically translatable experimental approach that identifies mechanistic links for pesticides and estrogen as suspect human carcinogenic agents.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile; Center for Radiological Research, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Maggen C, Linssen J, Gziri MM, Zola P, Cardonick E, de Groot CJM, Garcia AC, Fruscio R, Drochytek V, Van Calsteren K, Albersen M, Amant F. Renal and Bladder Cancer During Pregnancy: A Review of 47 Cases and Literature-based Recommendations for Management. Urology 2020; 151:118-128. [PMID: 33203520 DOI: 10.1016/j.urology.2020.08.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To provide contemporary gestational age-specific recommendations for management, a retrospective series of patients with renal or bladder cancer during pregnancy is reported. METHODS Obstetric and oncological data of pregnant patients with a diagnosis of renal or bladder cancer were selected from the worldwide registry of the International Network of Cancer, Infertility and Pregnancy. In addition, the literature was reviewed for recent case reports since last reviews in 2014 for renal cancer and 2004 for bladder cancer. RESULTS International Network of Cancer, Infertility and Pregnancy registered 22 cases (14 renal cancer and 8 bladder cancer), diagnosed between 1999 and 2017, and the literature reported 15 cases with renal cancer and 10 cases with bladder cancer between 2004 and 2019. Most common symptoms for renal and bladder cancer were pain (28%) and hematuria (66%), respectively. In more than half of the patients, surgical treatment was performed during pregnancy. Preterm deliveries were mostly medically induced (12 of 17, 71%) and all patients with a planned delivery before 34 weeks had advanced cancer. For renal and bladder cancer respectively, 79% and 87% of patients obtained complete remission. Advanced cancer stages had worse prognosis; 3 of 7 patients with known follow-up deceased within 15 months after diagnosis. CONCLUSION Gestational age at diagnosis determines further management of renal and bladder cancers during pregnancy. Advanced stages challenge decision-making. The maternal needs for immediate treatment, and the neonatal risks including the impact of a preterm delivery should be discussed in a multidisciplinary setting while respecting the patient's autonomy.
Collapse
Affiliation(s)
- Charlotte Maggen
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jasmijn Linssen
- Department of Gynecological Oncology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Mina Mhallem Gziri
- Department of Obstetrics, Cliniques Universitaires St Luc, UCL, Sint-Lambrechts-Woluwe, Belgium
| | - Paolo Zola
- Department Surgical Sciences, University of Torino, Torino, Italy
| | - Elyce Cardonick
- Department of Obstetrics and Gynecology, Cooper, University Health Care, Camden, New Jersey, USA
| | - Christianne J M de Groot
- Department of Obstetrics and Gynecology, and Amsterdam Reproduction and Development, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alvaro Cabrera Garcia
- Hospital Regional de Alta Especialidad de Ixtapaluca (HRAEI) " Reference clinic for hemato-oncological diseases during pregnancy CREHER" Estado de México, México
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, University of Milan - Bicocca, San Gerardo Hospital, Monza, Italy
| | - Vit Drochytek
- Faculty Hospital Kralovske, Vinohrady and 3rd Medical Faculty, Charles University, Prague, Czech Republic
| | - Kristel Van Calsteren
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Amant
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of Gynecological Oncology, Amsterdam University Medical Centres, Amsterdam, The Netherlands; Department of Gynecological Oncology, Amsterdam University Medical Centres, Amsterdam, The Netherlands and the Department of Gynecology, Antoni van Leeuwenhoek - Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Bastos PL, Bastos AFTDL, Gurgel ADM, Gurgel IGD. Carcinogenicity and mutagenicity of malathion and its two analogues: a systematic review. CIENCIA & SAUDE COLETIVA 2020; 25:3273-3298. [PMID: 32785560 DOI: 10.1590/1413-81232020258.10672018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/11/2018] [Indexed: 11/22/2022] Open
Abstract
Malathion has been widely used worldwide in arbovirus control programs. In 2015, it was classified by the International Agency for Research on Cancer (IARC) as a probable carcinogen to humans. This work aimed to systematize the evidence of the carcinogenic and mutagenic effects associated with the exposure of malathion and its analogs, malaoxon and isomalathion. The search was carried out in Toxline, PubMed and Scopus databases for original papers published from 1983 to 2015. In all, 73 papers were selected from a total of 273 eligible papers. The results of in vitro and in vivo studies showed mainly genetic and chromosomal damages caused by malathion. The epidemiological studies evidenced significant positive associations for thyroid, breast, and ovarian cancers in menopausal women. This evidence of the carcinogenic effect of malathion should be considered before its use in arbovirus control programs.
Collapse
Affiliation(s)
- Priscilla Luna Bastos
- Secretaria Estadual de Saúde de Pernambuco. R. Dona Maria Augusta Nogueira 519, Bongi. 50751-530 Recife PE Brasil.
| | | | | | | |
Collapse
|
4
|
Calaf GM, Bleak TC, Muñoz JP, Aguayo F. Markers of epithelial-mesenchymal transition in an experimental breast cancer model induced by organophosphorous pesticides and estrogen. Oncol Lett 2020; 20:84. [PMID: 32863917 PMCID: PMC7436934 DOI: 10.3892/ol.2020.11945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a major health problem and accounted for 11.6% of all new cancer cases and 6.6% of all cancer deaths among women worldwide in 2018. However, its etiology has remained elusive. According to epidemiological studies, environmental factors are influencing the increase in the incidence of breast cancer risk. Components such as chemicals, including pesticides, are agents that produce deleterious effects on wildlife and humans. Among them, the organophosphorus pesticides, such as malathion, have largely been considered in this etiology. The epithelial-mesenchymal transition serves a key role in tumor progression and it is proposed that malathion is closely associated with the origin of this transition, among other causes. Moreover, proteins participating in this process are primordial in the transformation of a normal cell to a malignant tumor cell. The aim of the current study was to evaluate markers that indicated oncogenic properties. The results indicated greater expression levels of proteins associated with the epithelial-to-mesenchymal transition, including E-cadherin, Vimentin, Axl, and Slug in the rat mammary glands treated with malathion alone and combined with estrogen. Atropine was demonstrated to counteract the malathion effect as a muscarinic antagonist. The understanding of the use of markers in experimental models is crucial to identify different stages in the cancer process. The alteration of these markers may serve as a predicting factor that can be used to indicate whether a person has altered ducts or lobules in breast tissue within biopsies of individuals exposed to OPs or other environmental substances.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile.,Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
5
|
Wang R, Li S, Cheng L, Wong MH, Leung KS. Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning. BMC Bioinformatics 2019; 20:628. [PMID: 31839008 PMCID: PMC6912989 DOI: 10.1186/s12859-019-3283-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Development of new drugs is a time-consuming and costly process, and the cost is still increasing in recent years. However, the number of drugs approved by FDA every year per dollar spent on development is declining. Drug repositioning, which aims to find new use of existing drugs, attracts attention of pharmaceutical researchers due to its high efficiency. A variety of computational methods for drug repositioning have been proposed based on machine learning approaches, network-based approaches, matrix decomposition approaches, etc. RESULTS: We propose a novel computational method for drug repositioning. We construct and decompose three-dimensional tensors, which consist of the associations among drugs, targets and diseases, to derive latent factors reflecting the functional patterns of the three kinds of entities. The proposed method outperforms several baseline methods in recovering missing associations. Most of the top predictions are validated by literature search and computational docking. Latent factors are used to cluster the drugs, targets and diseases into functional groups. Topological Data Analysis (TDA) is applied to investigate the properties of the clusters. We find that the latent factors are able to capture the functional patterns and underlying molecular mechanisms of drugs, targets and diseases. In addition, we focus on repurposing drugs for cancer and discover not only new therapeutic use but also adverse effects of the drugs. In the in-depth study of associations among the clusters of drugs, targets and cancer subtypes, we find there exist strong associations between particular clusters. CONCLUSIONS The proposed method is able to recover missing associations, discover new predictions and uncover functional clusters of drugs, targets and diseases. The clustering of drugs, targets and diseases, as well as the associations among the clusters, provides a new guiding framework for drug repositioning.
Collapse
Affiliation(s)
- Ran Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuai Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Lixin Cheng
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Ji’nan University, Shenzhen, China
| | - Man Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwong Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Zheng Y, Yuan J, Meng S, Chen J, Gu Z. Testicular transcriptome alterations in zebrafish (Danio rerio) exposure to 17β-estradiol. CHEMOSPHERE 2019; 218:14-25. [PMID: 30465971 DOI: 10.1016/j.chemosphere.2018.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The hormone 17β-estradiol (E2) can be found in rivers, effluents, and even drinking water. Researches have demonstrated that E2 affects various metabolic pathways through gene activation and may cause reproductive toxicity in fish. Therefore, the aim of this study was to evaluate E2-induced toxicity via testicular transcriptome of zebrafish (Danio rerio) exposed to different concentrations (10 ng L-1, and 100 ng L-1) of E2. A total of >600 significant differentially expressed genes (DEGs) were enriched among the three treatments. Short time-series expression miner analysis revealed five KEGG pathways including drug metabolism, other enzymes, calcium signaling pathway, ECM-receptor interaction, gap junction, and cell adhesion molecules. Twenty genes were selected to verify the accuracy of RNA-Seq. Other reported genes related to sex differentiation, development, energy metabolism, and other processes were found. One set of genes significantly increased/decreased/fluctuated over time, especially 12 h after E2 exposure. Genes associated with ovaries (zp3c), and development (bmp15, gdf9, and sycp2l) were significantly upregulated with increasing E2 concentration. E2 and testosterone was significantly decreased by 10 (except for T) and 100 ng L-1 E2 exposure at 12 h. The current study demonstrated that sex differentiation, development, energy metabolism, immunity, and ribosome biogenesis in male zebrafish were all significantly affected by 17β-estradiol exposure through transcriptional alterations.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100039, China.
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|
7
|
Georgiadis G, Mavridis C, Belantis C, Zisis IE, Skamagkas I, Fragkiadoulaki I, Heretis I, Tzortzis V, Psathakis K, Tsatsakis A, Mamoulakis C. Nephrotoxicity issues of organophosphates. Toxicology 2018; 406-407:129-136. [PMID: 30063941 DOI: 10.1016/j.tox.2018.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/15/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Organophosphates are a large class of chemicals, initially invented in 1850 and since then they have been applied in numerous aspects of science to serve our purposes. Their mechanism of action in living organisms involves the irreversible inhibition of acetylcholinesterase, therefore they interfere with neuromuscular signal transmission. Due to the systematic and exaggerated use of these chemicals, there is massive exposure to them, hence there is great concern regarding the ramifications to all mammalian organisms. It has been widely accepted that over-exposure to organophosphates, has a deleterious impact on the renal tissue and subsequently on the renal function. Despite the significance of this global issue, limited knowledge exists, regarding the effect of these substances on our health. Therefore, new and extensive research is required to expand our knowledge and ensure proper guidance regarding the use of organophosphates as well the protection against their detrimental consequences. The aim of this review is to negotiate the effect of organophosphate exposure on renal tissue and kidney function.
Collapse
Affiliation(s)
- G Georgiadis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - C Mavridis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - C Belantis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - I E Zisis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - I Skamagkas
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - I Fragkiadoulaki
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; Department of Forensic Sciences and Toxicology, University of Crete, Medical School, Heraklion, Crete, Greece
| | - I Heretis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | - V Tzortzis
- Department of Urology, University of Thessaly, Larissa, Greece
| | - K Psathakis
- Department of Forensic Sciences and Toxicology, University of Crete, Medical School, Heraklion, Crete, Greece
| | - A Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Medical School, Heraklion, Crete, Greece.
| | - C Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| |
Collapse
|
8
|
Hegazy R, Salama A, Mansour D, Hassan A. Renoprotective Effect of Lactoferrin against Chromium-Induced Acute Kidney Injury in Rats: Involvement of IL-18 and IGF-1 Inhibition. PLoS One 2016; 11:e0151486. [PMID: 26990190 PMCID: PMC4798745 DOI: 10.1371/journal.pone.0151486] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Hexavalent chromium (CrVI) is a heavy metal widely used in more than 50 industries. Nephrotoxicity is a major adverse effect of chromium poisoning. The present study investigated the potential renoprotective effect of lactoferrin (Lf) against potassium dichromate (PDC)-induced acute kidney injury (AKI) in rats. Beside, because previous studies suggest that interlukin-18 (IL-18) and insulin-like growth factor-1 (IGF-1) play important roles in promoting kidney damage, the present work aimed to evaluate the involvement of these two cytokines in PDC model of AKI and in the potential renoprotective effect of lactoferrin. Adult male albino Wistar rats were pretreated with Lf (200mg/kg/day, p.o.) or (300mg/kg/day, p.o.); the doses that are usually used in the experiment studies, for 14 days followed by a single dose of PDC (15mg/kg, s.c.). PDC caused significant increase in serum urea, creatinine, and total protein levels. This was accompanied with decreased renal glutathione content, and increased renal malondialdehyde, IL-18, IL-4, nuclear factor kappa B (NFκB), IGF-1, and the phosphorylated form of forkhead box protein O1 (FoxO1) levels. Moreover, normal expression IFN-γ mRNA and enhanced expression of TNF-α mRNA was demonstrated in renal tissues. Histopathological investigations provoked deleterious changes in the renal tissues. Tubular epithelial hyperplasia and apoptosis were demonstrated immunohistochemically by positive proliferating cell nuclear antigen (PCNA), Bax, and Caspase-3 expression, respectively. Pretreatment of rats with Lf in both doses significantly corrected all previously mentioned PDC-induced changes with no significant difference between both doses. In conclusion, the findings of the present study demonstrated the involvement of oxidative stress, inflammatory reactions, tubular hyperplasia and apoptosis in PDC-induced AKI. It suggested a role of IL-18 through stimulation of IL-4-induced inflammatory pathway, and IGF-1 through triggering FoxO1-induced cell proliferation. Moreover, the study revealed that Lf protected the kidney against Cr-induced AKI in rats and significantly showed antioxidant, anti-inflammatory, and anti-proliferative properties with down-regulation of IL-18 and IGF-1.
Collapse
Affiliation(s)
- Rehab Hegazy
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
- * E-mail:
| | - Abeer Salama
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Dina Mansour
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Bian C, Zhao Y, Guo Q, Xiong Y, Cai W, Zhang J. Aromatase inhibitor letrozole downregulates steroid receptor coactivator-1 in specific brain regions that primarily related to memory, neuroendocrine and integration. J Steroid Biochem Mol Biol 2014; 141:37-43. [PMID: 24434281 DOI: 10.1016/j.jsbmb.2013.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/26/2013] [Accepted: 12/27/2013] [Indexed: 01/15/2023]
Abstract
As one of the third generation of aromatase inhibitors, letrozole is a favored drug for the treatment of hormone receptor-positive breast cancer with some adverse effects on the nervous system, but the knowledge is limited and the results are controversial, the mechanism underlying its central action is also unclear. Accumulated evidences have demonstrated that estrogens derived from androgens by aromatase play profound roles in the brain through their receptors, which needs coactivator for the transcription regulation, among which steroid receptor coactivator-1 (SRC-1) has been shown to be multifunctional potentials in the brain, but whether it is regulated by letrozole is currently unknown. In this study, we examined letrozole regulation on SRC-1 expression in adult mice brain using immunohistochemistry. The results showed that letrozole induced dramatic decrease of SRC-1 in the medial septal, hippocampus, medial habenular nucleus, arcuate hypothalamic nucleus and superior colliculus (p<0.01). Significant decrease was detected in the dorsal lateral septal nucleus, bed nucleus of stria terminalis, ventral taenia tecta, dorsomedial and ventromedial hypothalamic nuclei, dorsomedial periaqueductal gray, superior paraolivary nucleus and pontine nucleus (p<0.05). In the hippocampus, levels of estradiol content, androgen receptor, estrogen receptor α and β also decreased significantly after letrozole injection. The above results demonstrated letrozole downregulation of SRC-1 in specific regions that are primarily related to learning and memory, cognition and mood, neuroendocrine as well as information integration, indicating that SRC-1 may be one important downstream central target of letrozole. Furthermore, these potential central adverse effects of letrozole should be taken into serious considerations.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Qiang Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Wenqin Cai
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|