1
|
Hasan HJ, Ghareeb MM. Optimizing Desolvation Conditions for Glutathione-Cross-Linked Bovine Serum Albumin Nanoparticles: Implication for Intravenous Drug Delivery. Cureus 2024; 16:e69514. [PMID: 39416524 PMCID: PMC11481410 DOI: 10.7759/cureus.69514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Protein-based nanocarriers, particularly albumin nanoparticles (NPs), offer numerous advantages when compared to other nanomaterials. These carriers are characterized by biocompatibility, biodegradability, reduced immunogenicity, and decreased cytotoxicity. Moreover, proteins possess an inherent ability to target tumor cells directly or indirectly. AIM This study aims to investigate the impact of various organic solvents on the characteristics of synthesized bovine serum albumin NPs (BSA NPs). METHOD BSA NPs were produced using methanol, acetone, ethanol, dimethylsulfoxide (DMSO), and acetonitrile through the desolvation technique to achieve particles of acceptable size. Dynamic light scattering (DLS), blood compatibility assays, polyacrylamide gel electrophoresis (PAGE), and size exclusion chromatography (SEC) were employed to elucidate the properties of the generated NPs. The cytotoxicity of BSA NPs prepared under different conditions was assessed using Michigan Cancer Foundation - Mammary Adenocarcinoma - Breast Cancer 231 cells (MDA-MB-231 cells). RESULTS The particle size of the synthesized NPs varied based on the organic solvent utilized, with the smallest size of 114.2 nm observed with methanol. Blood compatibility results indicated no abnormal interactions between BSA NPs and blood components. PAGE analysis revealed a strong band near 72 kDa for untreated BSA and BSA treated with all organic solvents. In SEC, the retention time of native albumin was 6.65 min, while the average retention times of the prepared BSA NPs ranged from 5.14 to 5.21 min, showing similarity to the native protein. Except for NPs produced with methanol and acetonitrile, cytotoxicity testing on MDA-MB-231 cells demonstrated no significant harmful effects at various concentrations (0-500 μg/mL). CONCLUSION The choice of desolvating agent significantly influences the size of BSA NPs. Various factors, such as solvent characteristics like hydrogen bonds, polarity, dielectric constant, and functional groups, can affect the particle size and structure of BSA NPs. The compatibility of cross-linked BSA NPs with blood components suggests their potential for intravenous drug delivery applications.
Collapse
Affiliation(s)
- Hamid J Hasan
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Oncology Teaching Hospital - Medical City, Baghdad, IRQ
| | - Mowafaq M Ghareeb
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, IRQ
| |
Collapse
|
2
|
Gupta M, Choudhury B, Navani NK. Production and characterization of an organic solvent activated protease from haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR. Heliyon 2024; 10:e25084. [PMID: 38314259 PMCID: PMC10837622 DOI: 10.1016/j.heliyon.2024.e25084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
An unusual haloalkaliphilic bacterium known as Halobiforma sp. strain BNMIITR, which was noticed to produce an extracellular alkaline protease, was found in a soil sample from Northern India's Sambhar Lake. On the generation of protease, the effects of dietary elements including nitrogen and carbon sources, amino acids, and growth conditions like temperature and pH were investigated. When low-cost agricultural by-products were employed as nitrogen sources, the manufacturing of enzymes was significantly boosted. In the present study, protease production was enhanced by 2.94 fold and 2.17 fold. By solvent precipitation and Hydrophobic interaction chromatography (HIC) on Phenyl Sepharose 6 Fast Flow matrix, the enzyme was purified 31.67 fold. It was determined that the apparent molecular mass was 21 kDa. The pH range where the enzyme was most stable was 6.0-12.0, with a temperature of 50 °C as optimum. When there was alkaline earth metals and heavy metals, protease was discovered to be active. It was evident that the enzyme was a serine type of protease because it was active in the presence of a variety of surfactants, oxidizing and reducing chemicals, and phenylmethylsulfonyl fluoride (PMSF) completely inhibited activity. Enzyme exhibited a wide range of substrate specificity. Amazingly, enzyme remained stable both in polar and nonpolar solvents. The most interesting aspect of this enzyme is enhanced activity in polar solvents like dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). It was discovered that the protease was stable and compatible with a number of widely available detergents.
Collapse
Affiliation(s)
- Meenu Gupta
- Botany Department, J. D. Women's College Patna, Bihar, 800023, India
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Bijan Choudhury
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
3
|
Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, Singh SP. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int J Biol Macromol 2023; 238:124051. [PMID: 36933597 DOI: 10.1016/j.ijbiomac.2023.124051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.
Collapse
Affiliation(s)
- Bhavtosh Kikani
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395 007, Gujarat, India
| | - Jignasha Thumar
- Government Science College, Gandhinagar 382 016, Gujarat, India
| | - Hitarth Bhatt
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Microbiology, Faculty of Science, Atmiya University, Rajkot 360005, Gujarat, India
| | - Dalip Singh Rathore
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Gujarat Biotechnology Research Centre, Gandhinagar 382 010, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
4
|
Immobilization of Mutant Phosphotriesterase on Fuller’s Earth Enhanced the Stability of the Enzyme. Catalysts 2021. [DOI: 10.3390/catal11080983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immobilization is a method for making an enzyme more robust in the environment, especially in terms of its stability and reusability. A mutant phosphotriesterase (YT PTE) isolated from Pseudomonas dimunita has been reported to have high proficiency in hydrolyzing the Sp and Rp-enantiomers of organophosphate chromophoric analogs and therefore has great potential as a decontamination agent and biosensor. This work aims to investigate the feasibility of using Fuller’s earth (FE) as a YT PTE immobilization support and characterize its biochemical features after immobilization. The immobilized YT PTE was found to show improvement in thermal stability with a half-life of 24 h compared to that of the free enzyme, which was only 8 h. The stability of the immobilized YT PTE allowed storage for up to 4 months and reuse for up to 6 times. The immobilized YT PTE showed high tolerance against all tested metal ions, Tween 40 and 80 surfactants and inorganic solvents. These findings showed that the immobilized YT PTE became more robust for use especially with regards to its stability and reusability. These features would enhance the future applicability of this enzyme as a decontamination agent and its use in other suitable industrial applications.
Collapse
|
5
|
Panwar V, Sheikh JN, Dutta T. Sustainable Denim Bleaching by a Novel Thermostable Bacterial Laccase. Appl Biochem Biotechnol 2020; 192:1238-1254. [PMID: 32715414 DOI: 10.1007/s12010-020-03390-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
Laccases have emerged as environment-friendly multifaceted biocatalysts for diverse biotechnological applications. Here, we isolated a high molecular weight (88 kDa) extremophilic laccase (LacT) from Brevibacillus agri, with the aim to exploit its extreme characters in denim bleaching. LacT has been characterized as a thermostable, acidophilic enzyme with high salt, organic solvent, and divalent metal tolerance properties. Denim bleaching efficiency of LacT was optimum at pH 4.0 and appeared to be surpassing over other reported laccases. LacT also exhibited remarkable efficacy in the decolorization of water-soluble health hazardous azo-dyes, and thus transpired to be a promising bio-bleaching and dye decolorizing agent.
Collapse
Affiliation(s)
- Varsha Panwar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Javed Nabibaksha Sheikh
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
6
|
Biochemical and Structural Characterization of Cross-Linked Enzyme Aggregates (CLEAs) of Organic Solvent Tolerant Protease. Catalysts 2020. [DOI: 10.3390/catal10010055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cross-linked enzyme aggregates (CLEAs) is an immobilization technique that can be used to customize enzymes under an optimized condition. Structural analysis on any enzyme treated with a CLEA remains elusive and has been less explored. In the present work, a method for preparing an organic solvent tolerant protease using a CLEA is disclosed and optimized for better biochemical properties, followed by an analysis of the structure of this CLEA-treated protease. The said organic solvent tolerant protease is a metalloprotease known as elastase strain K in which activity of the metalloprotease is measured by a biochemical interaction with azocasein. Results showed that when a glutaraldehyde of 0.02% (v/v) was used under a 2 h treatment, the amount of recovered activity in CLEA-elastase was highest. The recovered activity of CLEA-elastase and CLEA-elastase-SB (which was a CLEA co-aggregated with starch and bovine serum albumin (BSA)) were at an approximate 60% and 80%, respectively. The CLEA immobilization of elastase strain K allowed the stability of the enzyme to be enhanced at high temperature and at a broader pH. Both CLEA-elastase and CLEA-elastase-SB end-products were able to maintain up to 67% enzyme activity at 60 °C and exhibiting an enhanced stability within pH 5–9 with up to 90% recovering activity. By implementing a CLEA on the organic solvent tolerant protease, the characteristics of the organic solvent tolerant were preserved and enhanced with the presence of 25% (v/v) acetonitrile, ethanol, and benzene at 165%, 173%, and 153% relative activity. Structural analysis through SEM and dynamic light scattering (DLS) showed that CLEA-elastase had a random aggregate morphology with an average diameter of 1497 nm.
Collapse
|
7
|
Wu MH, Lin MC, Lee CC, Yu SM, Wang AHJ, Ho THD. Enhancement of laccase activity by pre-incubation with organic solvents. Sci Rep 2019; 9:9754. [PMID: 31278318 PMCID: PMC6611822 DOI: 10.1038/s41598-019-45118-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Laccases that are tolerant to organic solvents are powerful bio-catalysts with broad applications in biotechnology. Most of these uses must be accomplished at high concentration of organic solvents, during which proteins undergo unfolding, thereby losing enzyme activity. Here we show that organic-solvent pre-incubation provides effective and reversible 1.5- to 4.0-fold enhancement of enzyme activity of fungal laccases. Several organic solvents, including acetone, methanol, ethanol, DMSO, and DMF had an enhancement effect among all laccases studied. The enhancement was not substrate-specific and could be observed by using both phenolic and non-phenolic substrates. Laccase preincubated with organic solvents was sensitive to high temperature but remained stable at 25 °C, for an advantage for long-term storage. The acetone-pre-incubated 3-D structure of DLac, a high-efficiency fungal laccase, was determined and confirmed that the DLac protein structure remains intact and stable at a high concentration of organic solvent. Moreover, the turnover rates of fungal laccases were improved after organic-solvent pre-incubation, with DLac showing the highest enhancement among the fungal laccases examined. Our investigation sheds light on improving fungal laccase usage under extreme conditions and extends opportunities for bioremediation, decolorization, and organic synthesis.
Collapse
Affiliation(s)
- Meng-Hsuan Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC.,Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Meng-Chun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC.,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC. .,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| |
Collapse
|
8
|
Said ZS@AM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, Ali MSM. Unravelling protein -organic solvent interaction of organic solvent tolerant elastase from Pseudomonas aeruginosa strain K crystal structure. Int J Biol Macromol 2019; 127:575-584. [DOI: 10.1016/j.ijbiomac.2019.01.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
9
|
Saxena R, Singh R. MALDI-TOF MS and CD spectral analysis for identification and structure prediction of a purified, novel, organic solvent stable, fibrinolytic metalloprotease from Bacillus cereus B80. BIOMED RESEARCH INTERNATIONAL 2015; 2015:527015. [PMID: 25802851 PMCID: PMC4352737 DOI: 10.1155/2015/527015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 12/01/2022]
Abstract
The ability to predict protein function from structure is becoming increasingly important; hence, elucidation and determination of protein structure become the major steps in proteomics. The present study was undertaken for identification of metalloprotease produced by Bacillus cereus B80 and recognition of characteristics that can be industrially exploited. The enzyme was purified in three steps combining precipitation and chromatographic methods resulting in 33.5% recovery with 13.1-fold purification of enzyme which was detected as a single band with a molecular mass of 26 kDa approximately in SDS-PAGE and zymogram. The MALDI-TOF MS showed that the enzyme exhibited 70-93% similarity with zinc metalloproteases from various strains Bacillus sp. specifically from Bacillus cereus group. The sequence alignment revealed the presence of zinc-binding region VVVHEMCHMV in the most conserved C terminus region. Secondary structure of the enzyme was obtained by CD spectra and I-TASSER. The enzyme kinetics revealed a Michaelis constant (Km) of 0.140 μmol/ml and Vmax of 2.11 μmol/min. The application studies showed that the enzyme was able to hydrolyze various proteins with highest affinity towards casein followed by BSA and gelatin. The enzyme exhibited strong fibrinolytic, collagenolytic, and gelatinolytic properties and stability in various organic solvents.
Collapse
Affiliation(s)
- Rajshree Saxena
- Amity Institute of Microbial Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
10
|
Ali MSM, Said ZS@AM, Raja Abd Rahman RNZ, Thean Chor AL, Basri M, Salleh AB. Capillary-seeding crystallization and preliminary crystallographic analysis of a solvent-tolerant elastase from Pseudomonas aeruginosa strain K. Int J Mol Sci 2013; 14:17608-17. [PMID: 23989606 PMCID: PMC3794744 DOI: 10.3390/ijms140917608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022] Open
Abstract
Seeding is a versatile method for optimizing crystal growth. Coupling this technique with capillary counter diffusion crystallization enhances the size and diffraction quality of the crystals. In this article, crystals for organic solvent-tolerant recombinant elastase strain K were successfully produced through microseeding with capillary counter-diffusion crystallization. This technique improved the nucleation success rate with a low protein concentration (3.00 mg/mL). The crystal was grown in 1 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic dihydrate pH 5.6. The optimized crystal size was 1 × 0.1 × 0.05 mm3. Elastase strain K successfully diffracted up to 1.39 Å at SPring-8, Japan, using synchrotron radiation for preliminary data diffraction analysis. The space group was determined to be monoclinic space group P1211 with unit cell parameters of a = 38.99 Ǻ, b = 90.173 Å and c = 40.60 Å.
Collapse
Affiliation(s)
- Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; E-Mails: (Z.S.A.M.S.); (R.N.Z.R.A.R.); (A.L.T.C.); (M.B.); (A.B.S.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-8946-6712; Fax: +603-8943-0913
| | - Zatty Syamimi @ Adura Mat Said
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; E-Mails: (Z.S.A.M.S.); (R.N.Z.R.A.R.); (A.L.T.C.); (M.B.); (A.B.S.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; E-Mails: (Z.S.A.M.S.); (R.N.Z.R.A.R.); (A.L.T.C.); (M.B.); (A.B.S.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia
| | - Adam Leow Thean Chor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; E-Mails: (Z.S.A.M.S.); (R.N.Z.R.A.R.); (A.L.T.C.); (M.B.); (A.B.S.)
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia
| | - Mahiran Basri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; E-Mails: (Z.S.A.M.S.); (R.N.Z.R.A.R.); (A.L.T.C.); (M.B.); (A.B.S.)
- Faculty of Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; E-Mails: (Z.S.A.M.S.); (R.N.Z.R.A.R.); (A.L.T.C.); (M.B.); (A.B.S.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Lousa D, Baptista AM, Soares CM. Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations. J Chem Inf Model 2012; 52:465-73. [PMID: 22243049 DOI: 10.1021/ci200455z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the drawbacks of nonaqueous enzymology is the fact that enzymes tend to be less stable in organic solvents than in water. There are, however, some enzymes that display very high stabilities in nonaqueous media. In order to take full advantage of the use of nonaqueous solvents in enzyme catalysis, it is essential to elucidate the molecular basis of enzyme stability in these media. Toward this end, we performed μs-long molecular dynamics simulations using two homologous proteases, pseudolysin, and thermolysin, which are known to have considerably different stabilities in solutions containing ethanol. The analysis of the simulations indicates that pseudolysin is more stable than thermolysin in ethanol/water mixtures and that the disulfide bridge between C30 and C58 is important for the stability of the former enzyme, which is consistent with previous experimental observations. Our results indicate that thermolysin has a higher tendency to interact with ethanol molecules (especially through van der Waals contacts) than pseudolysin, which can lead to the disruption of intraprotein hydrophobic interactions and ultimately result in protein unfolding. In the absence of the C30-C58 disulfide bridge, pseudolysin undergoes larger conformational changes, becoming more open and more permeable to ethanol molecules which accumulate in its interior and form hydrophobic interactions with the enzyme, destroying its structure. Our observations are not only in good agreement with several previous experimental findings on the stability of the enzymes studied in ethanol/water mixtures but also give an insight on the molecular determinants of this stability. Our findings may, therefore, be useful in the rational development of enzymes with increased stability in these media.
Collapse
Affiliation(s)
- Diana Lousa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|