1
|
Zhao YJ, Ma CY, Zheng MJ, Yao YR, Lv LH, Zhang LH, Fu XX, Zhang JT, Xiao K. Transcription factor TaNF-YB2 interacts with partners TaNF-YA7/YC7 and transcriptionally activates distinct stress-defensive genes to modulate drought tolerance in T. Aestivum. BMC PLANT BIOLOGY 2024; 24:705. [PMID: 39054416 PMCID: PMC11270858 DOI: 10.1186/s12870-024-05420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Drought stress limits significantly the crop productivity. However, plants have evolved various strategies to cope with the drought conditions by adopting complex molecular, biochemical, and physiological mechanisms. Members of the nuclear factor Y (NF-Y) transcription factor (TF) family constitute one of the largest TF classes and are involved in plant responses to abiotic stresses. RESULTS TaNF-YB2, a NY-YB subfamily gene in T. aestivum, was characterized in this study focusing on its role in mediating plant adaptation to drought stress. Yeast two-hybrid (Y-2 H), biomolecular fluoresence complementation (BiFC), and Co-immunoprecipitation (Co-IP) assays indicated that TaNF-YB2 interacts with the NF-YA member TaNF-YA7 and NF-YC family member TaNF-YC7, which constitutes a heterotrimer TaNF-YB2/TaNF-YA7/TaNF-YC7. The TaNF-YB2 transcripts are induced in roots and aerial tissues upon drought signaling; GUS histochemical staining analysis demonstrated the roles of cis-regulatory elements ABRE and MYB situated in TaNF-YB2 promoter to contribute to target gene response to drought. Transgene analysis on TaNF-YB2 confirmed its functions in regulating drought adaptation via modulating stomata movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis. TaNF-YB2 possessed the abilities in transcriptionally activating TaP5CS2, the P5CS family gene involving proline biosynthesis and TaSOD1, TaCAT5, and TaPOD5, the genes encoding antioxidant enzymes. Positive correlations were found between yield and the TaNF-YB2 transcripts in a core panel constituting 45 wheat cultivars under drought condition, in which two types of major haplotypes including TaNF-YB2-Hap1 and -Hap2 were included, with the former conferring more TaNF-YB2 transcripts and stronger plant drought tolerance. CONCLUSIONS TaNF-YB2 is transcriptional response to drought stress. It is an essential regulator in mediating plant drought adaptation by modulating the physiological processes associated with stomatal movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis, depending on its role in transcriptionally regulating stress response genes. Our research deepens the understanding of plant drought stress underlying NF-Y TF family and provides gene resource in efforts for molecular breeding the drought-tolerant cultivars in T. aestivum.
Collapse
Affiliation(s)
- Ying-Jia Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Chun-Ying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, P.R. China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Meng-Jing Zheng
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China
| | - Yan-Rong Yao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China
| | - Li-Hua Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China
| | - Li-Hua Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China
| | - Xiao-Xin Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, P.R. China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Jing-Ting Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, 050035, P.R. China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, P.R. China.
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, P.R. China.
| |
Collapse
|
2
|
Cai Y, Chen L, Liu X, Yao W, Hou W. GmNF-YC4 delays soybean flowering and maturation by directly repressing GmFT2a and GmFT5a expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1370-1384. [PMID: 38695656 DOI: 10.1111/jipb.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Flowering time and growth period are key agronomic traits which directly affect soybean (Glycine max (L.) Merr.) adaptation to diverse latitudes and farming systems. The FLOWERING LOCUS T (FT) homologs GmFT2a and GmFT5a integrate multiple flowering regulation pathways and significantly advance flowering and maturity in soybean. Pinpointing the genes responsible for regulating GmFT2a and GmFT5a will improve our understanding of the molecular mechanisms governing growth period in soybean. In this study, we identified the Nuclear Factor Y-C (NFY-C) protein GmNF-YC4 as a novel flowering suppressor in soybean under long-day (LD) conditions. GmNF-YC4 delays flowering and maturation by directly repressing the expression of GmFT2a and GmFT5a. In addition, we found that a strong selective sweep event occurred in the chromosomal region harboring the GmNF-YC4 gene during soybean domestication. The GmNF-YC4Hap3 allele was mainly found in wild soybean (Glycine soja Siebold & Zucc.) and has been eliminated from G. max landraces and improved cultivars, which predominantly contain the GmNF-YC4Hap1 allele. Furthermore, the Gmnf-yc4 mutants displayed notably accelerated flowering and maturation under LD conditions. These alleles may prove to be valuable genetic resources for enhancing soybean adaptability to higher latitudes.
Collapse
Affiliation(s)
- Yupeng Cai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqian Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Yao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Malwattage NR, Wone B, Wone BWM. A CAM-Related NF-YB Transcription Factor Enhances Multiple Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2024; 25:7107. [PMID: 39000218 PMCID: PMC11241642 DOI: 10.3390/ijms25137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stresses often occur simultaneously, and the tolerance mechanisms of plants to combined multiple abiotic stresses remain poorly studied. Extremophytes, adapted to abiotic stressors, might possess stress-adaptive or -responsive regulators that could enhance multiple abiotic stress resistance in crop plants. We identified an NF-YB transcription factor (TF) from the heat-tolerant obligate Crassulacean acid metabolism (CAM) plant, Kalanchoe fedtschenkoi, as a potential regulator of multiple abiotic stresses. The KfNF-YB3 gene was overexpressed in Arabidopsis to determine its role in multiple abiotic stress responses. Transgenic lines exhibited accelerated flowering time, increased biomass, larger rosette size, higher seed yield, and more leaves. Transgenic lines had higher germination rates under combined NaCl, osmotic, and water-deficit stress treatments compared to control plants. They also showed enhanced root growth and survival under simultaneous NaCl, osmotic, water-deficit, and heat stress conditions in vitro. Interestingly, potted transgenic lines had higher survival rates, yield, and biomass under simultaneous heat, water-deficit, and light stresses compared to control plants. Altogether, these results provide initial insights into the functions of a CAM-related TF and its potential roles in regulating multiple abiotic stress responses. The CAM abiotic stress-responsive TF-based approach appears to be an ideal strategy to enhance multi-stress resilience in crop plants.
Collapse
Affiliation(s)
| | | | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
4
|
Zhang D, Ji K, Wang J, Liu X, Zhou Z, Huang R, Ai G, Li Y, Wang X, Wang T, Lu Y, Hong Z, Ye Z, Zhang J. Nuclear factor Y-A3b binds to the SINGLE FLOWER TRUSS promoter and regulates flowering time in tomato. HORTICULTURE RESEARCH 2024; 11:uhae088. [PMID: 38799124 PMCID: PMC11116822 DOI: 10.1093/hr/uhae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
The control of flowering time is essential for reproductive success and has a major effect on seed and fruit yield and other important agricultural traits in crops. Nuclear factors Y (NF-Ys) are transcription factors that form heterotrimeric protein complexes to regulate gene expression required for diverse biological processes, including flowering time control in plants. However, to our knowledge, there has been no report on mutants of individual NF-YA subunits that promote early flowering phenotype in plants. In this study, we identified SlNF-YA3b, encoding a member of the NF-Y transcription factor family, as a key gene regulating flowering time in tomato. Knockout of NF-YA3b resulted in an early flowering phenotype in tomato, whereas overexpression of NF-YA3b delayed flowering in transgenic tomato plants. NF-YA3b was demonstrated to form heterotrimeric protein complexes with multiple NF-YB/NF-YC heterodimers in yeast three-hybrid assays. Biochemical evidence indicated that NF-YA3b directly binds to the CCAAT cis-elements of the SINGLE FLOWER TRUSS (SFT) promoter to suppress its gene expression. These findings uncovered a critical role of NF-YA3b in regulating flowering time in tomato and could be applied to the management of flowering time in crops.
Collapse
Affiliation(s)
- Dedi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Kangna Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Rani V, Rana S, Muthamilarasan M, Joshi DC, Yadav D. Expression profiling of Nuclear Factor-Y (NF-Y) transcription factors during dehydration and salt stress in finger millet reveals potential candidate genes for multiple stress tolerance. PLANTA 2024; 259:136. [PMID: 38679693 DOI: 10.1007/s00425-024-04417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
MAIN CONCLUSION Expression profiling of NF-Y transcription factors during dehydration and salt stress in finger millet genotypes contrastingly differing in tolerance levels identifies candidate genes for further characterization and functional studies. The Nuclear Factor-Y (NF-Y) transcription factors are known for imparting abiotic stress tolerance in different plant species. However, there is no information on the role of this transcription factor family in naturally drought-tolerant crop finger millet (Eleusine coracana L.). Therefore, interpretation of expression profiles against drought and salinity stress may provide valuable insights into specific and/or overlapping expression patterns of Eleusine coracana Nuclear Factor-Y (EcNF-Y) genes. Given this, we identified 59 NF-Y (18 NF-YA, 23 NF-YB, and 18 NF-YC) encoding genes and designated them EcNF-Y genes. Expression profiling of these genes was performed in two finger millet genotypes, PES400 (dehydration and salt stress tolerant) and VR708 (dehydration and salt stress sensitive), subjected to PEG-induced dehydration and salt (NaCl) stresses at different time intervals (0, 6, and 12 h). The qRT-PCR expression analysis reveals that the six EcNF-Y genes namely EcNF-YA1, EcNF-YA5, EcNF-YA16, EcNF-YB6, EcNF-YB10, and EcNF-YC2 might be associated with tolerance to both dehydration and salinity stress in early stress condition (6 h), suggesting the involvement of these genes in multiple stress responses in tolerant genotype. In contrast, the transcript abundance of finger millet EcNF-YA5 genes was also observed in the sensitive genotype VR708 under late stress conditions (12 h) of both dehydration and salinity stress. Therefore, the EcNF-YA5 gene might be important for adaptation to salinity and dehydration stress in sensitive finger millet genotypes. Therefore, this gene could be considered as a susceptibility determinant, which can be edited to impart tolerance. The phylogenetic analyses revealed that finger millet NF-Y genes share strong evolutionary and functional relationship to NF-Ys governing response to abiotic stresses in rice, sorghum, maize, and wheat. This is the first report of expression profiling of EcNF-Ys genes identified from the finger millet genome and reveals potential candidate for enhancing dehydration and salt tolerance.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
6
|
Bin J, Tan Q, Wen S, Huang L, Wang H, Imtiaz M, Zhang Z, Guo H, Xie L, Zeng R, Wei Q. Comprehensive Analyses of Four PhNF-YC Genes from Petunia hybrida and Impacts on Flowering Time. PLANTS (BASEL, SWITZERLAND) 2024; 13:742. [PMID: 38475587 DOI: 10.3390/plants13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Nuclear Factor Y (NF-Y) is a class of heterotrimeric transcription factors composed of three subunits: NF-A, NF-YB, and NF-YC. NF-YC family members play crucial roles in various developmental processes, particularly in the regulation of flowering time. However, their functions in petunia remain poorly understood. In this study, we isolated four PhNF-YC genes from petunia and confirmed their subcellular localization in both the nucleus and cytoplasm. We analyzed the transcript abundance of all four PhNF-YC genes and found that PhNF-YC2 and PhNF-YC4 were highly expressed in apical buds and leaves, with their transcript levels decreasing before flower bud differentiation. Silencing PhNF-YC2 using VIGS resulted in a delayed flowering time and reduced chlorophyll content, while PhNF-YC4-silenced plants only exhibited a delayed flowering time. Furthermore, we detected the transcript abundance of flowering-related genes involved in different signaling pathways and found that PhCO, PhGI, PhFBP21, PhGA20ox4, and PhSPL9b were regulated by both PhNF-YC2 and PhNF-YC4. Additionally, the transcript abundance of PhSPL2, PhSPL3, and PhSPL4 increased only in PhNF-YC2-silenced plants. Overall, these results provide evidence that PhNF-YC2 and PhNF-YC4 negatively regulate flowering time in petunia by modulating a series of flowering-related genes.
Collapse
Affiliation(s)
- Jing Bin
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shiyun Wen
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Licheng Huang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imtiaz
- Department of Horticulture, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Zhisheng Zhang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Herong Guo
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Xie
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ruizhen Zeng
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wei
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Tian Y, Song K, Li B, Song Y, Zhang X, Li H, Yang L. Genome-wide identification and expression analysis of NF-Y gene family in tobacco (Nicotiana tabacum L.). Sci Rep 2024; 14:5257. [PMID: 38438470 PMCID: PMC10912202 DOI: 10.1038/s41598-024-55799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Nuclear factor Y (NF-Y) gene family is an important transcription factor composed of three subfamilies of NF-YA, NF-YB and NF-YC, which is involved in plant growth, development and stress response. In this study, 63 tobacco NF-Y genes (NtNF-Ys) were identified in Nicotiana tabacum L., including 17 NtNF-YAs, 30 NtNF-YBs and 16 NtNF-YCs. Phylogenetic analysis revealed ten pairs of orthologues from tomato and tobacco and 25 pairs of paralogues from tobacco. The gene structure of NtNF-YAs exhibited similarities, whereas the gene structure of NtNF-YBs and NtNF-YCs displayed significant differences. The NtNF-Ys of the same subfamily exhibited a consistent distribution of motifs and protein 3D structure. The protein interaction network revealed that NtNF-YC12 and NtNF-YC5 exhibited the highest connectivity. Many cis-acting elements related to light, stress and hormone response were found in the promoter of NtNF-Ys. Transcriptome analysis showed that more than half of the NtNF-Y genes were expressed in all tissues, and NtNF-YB9/B14/B15/B16/B17/B29 were specifically expressed in roots. A total of 15, 12, 5, and 6 NtNF-Y genes were found to respond to cold, drought, salt, and alkali stresses, respectively. The results of this study will lay a foundation for further study of NF-Y genes in tobacco and other Solanaceae plants.
Collapse
Affiliation(s)
- Yue Tian
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanru Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaohua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
8
|
Yan X, Han M, Li S, Liang Z, Ouyang J, Wang X, Liao P. A member of NF-Y family, OsNF-YC5 negatively regulates salt tolerance in rice. Gene 2024; 892:147869. [PMID: 37797782 DOI: 10.1016/j.gene.2023.147869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
NF-Y, a critical transcription factor, binds to the CCAAT-box in target gene promoters, playing a pivotal role in plant development and abiotic stress response. OsNF-YC5, encodes a putative subunit of the NF-Y transcription factor in rice, had an undetermined function. Our research revealed that OsNF-YC5 is induced by high salinity and exogenous abscisic acid (ABA). Subcellular localization studies showed that OsNF-YC5 is nuclear- and cytoplasm-localized. Using CRISPR-Cas9 to disrupt OsNF-YC5, we observed significantly enhanced rice salinity tolerance and ABA-hypersensitivity. Compared to the wild-type, osnf-yc5 mutants exhibited reduced H2O2 and malondialdehyde (MDA) levels, increased catalase (CAT) activity, and elevated OsCATA transcripts under salt stress. Moreover, ABA-dependent (OsABI2 and OsLEA3) and ABA-independent (OsDREB1A, OsDREB1B, and OsDREB2A) marker genes were upregulated in mutant lines in response to salinity. These results indicate that disrupting OsNF-YC5 enhances rice salinity tolerance, potentially by boosting CAT enzyme activity and modulating gene expression in both ABA-dependent and ABA-independent pathways. Therefore, this study provides a valuable theoretical foundation and genetic resources for developing novel salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Xin Yan
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Mengtian Han
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Shuai Li
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Zhiyan Liang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Jiexiu Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Xin Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Pengfei Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China.
| |
Collapse
|
9
|
Chen S, Wei X, Hu X, Zhang P, Chang K, Zhang D, Chen W, Tang D, Tang Q, Li P, Tan L. Genome-Wide Analysis of Nuclear factor-YC Genes in the Tea Plant ( Camellia sinensis) and Functional Identification of CsNF-YC6. Int J Mol Sci 2024; 25:836. [PMID: 38255910 PMCID: PMC10815638 DOI: 10.3390/ijms25020836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Nuclear factor Y (NF-Y) is a class of transcription factors consisting of NF-YA, NF-YB and NF-YC subunits, which are widely distributed in eukaryotes. The NF-YC subunit regulates plant growth and development and plays an important role in the response to stresses. However, there are few reports on this gene subfamily in tea plants. In this study, nine CsNF-YC genes were identified in the genome of 'Longjing 43'. Their phylogeny, gene structure, promoter cis-acting elements, motifs and chromosomal localization of these gene were analyzed. Tissue expression characterization revealed that most of the CsNF-YCs were expressed at low levels in the terminal buds and at relatively high levels in the flowers and roots. CsNF-YC genes responded significantly to gibberellic acid (GA) and abscisic acid (ABA) treatments. We further focused on CsNF-YC6 because it may be involved in the growth and development of tea plants and the regulation of response to abiotic stresses. The CsNF-YC6 protein is localized in the nucleus. Arabidopsis that overexpressed CsNF-YC6 (CsNF-YC6-OE) showed increased seed germination and increased root length under ABA and GA treatments. In addition, the number of cauline leaves, stem lengths and silique numbers were significantly higher in overexpressing Arabidopsis lines than wild type under long-day growth conditions, and CsNF-YC6 promoted primary root growth and increased flowering in Arabidopsis. qPCR analysis showed that in CsNF-YC6-OE lines, flowering pathway-related genes were transcribed at higher levels than wild type. The investigation of the CsNF-YC gene has unveiled that CsNF-YC6 plays a pivotal role in plant growth, root and flower development, as well as responses to abiotic stress.
Collapse
Affiliation(s)
- Shengxiang Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xujiao Wei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Xiaoli Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Peng Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Kailin Chang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Dongyang Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pinwu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (S.C.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
10
|
Deng L, Li C, Gao Q, Yang W, Jiang J, Xing J, Xiang H, Zhao J, Yang Y, Leng P. Loss function of NtGA3ox1 delays flowering through impairing gibberellins metabolite synthesis in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2023; 14:1340039. [PMID: 38162297 PMCID: PMC10754988 DOI: 10.3389/fpls.2023.1340039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Flowering time, plays a crucial role in tobacco ecological adaptation besides its substantial influence on tobacco production and leaf quality. Meanwhile, it is sensitive to biotic or abiotic challenges. The plant hormones Gibberellins (GAs), controlling a number of metabolic processes, govern plants growth and development. In this study, we created a late flowering mutant HG14 through knocking out NtGA3ox1 by CRISPR/Cas9. It took around 13.0 and 12.1 days longer to budding and flowering compared to wild type Honghuadajinyuan. Nearly all of the evaluated agronomic characters deteriorated in HG14, showing slower growth and noticeably shorter and narrower leaves. We found that NtGA3ox was more prevalent in flowers through quantitative reverse transcription PCR analysis. Transcriptome profiling detected 4449, 2147, and 4567 differently expressed genes at the budding, flowering, and mature stages, respectively. The KEGG pathway enrichment analysis identified the plant-pathogen interaction, plant hormone signal transduction pathway, and MAPK signaling pathway are the major clusters controlled by NtGA3ox1 throughout the budding and flowering stages. Together with the abovementioned signaling pathway, biosynthesis of monobactam, metabolism of carbon, pentose, starch, and sucrose were enriched at the mature stage. Interestingly, 108 up- and 73 down- regulated DEGs, impairing sugar metabolism, diterpenoid biosynthesis, linoleic and alpha-linolenic acid metabolism pathway, were continuously detected accompanied with the development of HG14. This was further evidenced by the decreasing content of GA metabolites such as GA4 and GA7, routine chemicals, alkaloids, amino acids, and organic acids Therefore, we discovered a novel tobacco flowering time gene NtGA3ox1 and resolved its regulatory network, which will be beneficial to the improvement of tobacco varieties.
Collapse
Affiliation(s)
- Lele Deng
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Chaofan Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Wenwu Yang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Jiarui Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Jiaxin Xing
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Haiying Xiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Jun Zhao
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yekun Yang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, Yunnan, China
| | - Pengfei Leng
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Jiang L, Ren Y, Jiang Y, Hu S, Wu J, Wang G. Characterization of NF-Y gene family and their expression and interaction analysis in Phalaenopsis orchid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108143. [PMID: 37913748 DOI: 10.1016/j.plaphy.2023.108143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The complex of Nuclear Factor Ys (NF-Ys), a family of heterotrimeric transcription factors composed of three unique subunits (NF-YA, NF-YB, and NF-YC), binds to the CCAAT box of eukaryotic promoters to activate or repress transcription of the downstream genes involved into various biological processes in plants. However, the systematic characterization of NF-Y gene family has not been elucidated in Phalaenopsis. A total of 24 NF-Y subunits (4 NF-YA, 9 NF-YB, and 11 NF-YC subunits) were identified in Phalaenopsis genome, whose exon/intron structures were highly differentiated among the PhNF-Y subunits. The distribution of motifs between coding regions of PhNF-YA and PhNF-YB/C was distinct. Segmental and tandem duplication events among paralogous PhNF-Ys were occurred. Six pairs of orthologous NF-Ys from Phalaenopsis and Arabidopsis and five pairs of orthologous NF-Ys from Phalaenopsis and rice involved in the phylogenetic gene synteny were identified. The various cis-elements being responsive to low-temperature, drought and ABA were distributed in the promoters of PhNF-Ys. qRT-PCR analysis indicated all of PhNF-Ys displayed the spatial specificity of expression in different tissues. Moreover, the expression levels of multiple PhNF-Ys significantly changed responding to low-temperature and ABA treatment. Yeast two hybrid and bimolecular fluorescence complementation assays approved the interaction of PhNF-YA1/3 with PhNF-YB6/PhNF-YC7, respectively, as well as PhNF-YB6 with PhNF-YC7. PhNF-YA1/3, PhNF-YB6, and PhNF-YC7 proteins were all localized in the nucleus. Further, transient overexpression of PhNF-YB6 and PhNF-YC7 promoted PhFT3 and repressed PhSVP expression in Phalaenopsis. These findings will facilitate to explore the role of PhNF-Ys in floral transition in Phalaenopsis orchid.
Collapse
Affiliation(s)
- Li Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuepeng Ren
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shasha Hu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayi Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangdong Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Edrisi Maryan K, Farrokhi N, Samizadeh Lahiji H. Cold-responsive transcription factors in Arabidopsis and rice: A regulatory network analysis using array data and gene co-expression network. PLoS One 2023; 18:e0286324. [PMID: 37289769 PMCID: PMC10249815 DOI: 10.1371/journal.pone.0286324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Plant growth and development can be influenced by cold stress. Responses of plants to cold are regulated in part by transcription factors (TFs) and microRNAs, which their determination would be necessary in comprehension of the corresponding molecular cues. Here, transcriptomes of Arabidopsis and rice were analyzed to computationally determine TFs and microRNAs that are differentially responsive to cold treatment, and their co-expression networks were established. Among 181 Arabidopsis and 168 rice differentially expressed TF genes, 37 (26 novel) were up- and 16 (8 novel) were downregulated. Common TF encoding genes were from ERF, MYB, bHLH, NFY, bZIP, GATA, HSF and WRKY families. NFY A4/C2/A10 were the significant hub TFs in both plants. Phytohormone responsive cis-elements such as ABRE, TGA, TCA and LTR were the common cis-elements in TF promoters. Arabidopsis had more responsive TFs compared to rice possibly due to its greater adaptation to ranges geographical latitudes. Rice had more relevant miRNAs probably because of its bigger genome size. The interacting partners and co-expressed genes were different for the common TFs so that of the downstream regulatory networks and the corresponding metabolic pathways. Identified cold-responsive TFs in (A + R) seemed to be more engaged in energy metabolism esp. photosynthesis, and signal transduction, respectively. At post-transcriptional level, miR5075 showed to target many identified TFs in rice. In comparison, the predictions showed that identified TFs are being targeted by diverse groups of miRNAs in Arabidopsis. Novel TFs, miRNAs and co-expressed genes were introduced as cold-responsive markers that can be harnessed in future studies and development of crop tolerant varieties.
Collapse
Affiliation(s)
- Khazar Edrisi Maryan
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
13
|
Niu J, Guan Y, Yu X, Wang R, Qin L, Chen E, Yang Y, Zhang H, Wang H, Li F. SiNF-YC2 Regulates Early Maturity and Salt Tolerance in Setaria italica. Int J Mol Sci 2023; 24:ijms24087217. [PMID: 37108376 PMCID: PMC10138326 DOI: 10.3390/ijms24087217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Early maturity is an important agronomic trait in most crops, because it can solve the problem of planting in stubble for multiple cropping as well as make full use of light and temperature resources in alpine regions, thereby avoiding damage from low temperatures in the early growth period and early frost damage in the late growth period to improve crop yield and quality. The expression of genes that determine flowering affects flowering time, which directly affects crop maturity and indirectly affects crop yield and quality. Therefore, it is important to analyze the regulatory network of flowering for the cultivation of early-maturing varieties. Foxtail millet (Setaria italica) is a reserve crop for future extreme weather and is also a model crop for functional gene research in C4 crops. However, there are few reports on the molecular mechanism regulating flowering in foxtail millet. A putative candidate gene, SiNF-YC2, was isolated based on quantitative trait loci (QTL) mapping analysis. Bioinformatics analysis showed that SiNF-YC2 has a conserved HAP5 domain, which indicates that it is a member of the NF-YC transcription factor family. The promoter of SiNF-YC2 contains light-response-, hormone-, and stress-resistance-related elements. The expression of SiNF-YC2 was sensitive to the photoperiod and was related to the regulation of biological rhythm. Expression also varied in different tissues and in response to drought and salt stress. In a yeast two-hybrid assay, SiNF-YC2 interacted with SiCO in the nucleus. Functional analysis suggested that SiNF-YC2 promotes flowering and improves resistance to salt stress.
Collapse
Affiliation(s)
- Jiahong Niu
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Yanan Guan
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiao Yu
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Runfeng Wang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ling Qin
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Erying Chen
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanbing Yang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Huawen Zhang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hailian Wang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Feifei Li
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
14
|
Ge W, Zhang J, Feng H, Wang Y, Ji R. The root meristem growth factor BrRGF6 positively regulates Chinese cabbage to infection of clubroot disease caused by Plasmodiophora Brassicae. HORTICULTURE RESEARCH 2023; 10:uhac292. [PMID: 36938571 PMCID: PMC10018783 DOI: 10.1093/hr/uhac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Chinese cabbage has a high annual demand in China. However, clubroot disease caused by the infection of Plasmodiophora brassicae seriously affects its yield. Transcriptome analysis identified a root meristem growth factor 6 (BrRGF6) as significantly up-regulated in Chinese cabbage roots infected with Plasmodiophora brassicae. Quantitative reverse-transcription polymerase chain reaction and in situ hybridization analysis showed higher BrRGF6 expression in susceptible materials than in resistant materials. After Plasmodiophora brassicae infection, BrRGF6 expression was significantly up-regulated, especially in susceptible materials. Gene function analysis showed that the roots of Arabidopsis mutant rgf6 grew faster than the wild-type, and delayed the infection progress of Plasmodiophora brassicae. A Protein, nuclear transcription factor Y subunit C (BrNF-YC), was screened from yeast two-hybrid library of Chinese cabbage induced by Plasmodiophora brassicae, and verified to interact with BrRGF6 by yeast two-hybrid co-transfer. Yeast one-hybrid and β-Glucuronidase activity analysis showed that BrNF-YC could directly bind to and strongly activate the promoter of BrRGF6. Transgenic verification showed that BrRGF6 or BrNF-YC silenced Chinese cabbage significantly decreased the expression of BrRGF6, accelerated root development, and reduced incidence of clubroot disease. However, after overexpression of BrRGF6 or BrNF-YC, the phenotype showed a reverse trend. Therefore, BrRGF6 silencing accelerated root growth and enhanced resistance to clubroot disease, which was regulated by BrNF-YC.
Collapse
Affiliation(s)
- Wenjie Ge
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jing Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yilian Wang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Ruiqin Ji
- Corresponding author. E-mail: ; 13190049699
| |
Collapse
|
15
|
Zhang H, Liu S, Ren T, Niu M, Liu X, Liu C, Wang H, Yin W, Xia X. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants. Int J Mol Sci 2023; 24:ijms24054426. [PMID: 36901852 PMCID: PMC10002336 DOI: 10.3390/ijms24054426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.
Collapse
Affiliation(s)
- Han Zhang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shujing Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tianmeng Ren
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Houling Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| |
Collapse
|
16
|
The NF-Y Transcription Factor Family in Watermelon: Re-Characterization, Assembly of ClNF-Y Complexes, Hormone- and Pathogen-Inducible Expression and Putative Functions in Disease Resistance. Int J Mol Sci 2022; 23:ijms232415778. [PMID: 36555422 PMCID: PMC9778975 DOI: 10.3390/ijms232415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.
Collapse
|
17
|
Ahmadi AJ, Ahmadikhah A. Occurrence of simple sequence repeats in cDNA sequences of safflower ( Carthamus tinctorius) reveals the importance of SSR-containing genes for cell biology and dynamic response to environmental cues. FRONTIERS IN PLANT SCIENCE 2022; 13:991107. [PMID: 36466261 PMCID: PMC9714374 DOI: 10.3389/fpls.2022.991107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Safflower (Carthamus tinctorius) is a diploid crop plant belonging to the family Asteraceae and is well known as one of important oilseed crops due to edible oil containing unsaturated fatty acids. In recent years it is gaining increased attention for food, pharmaceutical and industrial uses, and hence the updating its breeding methods is necessary. Genic simple sequence repeats (SSRs) in addition of being desire molecular markers, are supposed to influence gene function and the respective phenotype. This study aimed to identify SSRs in cDNA sequences and further analysis of the functional features of the SSR-containing genes to elucidate their role in biological and cellular processes. We identified 1,841 SSR regions in 1,667 cDNA sequences. Among all types of repeats, trinucleotide repeats were the most abundant (35.7%), followed by hexanucleotide (29.6%) and dinucleotide repeats (22.0%). Thirty five SSR primer pairs were validated by PCR reaction, detected a high rate of polymorphism (>57%) among safflower accessions, physically mapped on safflower genome and could clearly discriminate the cultivated accessions from wild relatives. The cDNA-derived SSR markers are suitable for evaluation of genetic diversity, linkage and association mapping studies and genome-based breeding programmes. Occurrence of SSR repeats in biologically-important classes of proteins such as kinases, transferases and transcription factors was inferred from functional analyses, which along with variability of their repeat copies, can endow the cell and whole organism the flexibility of facing with continuously changing environment, and indicate a structure-based evolution mechanism of the genome which acts as an up-to-dating tool for the cell and whole origanism, which is realized in GO terms such as involvement of most SSR-containing genes in biological, cellular and metabolic processes, especially in response to stimulus, response to stress, interaction to other organisms and defense responses.
Collapse
Affiliation(s)
- Ahmad Jawid Ahmadi
- Agronomy Department, Faculty of Agriculture, Higher Education Institute of Samangan, Samangan, Afghanistan
| | - Assadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
18
|
Liu H, Guo Y, Wang H, Yang W, Yang J, Zhang J, Liu D, El-Kassaby YA, Li W. Involvement of PtCOL5-PtNF-YC4 in reproductive cone development and gibberellin signaling in Chinese pine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111383. [PMID: 35850285 DOI: 10.1016/j.plantsci.2022.111383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
It is well documented that the CO/NF-YB/NF-YC trimer (NF-Y-CO) binds and regulates the FT promoter. However, the FT/TFL1-like (FLOWERING LOCUS T/TERMINALFLOWER1-like) genes in gymnosperms are all flowering suppressors, and the regulation model of NF-Y in gymnosperms is different from that in angiosperms. Here, using Chinese pine (Pinus tabuliformis), we identified a CONSTANS-LIKE gene, PtCOL5, the expression of which was strongly induced during cones development and it functioned as a repressor of flowering. PtNF-YC4, which interacted with PtCOL5, was highly correlated with PtCOL5 during growth and development, has been demonstrated. Moreover, PtNF-YC4 and PtCOL5 can bind to PtTFL2 promoter, and their interaction can enhance PtTFL2 expression. Interestingly, we found PtNF-YC4 and PtCOL5 were involved in gibberellin signaling and their interaction was inhibited by PtDELLA protein, thus affecting PtTFL2 expression. Collectively, PtCOL5-PtNF-YC4 was involved in reproductive cone development and gibberellin signaling in Chinese pine. Our findings uncovered reproductive cone development and signal transduction mechanism of COL-NF-Y in gymnosperms.
Collapse
Affiliation(s)
- Hongmei Liu
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Yingtian Guo
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Huili Wang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Wenbin Yang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Junhe Yang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Jingxing Zhang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Dan Liu
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Wei Li
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
19
|
Yu J, Yuan Y, Zhang W, Song T, Hou X, Kong L, Cui G. Overexpression of an NF-YC2 gene confers alkali tolerance to transgenic alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:960160. [PMID: 35991397 PMCID: PMC9389336 DOI: 10.3389/fpls.2022.960160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Alkaline stress severely limits plant growth and yield worldwide. NF-YC transcription factors (TFs) respond to abiotic stress by activating gene expression. However, the biological function of NF-YC TFs in alfalfa (Medicago sativa L.) is not clear. In our study, an NF-YC2 gene was identified and transgenic plants were obtained by constructing overexpression vector and cotyledon node transformation system in alfalfa. The open reading frame of MsNF-YC2 is 879 bp with 32.4 kDa molecular mass. MsNF-YC2 showed tissue expression specificity and was induced by a variety of abiotic stresses including drought, salt, and alkali stress in alfalfa. Under alkali stress treatment, transgenic plants exhibited higher levels of antioxidant enzyme activities and proline (Pro), correlating with a lower levels of hydrogen peroxide (H2O2), superoxide anion (O2 -) compared with wild-type (WT) plants. Transcriptomic results showed that overexpression of MsNF-YC2 regulated the expression of phytohormone signal transduction and photosynthesis-related genes under normal and alkaline stress treatments. These results suggest that the MsNF-YC2 gene plays crucial role enhance alkali adaptation abilities in alfalfa.
Collapse
|
20
|
Comprehensive Analyses of Four PtoNF-YC Genes from Populus tomentosa and Impacts on Flowering Timing. Int J Mol Sci 2022; 23:ijms23063116. [PMID: 35328537 PMCID: PMC8950544 DOI: 10.3390/ijms23063116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Flowering is an important link in the life process of angiosperms, and it is also an important sign of the transformation of plants from vegetative to reproductive growth. Although the flowering regulation network of Arabidopsis is well-understood, there has been little research on the molecular mechanisms of perennial woody plant flower development regulation. Populus tomentosa is a unique Chinese poplar species with fast growth, strong ecological adaptability, and a long lifecycle. However, it has a long juvenile phase, which seriously affects its breeding process. Nuclear factor-Y (NF-Y) is an important type of transcription factor involved in the regulation of plant flowering. However, there are few reports on PtoNF-Y gene flowering regulation, and the members of the PtNF-YC subfamily are unknown. In this study, four key genes were cloned and analyzed for sequence characteristics, gene structure, genetic evolution, expression patterns, and subcellular localization. The plant expression vector was further constructed, and transgenic Arabidopsis and P. tomentosa plants were obtained through genetic transformation and a series of molecular tests. The flowering time and other growth characteristics were analyzed. Finally, the expression level of flowering genes was detected by quantitative PCR, the interaction between PtoNF-YC and PtoCOL proteins was measured using the yeast two-hybrid system to further explain the flowering regulation mechanism, and the molecular mechanisms by which PtNF-YC6 and PtNF-YC8 regulate poplar flowering were discussed. These results lay the foundation for elucidating the molecular regulation mechanism of PtoNF-YC in flowering and furthering the molecular design and breeding of poplar, while providing a reference for other flowering woody plants.
Collapse
|
21
|
Panzade KP, Kale SS, Manoj ML, Kothawale SP, Damse DN. Genome-Wide Analysis and Expression Profile of Nuclear Factor Y (NF-Y) Gene Family in Z. jujuba. Appl Biochem Biotechnol 2022; 194:1373-1389. [PMID: 34731431 DOI: 10.1007/s12010-021-03730-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Nuclear factor-Y (NF-Y) is an important transcription factor in the plant species, which potentially provides a higher level of functional diversity including for abiotic stress tolerance. The genome-wide study and expression analysis of NF-Y gene family in Ziziphus, an elite abiotic stress-tolerant species, assist bioprospecting of genes. Here, a total of 32 NF-Y (8 NF-YA, 15 NF-YB, and 9 NF-YC) genes were identified in genome-wide search of Z. jujuba genome. Physicochemical properties, cellular localization, gene structure, chromosomal location, and protein motifs were analyzed for structural and functional understanding. Identified 12 NF-Ys were responsible for the expansion of NF-Y gene family by tandem duplication in Z. jujuba. Phylogenetic and comparative physical mapping of Z. jujuba NF-Ys with its orthologs illustrated evolutionary and functional insights into NF-Y gene family. A total of 45 perfect microsatellites (20bp to 40bp) were extracted across the ZjNF-Y genes. The promoter and gene ontology study suggested that Z. jujuba NF-Y gene family is functionally diverse and could play a wide-ranging role in plant abiotic stress, development, and cellular processes. An expression study revealed that large numbers of the NF-Ys are differentially expressed in response to drought and salinity. The total 15 and 18 ZjNF-Y genes that are upregulated under drought and salinity stress, respectively, are the potential candidates for further functional analysis for development of climate-resilient crops. The present study established a base for understanding the role of NF-Ys in Z. jujuba under abiotic stress conditions and paved a way for further research.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Department of Plant Biotechnology, SDMVM College of Agricultural Biotechnology, Georai Tanda, Maharashtra, 431002, India.
| | - Sonam S Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, Maharashtra, 431007, India
| | | | | | - Dipak N Damse
- Central Sugarcane Research Station, Padegaon, Mahatma Phule Agriculture University, Rahuri, Maharashtra, 415521, India
| |
Collapse
|
22
|
Zuo X, Xiang W, Zhang L, Gao C, An N, Xing L, Ma J, Zhao C, Zhang D. Identification of apple TFL1-interacting proteins uncovers an expanded flowering network. PLANT CELL REPORTS 2021; 40:2325-2340. [PMID: 34392388 DOI: 10.1007/s00299-021-02770-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
MdTFL1, a floral repressor, forms protein complexes with several proteins and could compete with MdFT1 to regulate reproductive development in apple. Floral transition is a key developmental stage in the annual growth cycle of perennial fruit trees that directly determines the fruit development in the subsequent stage. FLOWERING LOCUS T (FT)/TERMINAL FLOWER1 (TFL1) family is known to play a vital regulatory role in plant growth and flowering. In apple, the two TFL1-like genes (MdTFL1-1 and MdTFL1-2) function as floral inhibitors; however, their mechanism of action is still largely unclear. This study aimed to functionally validate MdTFL1 and probe into its mechanism of action in apple. MdTFL1-1 and MdTFL1-2 were expressed mainly in stem and apical buds of vegetative shoots, with little expression in flower buds and young fruit. Expression of MdTFL1-1 and MdTFL1-2 rapidly decreased during floral induction. On the other hand, transgenic Arabidopsis, which ectopically expressed MdTFL1-1 or MdTFL1-2, flowered later than wild-type plants; demonstrating their in planta capability to function redundantly as flower repressors. Furthermore, we identified hundreds of novel interaction proteins of the two apple MdTFL1 proteins using yeast two-hybrid screens. Independent experiments for several proteins confirmed the yeast two-hybrid interactions. Among them, the transcription factor Nuclear Factor-Y subunit C (MdNF-YC2) functions as a promoter of flowering in Arabidopsis by activating LEAFY (LFY) and APETALA1 (AP1) expression. MdFT1 showed a similar interaction pattern as MdTFL1, implying a possible antagonistic action in the regulation of flowering. These newly identified TFL1-interacting proteins (TIPs) not only expand the floral regulatory network, but may also introduce new roles for TFL1 in plant development.
Collapse
Affiliation(s)
- Xiya Zuo
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Wen Xiang
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Lizhi Zhang
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Cai Gao
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
- College of Grassland Agriculture, Northwest A and F University, Yangling, Shaanxi, China
| | - Na An
- College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi, China.
| |
Collapse
|
23
|
Yu T, Liu Y, Fu J, Ma J, Fang Z, Chen J, Zheng L, Lu Z, Zhou Y, Chen M, Xu Z, Ma Y. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2589-2605. [PMID: 34416065 PMCID: PMC8633499 DOI: 10.1111/pbi.13684] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 05/22/2023]
Abstract
Drought and salt stresses impose major constraints on soybean production worldwide. However, improving agronomically valuable soybean traits under drought conditions can be challenging due to trait complexity and multiple factors that influence yield. Here, we identified a nuclear factor Y C subunit (NF-YC) family transcription factor member, GmNF-YC14, which formed a heterotrimer with GmNF-YA16 and GmNF-YB2 to activate the GmPYR1-mediated abscisic acid (ABA) signalling pathway to regulate stress tolerance in soybean. Notably, we found that CRISPR/Cas9-generated GmNF-YC14 knockout mutants were more sensitive to drought than wild-type soybean plants. Furthermore, field trials showed that overexpression of GmNF-YC14 or GmPYR1 could increase yield per plant, grain plumpness, and stem base circumference, thus indicating improved adaptation of soybean plants to drought conditions. Taken together, our findings expand the known functional scope of the NF-Y transcription factor functions and raise important questions about the integration of ABA signalling pathways in plants. Moreover, GmNF-YC14 and GmPYR1 have potential for application in the improvement of drought tolerance in soybean plants.
Collapse
Affiliation(s)
- Tai‐Fei Yu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Ying Liu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jin‐Dong Fu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jian Ma
- College of AgronomyJilin Agricultural UniversityChangchunChina
| | - Zheng‐Wu Fang
- College of AgricultureYangtze University/Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of WetlandMinistry of EducationYangtze UniversityJingzhouChina
| | - Jun Chen
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Lei Zheng
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Zhi‐Wei Lu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
- South Subtropical Crops InstituteChinese Academy of Tropical Agricultural Sciences/Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiangChina
| | - Yong‐Bin Zhou
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Ming Chen
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Zhao‐Shi Xu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - You‐Zhi Ma
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| |
Collapse
|
24
|
Identification and Comprehensive Analysis of the Nuclear Factor-Y Family Genes Reveal Their Multiple Roles in Response to Nutrient Deficiencies in Brassica napus. Int J Mol Sci 2021; 22:ijms221910354. [PMID: 34638695 PMCID: PMC8508618 DOI: 10.3390/ijms221910354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear Factor-Y (NF-Y) transcription factors play vital roles in plant abiotic stress response. Here, the NF-Y family in Brassica napus, which is hyper-sensitive to nitrogen (N) deprivation, was comprehensively identified and systematically characterized. A total of 108 NF-Y family members were identified in B. napus and categorized into three subfamilies (38 NF-YA, 46 NF-YB and 24 NF-YC; part of the Arabidopsis NF-YC homologous genes had been lost during B. napus evolution). In addition, the expansion of the NF-Y family in B. napus was driven by whole-genome duplication and segmental duplication. Differed expression patterns of BnaNF-Ys were observed in response to multiple nutrient starvations. Thirty-four genes were regulated only in one nutrient deficient condition. Moreover, more BnaNF-YA genes were differentially expressed under nutrient limited environments compared to the BnaNF-YB and BnaNF-YC subfamilies. Sixteen hub genes responded diversely to N deprivation in five rapeseed tissues. In summary, our results laid a theoretical foundation for the follow-up functional study of the key NF-Y genes in B. napus in regulating nutrient homeostasis, especially N.
Collapse
|
25
|
Gao G, Lv Z, Zhang G, Li J, Zhang J, He C. An ABA-flavonoid relationship contributes to the differences in drought resistance between different sea buckthorn subspecies. TREE PHYSIOLOGY 2021; 41:744-755. [PMID: 33184668 DOI: 10.1093/treephys/tpaa155] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Drought is the most severe abiotic stress and hinders the normal growth and development of plants. Sea buckthorn (Hippophae rhamnoides Linn.) is a typical drought-resistant tree species. In this study, the leaves of the H. rhamnoides ssp. sinensis ('FN') and H. rhamnoides ssp. mongolica ('XY') were selected during drought-recovery cycles for RNA sequencing, and physiological and biochemical analyses. The results revealed that drought stress significantly decreased leaf water potential, net photosynthetic rate and stomatal conductance in both sea buckthorn subspecies. Similarly, the contents of flavone, flavonol, isoflavone and flavanone significantly decreased under drought stress in 'XY'. Conversely, in 'FN', the flavone and abscisic acid (ABA) contents were significantly higher under drought stress and recovered after rehydration. Meanwhile, 4618 and 6100 differentially expressed genes (DEGs) were identified under drought stress in 'FN' and 'XY', respectively. In total, 5164 DEGs were observed in the comparison between 'FN' and 'XY' under drought stress. This was more than the 3821 and 3387 DEGs found when comparing the subspecies under control and rehydration conditions, respectively. These DEGs were mainly associated with carotenoid biosynthesis, flavonoid biosynthesis, photosynthesis and plant hormone signal transduction. Six hub DEGs (ABCG5, ABCG22, ABCG32, ABCG36, ABF2 and PYL4) were identified to respond to drought stress based on weighted gene co-expression network analysis and Basic Local Alignment Search Tool (BLAST) analysis using DroughtDB. These six DEGs were annotated to play roles in the ABA-dependent signaling pathway. Sixteen RNA sequencing results involving eight genes and similar expression patterns (12/16) were validated using quantitative real-time Polymerase Chain Reaction (PCR). The biochemical and molecular mechanisms underlying the regulation of drought responses by ABA and flavonoids in sea buckthorn were clarified. In this study, gene co-expression networks were constructed, and the results suggested that the mutual regulation of ABA and flavonoid signaling contributed to the difference in drought resistance between the different sea buckthorn subspecies.
Collapse
Affiliation(s)
- Guori Gao
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian District, Beijing 100091, China
| | - Zhongrui Lv
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian District, Beijing 100091, China
| | - Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian District, Beijing 100091, China
| | - Jiayi Li
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian District, Beijing 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian District, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, No.159, Longpan Road, Xuanwu district, Nanjing 210037, China
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian District, Beijing 100091, China
| |
Collapse
|
26
|
Liu R, Wu M, Liu HL, Gao YM, Chen J, Yan HW, Xiang Y. Genome-wide identification and expression analysis of the NF-Y transcription factor family in Populus. PHYSIOLOGIA PLANTARUM 2021; 171:309-327. [PMID: 32134494 DOI: 10.1111/ppl.13084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
In the past few years, many studies have reported that the transcription factor Nuclear Factor Y (NF-Y) gene family plays important roles in embryonic development, photosynthesis, flowering time regulation and stress response, in various plants. Although the NF-Y gene family has been systematically studied in many species, little is known about NF-Y genes in Populus. In this study, the NF-Y gene family in the Populus genome was identified and its structural characteristics were described. Fifty-two NF-Y genes were authenticated in the Populus trichocarpa genome and categorized into three subfamilies (NF-YA/B/C) by phylogenetic analysis. Chromosomal localization of these genes revealed that they were distributed randomly across 17 of the 19 chromosomes. Segmental duplication played a vital role in the amplification of Populus NF-Y gene family. Moreover, microsynteny analysis indicated that, among Populus trichocarpa, Arabidopsis thaliana, Vitis vinifera and Carica papaya, NF-Y duplicated regions were more conserved between Populus trichocarpa and Vitis vinifera. Redundant stress-related cis-elements were also found in the promoters of most 13 NF-YA genes and their expression levels varied widely following drought, salt, ABA and cold treatments. Subcellular localization experiments in tobacco showed that PtNF-YA3 was localized in nucleus and cytomembrane, while PtNF-YA4 was only in the nucleus in tobacco. According to the transcriptional activity experiments, neither of them had transcriptional activity in yeast. In summary, a comprehensive analysis of the Populus NF-Y gene family was performed to establish a theoretical basis for further functional studies on this family.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huan-Long Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ya-Meng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Han-Wei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
27
|
Guo Y, Niu S, El-Kassaby YA, Li W. Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis. PHYSIOLOGIA PLANTARUM 2021; 171:34-47. [PMID: 32770551 DOI: 10.1111/ppl.13183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
It is known that nuclear factor Y (NF-Y) transcription factors play an important role in flowering time regulation and hormone response (ABA, GA) in angiosperms, but, little known in conifers. Moreover, the NF-Y gene family has not been comprehensively reported in conifers. Here, we identified 9 NF-YA, 9 NF-YB and 10 NF-YC genes in Pinus tabuliformis using Arabidopsis NF-Y protein sequences as queries. Additionally, by comparing conserved regions and phylogenetic relationships of the PtNF-Ys, we found that NF-Ys were both conserved and altered during evolution. PtTFL2, PtCO, PtNF-YC1 and PtNF-YC4 were exploited by expression profile in male cone development and correlation analysis. Furthermore, NF-YC1/4 and DPL (DELLA protein of P. tabuliformis) were interacted by yeast two-hybrid and BiFC assays, which suggested that NF-YC1/4 may be involved in gibberellins signaling pathway. Moreover, the multiple types of phytohormones-responsive cis-elements (ABA, JA, IAA, SA) have been found, and gene expression profile analysis showed that many NF-Y genes responded positively to SA and as opposed to IAA and JA, revealing the potential role of NF-Ys in conifers resistance. In summary, this study provided the basis for further investigation of the function of NF-Y genes in conifers.
Collapse
Affiliation(s)
- Yingtian Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
28
|
Ma XJ, Fu JD, Tang YM, Yu TF, Yin ZG, Chen J, Zhou YB, Chen M, Xu ZS, Ma YZ. GmNFYA13 Improves Salt and Drought Tolerance in Transgenic Soybean Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:587244. [PMID: 33193539 PMCID: PMC7644530 DOI: 10.3389/fpls.2020.587244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 05/31/2023]
Abstract
NF-YA transcription factors function in modulating tolerance to abiotic stresses that are serious threats to crop yields. In this study, GmNFYA13, an NF-YA gene in soybean, was strongly induced by salt, drought, ABA, and H2O2, and suppressed by tungstate, an ABA synthesis inhibitor. The GmNFYA13 transcripts were detected in different tissues in seedling and flowering stages, and the expression levels in roots were highest. GmNFYA13 is a nuclear localization protein with self-activating activity. Transgenic Arabidopsis plants overexpressing GmNFYA13 with higher transcript levels of stress-related genes showed ABA hypersensitivity and enhanced tolerance to salt and drought stresses compared with WT plants. Moreover, overexpression of GmNFYA13 resulted in higher salt and drought tolerance in OE soybean plants, while suppressing it produced the opposite results. In addition, GmNFYA13 could bind to the promoters of GmSALT3, GmMYB84, GmNCED3, and GmRbohB to regulate their expression abundance in vivo. The data in this study suggested that GmNFYA13 enhanced salt and drought tolerance in soybean plants.
Collapse
Affiliation(s)
- Xiao-Jun Ma
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Dong Fu
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yi-Miao Tang
- Beijing Engineering Research Center for Hybrid Wheat, The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhen-Gong Yin
- Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Heilongjiang, China
| | - Jun Chen
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science/Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
29
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
30
|
Ma XJ, Yu TF, Li XH, Cao XY, Ma J, Chen J, Zhou YB, Chen M, Ma YZ, Zhang JH, Xu ZS. Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants. BMC PLANT BIOLOGY 2020; 20:123. [PMID: 32192425 PMCID: PMC7082914 DOI: 10.1186/s12870-020-02337-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/10/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Crop productivity is challenged by abiotic stresses, among which drought stress is the most common. NF-Y genes, especially NF-YA genes, regulate tolerance to abiotic stress. RESULTS Soybean NF-Y gene GmNFYA5 was identified to have the highest transcript level among all 21 NF-YA genes in soybean (Glycine max L.) under drought stress. Drought-induced transcript of GmNFYA5 was suppressed by the ABA synthesis inhibitor naproxen (NAP). GmNFYA5 transcript was detected in various tissues at vegetative and reproductive growth stages with higher levels in roots and leaves than in other tissues, which was consist with the GmNFYA5 promoter: GUS fusion assay. Overexpression of GmNFYA5 in transgenic Arabidopsis plants caused enhanced drought tolerance in seedlings by decreasing stomatal aperture and water loss from leaves. Overexpression and suppression of GmNFYA5 in soybean resulted in increased and decreased drought tolerance, respectively, relative to plants with an empty vector (EV). Transcript levels of ABA-dependent genes (ABI2, ABI3, NCED3, LEA3, RD29A, P5CS1, GmWRKY46, GmNCED2 and GmbZIP1) and ABA-independent genes (DREB1A, DREB2A, DREB2B, GmDREB1, GmDREB2 and GmDREB3) in transgenic plants overexpressing GmNFYA5 were higher than those of wild-type plants under drought stress; suppression of GmNFYA5 transcript produced opposite results. GmNFYA5 probably regulated the transcript abundance of GmDREB2 and GmbZIP1 by binding to the promoters in vivo. CONCLUSIONS Our results suggested that overexpression of GmNFYA5 improved drought tolerance in soybean via both ABA-dependent and ABA-independent pathways.
Collapse
Affiliation(s)
- Xiao-Jun Ma
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Xiao-Hui Li
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100 China
| | - Xin-You Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement, Jinan, 250100 China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jun-Hua Zhang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
31
|
Wang Y, Zhang Z, Lu X, Zong H, Zhuge B. Transcription factor Hap5 induces gsh2 expression to enhance 2-phenylethanol tolerance and production in an industrial yeast Candida glycerinogenes. Appl Microbiol Biotechnol 2020; 104:4093-4107. [PMID: 32162090 DOI: 10.1007/s00253-020-10509-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
2-Phenylethanol (2-PE) is an important flavor compound but also impairs cell growth severely, which in turn blocks its bioproduction. However, the molecular mechanism of 2-PE tolerance is unclear. In this study, a superb 2-PE stress-tolerant and producing yeast, Candida glycerinogenes, was selected to uncover the underlying mechanism of 2-PE tolerance. We discovered that Hap5 is an essential regulator to 2-PE resistance, and its induction by 2-PE stress occurs at the post-transcriptional level, rather than at the transcriptional level. Under 2-PE stress, Hap5 is activated and imported into the nucleus rapidly. Then, the nuclear Hap5 binds to the glutathione synthetase (gsh2) promoter via CCAAT box, to induce the expression of gsh2 gene. The increased gsh2 expression contributes to enhanced cellular glutathione content, and consequently alleviates ROS accumulation, lipid peroxidation, and cell membrane damage caused by 2-PE toxicity. Specifically, increasing the expression of gsh2 is effective in improving not just 2-PE tolerance (33.7% higher biomass under 29 mM 2-PE), but also 2-PE production (16.2% higher). This study extends our knowledge of 2-PE tolerance mechanism and also provides a promising strategy to improve 2-PE production.
Collapse
Affiliation(s)
- Yuqin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongyuan Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
32
|
Gnesutta N, Chiara M, Bernardini A, Balestra M, Horner DS, Mantovani R. The Plant NF-Y DNA Matrix In Vitro and In Vivo. PLANTS 2019; 8:plants8100406. [PMID: 31658622 PMCID: PMC6843132 DOI: 10.3390/plants8100406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023]
Abstract
Nuclear Factor Y (NF-Y) is an evolutionarily conserved trimer formed by a Histone-Fold Domain (HFD) heterodimeric module shared by core histones, and the sequence-specific NF-YA subunit. In plants, the genes encoding each of the three subunits have expanded in number, giving rise to hundreds of potential trimers. While in mammals NF-Y binds a well-characterized motif, with a defined matrix centered on the CCAAT box, the specificity of the plant trimers has yet to be determined. Here we report that Arabidopsis thaliana NF-Y trimeric complexes, containing two different NF-YA subunits, bind DNA in vitro with similar affinities. We assayed precisely sequence-specificity by saturation mutagenesis, and analyzed genomic DNA sites bound in vivo by selected HFDs. The plant NF-Y CCAAT matrix is different in nucleotides flanking CCAAT with respect to the mammalian matrix, in vitro and in vivo. Our data point to flexible DNA-binding rules by plant NF-Ys, serving the scope of adapting to a diverse audience of genomic motifs.
Collapse
Affiliation(s)
- Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Matteo Balestra
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
33
|
Genome-wide characterization of the NUCLEAR FACTOR-Y (NF-Y) family in Citrus grandis identified CgNF-YB9 involved in the fructose and glucose accumulation. Genes Genomics 2019; 41:1341-1355. [PMID: 31468348 DOI: 10.1007/s13258-019-00862-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Nuclear factor Y (NF-Y) is increasingly known to be involved in many aspects of plant growth and development. To date, the systematic characterization of NF-Y family has never been reported in Citrus grandis. OBJECTIVE Genome-wide characterization of C. grandis NF-Y (CgNF-Y) family and analysis of their role in sucrose metabolism. METHODS NF-Y conserved models were employed to identify CgNF-Y genes from genomic data. Phylogenetic tree was generated by the neighbor-joining method using program MEGA 7.0. Based on our previous transcriptomic data, the transcription levels were calculated by RSEM software and were clustered by ShortTime-series Expression Miner. The plant expression vector of CgNF-YB9 was constructed using In-Fusion Cloning and transferred into tobacco by leaf disc transformation method. Soluble sugars and gene expressions were analysis by HPLC and qRT-PCR, respectively. RESULTS A total of 24 CgNF-Y genes (6 CgNF-YAs, 13 CgNF-YBs and 5 CgNF-YCs) were identified with conserved domains. Phylogenetic analysis of the NF-Y proteins indicated that NF-YA, NF-YB and NF-YC could be categorized into four, five and three clades, respectively. Expression profiling analysis reflected spatio-temporally distinct expression patterns for CgNF-Y genes. Importantly, we observed a positive correlation between the expression level of CgNF-YB9 and the content of soluble sugar. Moreover, CgNF-YB9-corelated genes were enriched in carbohydrate metabolism. In CgNF-YB9 overexpression lines, sucrose content showed a decrease, whereas glucose and fructose contents displayed an increase. As expected, the transcription levels of sucrose-phosphate synthase and vacuolar invertase in transgenic Line 3 were observed with significantly down- and up-regulated, respectively. CONCLUSIONS The structure, phylogenetic relationship and expression pattern of 24 CgNF-Y genes were identified, and CgNF-YB9 was involved in sucrose metabolism.
Collapse
|
34
|
Genome-wide analysis of the NF-Y gene family in peach (Prunus persica L.). BMC Genomics 2019; 20:612. [PMID: 31349783 PMCID: PMC6660701 DOI: 10.1186/s12864-019-5968-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Nuclear Factor Y (NF-Y) is a heterotrimeric complex composed of three unique subunits: NF-YA, NF-YB, and NF-YC. The NF-Y transcription factor complex binds to the CCAAT box of eukaryotic promoters, playing a vital role in various biological processes in plants. However, the NF-Y gene family has not yet been reported from the peach genome. The current study identified and classified candidate peach NF-Y genes for further functional analysis of this family. Results The current study identified 24 Nuclear Factor Y (NF-Y) transcription factor subunits (6 NF-YA, 12 NF-YB, and 6 NF-YC subunits) in peach. These NF-Y subunits were described with respect to basic physicochemical characteristics, chromosome locations, gene structures, and conserved domains. Based on an analysis of the phylogenetic relationships among peach NF-Ys, six pairs of paralogous NF-Ys were detected. The expansion of the peach NF-Y family occurred by segmental and tandem duplication. Phylogenetic gene synteny of NF-Y proteins was observed between peach and Arabidopsis, and five pairs of paralogous NF-Y proteins from peach and Arabidopsis were identified. Twenty-four peach NF-Ys displayed a diversity of tissue expression patterns. In addition, drought-responsive cis-elements were observed in peach NF-Y promoters, and 9 peach NF-Y genes were shown to distinctly increase their transcript abundances under drought stress. Conclusions This study identified 24 NF-Y genes in the peach genome and analysed their properties at different levels, providing a foundation for researchers to understand this gene family in peach. The up-regulation of 9 NF-Y genes under drought stress indicates that they can serve as candidate functional genes to further study drought resistance in peach. Electronic supplementary material The online version of this article (10.1186/s12864-019-5968-7) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Nuclear Factor Y (NF-Y) Modulates Encystation in Entamoeba via Stage-Specific Expression of the NF-YB and NF-YC Subunits. mBio 2019; 10:mBio.00737-19. [PMID: 31213550 PMCID: PMC6581852 DOI: 10.1128/mbio.00737-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human parasite Entamoeba histolytica is an important pathogen with significant global impact and is a leading cause of parasitic death in humans. Since only the cyst form can be transmitted, blocking encystation would prevent new infections, making the encystation pathway an attractive target for the development of new drugs. Identification of the genetic signals and transcriptional regulatory networks that control encystation would be an important advance in understanding the developmental cascade. We show that the Entamoeba NF-Y complex plays a crucial role in regulating the encystation process in Entamoeba. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor composed of three subunits, namely, NF-YA, NF-YB, and NF-YC, which are conserved throughout evolution. In higher eukaryotes, NF-Y plays important roles in several cellular processes (development, cell cycle regulation, apoptosis, and response to growth, stress, and DNA damage) by controlling gene expression through binding to a CCAAT promoter motif. We demonstrated that NF-Y subunits in the protist Entamoeba, while significantly divergent from those of higher eukaryotes, have well-conserved domains important for subunit interactions and DNA binding and that NF-YB and NF-YC are developmentally expressed during encystation. Electrophoretic mobility shift assays confirmed that the NF-Y protein(s) from Entamoeba cysts binds to a CCAAT motif. Consistent with a role as a transcription factor, the NF-Y proteins show nuclear localization during development. Additionally, we demonstrated that NF-YC localizes to the chromatoid body (an RNA processing center) during development, indicating that it may have a role in RNA processing. Finally, silencing of the NF-YC subunit resulted in reduced stability of the NF-Y complex and decreased encystation efficiency. We demonstrated that the NF-Y complex functions at a time point subsequent to the NAD+ flux and expression of the transcription factor encystation regulatory motif-binding protein, both of which are early regulators of Entamoeba development. Taken together, our results demonstrate that the NF-Y complex plays an important role in regulating encystation in Entamoeba and add to our understanding of the transcriptional networks and signals that control this essential developmental pathway in an important human pathogen.
Collapse
|
36
|
Panahi B, Mohammadi SA, Ruzicka K, Abbasi Holaso H, Zare Mehrjerdi M. Genome-wide identification and co-expression network analysis of nuclear factor-Y in barley revealed potential functions in salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:485-495. [PMID: 30956430 PMCID: PMC6419857 DOI: 10.1007/s12298-018-00637-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/05/2018] [Accepted: 12/25/2018] [Indexed: 05/25/2023]
Abstract
Nuclear factor-Ys (NF-Ys) were previously shown to have important regulatory impacts in different developmental and physiological process. However, in barley the function of the NF-Y genes at system levels is not well known. To identify barley NF-Ys, Arabidopsis and wheat NF-Y protein sequences were retrieved and the BLAST program along with the hidden Markov model were used. Multiple sequence alignments of identified NF-Ys were constructed using ClustalW. Expression patterns of the NF-Ys at different physiological and developmental conditions were also surveyed based on microarray datasets in public databases and subsequently co-expression network were constructed. Validation of in silico expression analysis was performed by real-time qPCR under salt stress condition. In total, 23 barley NF-Ys (8 NF-YA, 11 NF-YB and 4 NF-YC) were identified. Based on the sequence homology, the subunits of the NF-Y complex were divided into three to five groups. Structural analysis highlighted the conserved domains of HvNF-YA, HvNF-YB and HvNF-YC. Co-expression network analysis indicated the potential functions of HvNF-Ys in photosynthesis, starch biosynthesis and osmotic stress tolerance. The results of qRT-PCR also confirmed the HvNF-Ys roles in adaptation responses of barley to salt stress. We identified some potential candidate genes which could be used for improvements of cereals tolerance to salinity stress.
Collapse
Affiliation(s)
- Bahman Panahi
- Department of Genomics, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
- Center of Excellence in Cereal Molecular Breeding, University of Tabriz, Tabriz, Iran
| | - Kamil Ruzicka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Prague 6, Czech Republic
| | | | | |
Collapse
|
37
|
Quan S, Niu J, Zhou L, Xu H, Ma L, Qin Y. Identification and characterization of NF-Y gene family in walnut (Juglans regia L.). BMC PLANT BIOLOGY 2018; 18:255. [PMID: 30352551 PMCID: PMC6199752 DOI: 10.1186/s12870-018-1459-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 10/03/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The eukaryotic transcription factor NF-Y (which consists of NF-YA, NF-YB and NF-YC subunits) is involved in many important plant development processes. There are many reports about the NF-Y family in Arabidopsis and other plant species. However, there are no reports about the NF-Y family in walnut (Juglans regia L.). RESULTS Thirty-three walnut NF-Y genes (JrNF-Ys) were identified and mapped on the walnut genome. The JrNF-Y gene family consisted of 17 NF-YA genes, 9 NF-YB genes, and 7 NF-YC genes. The structural features of the JrNF-Y genes were investigated by comparing their evolutionary relationship and motif distributions. The comparisons indicated the NF-Y gene structure was both conserved and altered during evolution. Functional prediction and protein interaction analysis were performed by comparing the JrNF-Y protein structure with that in Arabidopsis. Two differentially expressed JrNF-Y genes were identified. Their expression was compared with that of three JrCOs and two JrFTs using quantitative real-time PCR (qPCR). The results revealed that the expression of JrCO2 was positively correlated with the expression of JrNF-YA11 and JrNF-YA12. In contrast, JrNF-CO1 and JrNF-YA12 were negatively correlated. CONCLUSIONS Thirty-three JrNF-Ys were identified and their evolutionary, structure, biological function and expression pattern were analyzed. Two of the JrNF-Ys were screened out, their expression was differentially expressed in different development periods of female flower buds, and in different tissues (female flower buds and leaf buds). Based on prediction and experimental data, JrNF-Ys may be involved in flowering regulation by co-regulate the expression of flowering genes with other transcription factors (TFs). The results of this study may make contribution to the further investigation of JrNF-Y family.
Collapse
Affiliation(s)
- Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Li Zhou
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Hang Xu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Li Ma
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Yang Qin
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| |
Collapse
|
38
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
39
|
Wang Y, Xu W, Chen Z, Han B, Haque ME, Liu A. Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis). PLANTA 2018; 247:559-572. [PMID: 29119268 DOI: 10.1007/s00425-017-2809-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Nuclear Factor-Y transcription factors, which function in regulating seed development (including storage reservoir accumulation) and responding to abiotic stresses, were identified and characterized in castor bean. Nuclear Factor-Y (NF-Y) transcription factors in plants contain three subunits (NF-YA, NF-YB and NF-YC), and function as a heterodimer or heterotrimer complex in regulating plant growth, development and response to stresses. Castor bean (Ricinus communis, Euphorbiaceae) one of the most economically important non-edible oilseed crops, able to grow in diverse soil conditions and displays high tolerance to abiotic stresses. Due to increasing demands for its seed oils, it is necessary to elucidate the molecular mechanism underlying the regulation of growth and development. Based on the available genome data, we identified 25 RcNF-Y members including six RcNF-YAs, 12 RcNF-YBs and seven RcNF-YCs, and characterized their gene structures. Yeast two-hybrid assays confirmed the protein-protein interactions among three subunits. Using transcriptomic data from different tissues, we found that six members were highly or specifically expressed in endosperms (in particular, two LEC1-type members RcNF-YB2 and RcNF-YB12), implying their involvement in regulating seed development and storage reservoir accumulation. Further, we investigated the expression changes of RcNF-Y members in two-week-old seedlings under drought, cold, hot and salt stresses. We found that the expression levels of 20 RcNF-Y members tested were changed and three RcNF-Y members might function in response to abiotic stresses. This study is the first reported on genomic characterization of NF-Y transcription factors in the family Euphorbiaceae. Our results provide the basis for improved understanding of how NF-Y genes function in the regulation of seed development and responses to abiotic stresses in both castor bean and other plants in this family.
Collapse
Affiliation(s)
- Yue Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zexi Chen
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohammad E Haque
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aizhong Liu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
40
|
Song Q, Grene R, Heath LS, Li S. Identification of regulatory modules in genome scale transcription regulatory networks. BMC SYSTEMS BIOLOGY 2017; 11:140. [PMID: 29246163 PMCID: PMC5732458 DOI: 10.1186/s12918-017-0493-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/13/2017] [Indexed: 01/22/2023]
Abstract
Background In gene regulatory networks, transcription factors often function as co-regulators to synergistically induce or inhibit expression of their target genes. However, most existing module-finding algorithms can only identify densely connected genes but not co-regulators in regulatory networks. Methods We have developed a new computational method, CoReg, to identify transcription co-regulators in large-scale regulatory networks. CoReg calculates gene similarities based on number of common neighbors of any two genes. Using simulated and real networks, we compared the performance of different similarity indices and existing module-finding algorithms and we found CoReg outperforms other published methods in identifying co-regulatory genes. We applied CoReg to a large-scale network of Arabidopsis with more than 2.8 million edges and we analyzed more than 2,300 published gene expression profiles to charaterize co-expression patterns of gene moduled identified by CoReg. Results We identified three types of modules in the Arabidopsis network: regulator modules, target modules and intermediate modules. Regulator modules include genes with more than 90% edges as out-going edges; Target modules include genes with more than 90% edges as incoming edges. Other modules are classified as intermediate modules. We found that genes in target modules tend to be highly co-expressed under abiotic stress conditions, suggesting this network struture is robust against perturbation. Conclusions Our analysis shows that the CoReg is an accurate method in identifying co-regulatory genes in large-scale networks. We provide CoReg as an R package, which can be applied in finding co-regulators in any organisms with genome-scale regulatory network data. Electronic supplementary material The online version of this article (10.1186/s12918-017-0493-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Song
- program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.,Department of Crop & Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Song Li
- Department of Crop & Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
41
|
Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, Horner DS, Holt BF, Mantovani R. CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer. THE PLANT CELL 2017; 29:1516-1532. [PMID: 28526714 PMCID: PMC5502446 DOI: 10.1105/tpc.16.00864] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 05/19/2023]
Abstract
Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor that binds CCAAT elements. The NF-Y trimer is composed of a Histone Fold Domain (HFD) dimer (NF-YB/NF-YC) and NF-YA, which confers DNA sequence specificity. NF-YA shares a conserved domain with the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) proteins. We show that CONSTANS (CO/B-BOX PROTEIN1 BBX1), a master flowering regulator, forms a trimer with Arabidopsis thaliana NF-YB2/NF-YC3 to efficiently bind the CORE element of the FLOWERING LOCUS T promoter. We term this complex NF-CO. Using saturation mutagenesis, electrophoretic mobility shift assays, and RNA-sequencing profiling of co, nf-yb, and nf-yc mutants, we identify CCACA elements as the core NF-CO binding site. CO physically interacts with the same HFD surface required for NF-YA association, as determined by mutations in NF-YB2 and NF-YC9, and tested in vitro and in vivo. The co-7 mutation in the CCT domain, corresponding to an NF-YA arginine directly involved in CCAAT recognition, abolishes NF-CO binding to DNA. In summary, a unifying molecular mechanism of CO function relates it to the NF-YA paradigm, as part of a trimeric complex imparting sequence specificity to HFD/DNA interactions. It is likely that members of the large CCT family participate in similar complexes with At-NF-YB and At-NF-YC, broadening HFD combinatorial possibilities in terms of trimerization, DNA binding specificities, and transcriptional regulation.
Collapse
Affiliation(s)
- Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Roderick W Kumimoto
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Swadhin Swain
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Chamindika Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| |
Collapse
|
42
|
Sun X, Lian H, Liu X, Zhou S, Liu S. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco. PROTOPLASMA 2017; 254:1353-1366. [PMID: 27650870 DOI: 10.1007/s00709-016-1026-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Xiudong Sun
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Haifeng Lian
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xingchen Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shiqi Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
43
|
Pruthvi V, Rama N, Parvathi MS, Nataraja KN. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:377-385. [PMID: 27981726 DOI: 10.1111/plb.12533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation.
Collapse
Affiliation(s)
- V Pruthvi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - N Rama
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - M S Parvathi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - K N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
44
|
Yang Q, Shohag MJI, Feng Y, He Z, Yang X. Transcriptome Comparison Reveals the Adaptive Evolution of Two Contrasting Ecotypes of Zn/Cd Hyperaccumulator Sedum alfredii Hance. FRONTIERS IN PLANT SCIENCE 2017; 8:425. [PMID: 28439276 PMCID: PMC5383727 DOI: 10.3389/fpls.2017.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 05/29/2023]
Abstract
Hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance belong to the same species but exhibit contrasting characteristics regarding hyperaccumulation and hypertolerance to cadmium and zinc. The Illumina Hiseq 2500 platform was employed to sequence HE and NHE to study the genetic evolution of this contrasting trait. Greater than 90 million clean reads were obtained and 118,479/228,051 unigenes of HE/NHE were annotated based on seven existing databases. We identified 149,668/319,830 single nucleotide polymorphisms (SNPs) and 12,691/14,428 simple sequence repeats (SSRs) of HE/NHE. We used a branch-site model to identify 18 divergent orthologous genes and 57 conserved orthologous genes of S. alfredii Hance. The divergent orthologous genes were mainly involved in the transcription and translation processes, protein metabolism process, calcium (Ca2+) pathway, stress response process and signal transduction process. To the best of our knowledge, this is the first study to use RNA-seq to compare the genetic evolution of hyperaccumulating and non-hyperaccumulating plants from the same species. In addition, this study made the sole concrete for further studies on molecular markers and divergent orthologous genes to depict the evolution process and formation of the hyperaccumulation and hypertolerance traits in S. alfredii Hance.
Collapse
Affiliation(s)
- Qianying Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
| | - M. J. I. Shohag
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj, Bangladesh
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
| | - Zhenli He
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of FloridaFort Pierce, FL, USA
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang UniversityHangzhou, China
| |
Collapse
|
45
|
Tang Y, Liu X, Liu X, Li Y, Wu K, Hou X. Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation. MOLECULAR PLANT 2017; 10:260-273. [PMID: 27876642 DOI: 10.1016/j.molp.2016.11.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 05/20/2023]
Abstract
Light is a crucial environmental signal that promotes photomorphogenesis, the developmental process with a series of light-dependent alterations for plants to adapt various external challenges. Chromatin modification has been proposed to be involved in such light-mediated growth, but the underlying mechanism is still elusive. In this study, we identified four Arabidopsis thaliana Nuclear Factor-YC homologs, NF-YC1, NF-YC3, NF-YC4, and NF-YC9 (NF-YCs), which function redundantly as repressors of light-controlled hypocotyl elongation via histone deacetylation. Obvious etiolation phenotypes are observed in NF-YCs loss-of-function mutant seedlings grown under light conditions, including significant elongated hypocotyls and fewer opened cotyledons. We found that NF-YCs interact with histone deacetylase HDA15 in the light, co-target the promoters of a set of hypocotyl elongation-related genes, and modulate the levels of histone H4 acetylation on the associated chromatins, thus repressing gene expression. In contrast, NF-YC-HDA15 complex is dismissed from the target genes in the dark, resulting in increased level of H4 acetylation and consequent etiolated growth. Further analyses revealed that transcriptional repression activity of NF-YCs on the light-controlled hypocotyl elongation partially depends on the deacetylation activity of HDA15, and loss of HDA15 function could rescue the short-hypocotyl phenotype of NF-YCs overexpression plants. Taken together, our results indicate that NF-YC1, NF-YC3, NF-YC4, and NF-YC9 function as transcriptional co-repressors by interacting with HDA15 to inhibit hypocotyl elongation in photomorphogenesis during the early seedling stage. Our findings highlight that NF-YCs can modulate plant development in response to environmental cues via epigenetic regulation.
Collapse
Affiliation(s)
- Yang Tang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
46
|
Hwang YH, Kim SK, Lee KC, Chung YS, Lee JH, Kim JK. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. PLANT CELL REPORTS 2016; 35:857-865. [PMID: 26754793 DOI: 10.1007/s00299-015-1927-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Rice Os NF - YB and Os NF - YC complement the late flowering phenotype of Arabidopsis nf - yb double and nf - yc triple mutants, respectively. In addition, OsNF-YB and OsNF-YC interact with AtNF-YC and AtNF-YB, respectively. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein-protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.
Collapse
Affiliation(s)
- Yoon-Hyung Hwang
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Soon-Kap Kim
- Department of Bioresource Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Keh Chien Lee
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Young Soo Chung
- Department of Genetic Engineering, Dong-A University, Busan, 604-714, Republic of Korea
| | - Jeong Hwan Lee
- Department of Bioresource Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea.
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
47
|
Li S, Li K, Ju Z, Cao D, Fu D, Zhu H, Zhu B, Luo Y. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genomics 2016; 17:36. [PMID: 26742635 PMCID: PMC4705811 DOI: 10.1186/s12864-015-2334-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background Fruit ripening is a complex developmental process that depends on a coordinated regulation of numerous genes, including ripening-related transcription factors (TFs), fruit-related microRNAs, DNA methylation and chromatin remodeling. It is known that various TFs, such as MADS-domain, MYB, AP2/ERF and SBP/SPL family proteins play key roles in modulating ripening. However, little attention has been given to members of the large NF-Y TF family in this regard, although genes in this family are known to have important functions in regulating plant growth, development, and abiotic or biotic stress responses. Results In this study, the evolutionary relationship between Arabidopsis thaliana and tomato (Solanum lycopersicum) NF-Y genes was examined to predict similarities in function. Furthermore, through gene expression analysis, 13 tomato NF-Y genes were identified as candidate regulators of fruit ripening. Functional studies involving suppression of NF-Y gene expression using virus induced gene silencing (VIGS) indicated that five NF-Y genes, including two members of the NF-YB subgroup (Solyc06g069310, Solyc07g065500) and three members of the NF-YA subgroup (Solyc01g087240, Solyc08g062210, Solyc11g065700), influence ripening. In addition, subcellular localization analyses using NF-Y proteins fused to a green fluorescent protein (GFP) reporter showed that the three NF-YA proteins accumulated in the nucleus, while the two NF-YB proteins were observed in both the nucleus and cytoplasm. Conclusions In this study, we identified tomato NF-Y genes by analyzing the tomato genome sequence using bioinformatics approaches, and characterized their chromosomal distribution, gene structures, phylogenetic relationship and expression patterns. We also examined their biological functions in regulating tomato fruit via VIGS and subcellular localization analyses. The results indicated that five NF-Y transcription factors play roles in tomato fruit ripening. This information provides a platform for further investigation of their biological functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2334-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Ka Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Zheng Ju
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Dongyan Cao
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| |
Collapse
|
48
|
Malviya N, Jaiswal P, Yadav D. Genome- wide characterization of Nuclear Factor Y (NF-Y) gene family of sorghum [Sorghum bicolor (L.) Moench]: a bioinformatics approach. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:33-49. [PMID: 27186017 PMCID: PMC4840140 DOI: 10.1007/s12298-016-0349-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/11/2016] [Accepted: 03/28/2016] [Indexed: 05/29/2023]
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor (TF) complex with preferential binding to CCAAT elements of promoters, regulating gene expression in most of the higher eukaryotes. The availability of plant genome sequences have revealed multiple number of genes coding for the three subunits, namely NF-YA, NF-YB and NF-YC in contrast to single NF-Y gene for each subunit reported in yeast and animals. A total of 33 NF-YTF comprising of 8 NF-YA, 11 NF-YB and 14 NF-YC subunits were accessed from the sorghum genome. The bioinformatic characterization of NF-Y gene family of sorghum for gene structure, chromosome location, protein motif, phylogeny, gene duplication and in-silico expression under abiotic stresses have been attempted in the present study. The identified SbNF-Y genes are distributed on all the 10 chromosomes of sorghum with variability in the frequency and 18 out of 33 SbNF-Ys were found to be intronless. Segmental duplication event was found to be predominant feature based on gene duplication pattern study. Several orthologs and paralogs groups were disclosed through the comprehensive phylogenetic analysis of SbNF-Y proteins along with 36 Arabidopsis and 28 rice NF-Y proteins. In-silico expression analysis under abiotic stresses using rice transcriptome data revealed several of the sorghum NF-Y genes to be associated with salt, drought, cold and heat stresses.
Collapse
Affiliation(s)
- Neha Malviya
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009 India
| | - Parul Jaiswal
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009 India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009 India
| |
Collapse
|
49
|
Lee DK, Kim HI, Jang G, Chung PJ, Jeong JS, Kim YS, Bang SW, Jung H, Choi YD, Kim JK. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:199-210. [PMID: 26706071 DOI: 10.1016/j.plantsci.2015.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 05/24/2023]
Abstract
The mechanisms of plant response and adaptation to drought stress require the regulation of transcriptional networks via the induction of drought-responsive transcription factors. Nuclear Factor Y (NF-Y) transcription factors have aroused interest in roles of plant drought stress responses. However, the molecular mechanism of the NF-Y-induced drought tolerance is not well understood. Here, we functionally analyzed two rice NF-YA genes, OsNF-YA7 and OsNF-YA4. Expression of OsNF-YA7 was induced by drought stress and its overexpression in transgenic rice plants improved their drought tolerance. In contrast, OsNF-YA4 expression was not increased by drought stress and its overexpression in transgenic rice plants did not affect their sensitivity to drought stress. OsNF-YA4 expression was highly induced by the stress-related hormone abscisic acid (ABA), while OsNF-YA7 was not, indicating that OsNF-YA7 mediates drought tolerance in an ABA-independent manner. Analysis of the OsNF-YA7 promoter revealed three ABA-independent DRE/CTR elements and RNA-seq analysis identified 48 genes downstream of OsNFYA7 action putatively involved in the OsNF-YA7-mediated drought tolerance pathway. Taken together, our results suggest an important role for OsNF-YA7 in rice drought stress tolerance.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| | - Hyung Il Kim
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| | - Geupil Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea.
| | - Pil Joong Chung
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| | - Jin Seo Jeong
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| | - Youn Shic Kim
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| | - Seung Woon Bang
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| | - Harin Jung
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea.
| | - Ju-Kon Kim
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Gangwon-do 25354, South Korea.
| |
Collapse
|
50
|
Palmeros-Suárez PA, Massange-Sánchez JA, Martínez-Gallardo NA, Montero-Vargas JM, Gómez-Leyva JF, Délano-Frier JP. The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:25-40. [PMID: 26475185 DOI: 10.1016/j.plantsci.2015.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 05/28/2023]
Abstract
Nuclear factor-Y (NF-Y), is a plant heterotrimeric transcription factor constituted by NF-YA, NF-YB and NF-YC subunits. The function of many NF-Y subunits, mostly of the A and B type, has been studied in plants, but knowledge regarding the C subunit remains fragmentary. Here, a water stress-induced NF-YC gene from Amaranthus hypochondriacus (AhNF-YC) was further characterized by its overexpression in transgenic Arabidospis thaliana plants. A role in development was inferred from modified growth rates in root, rosettes and inflorescences recorded in AhNF-YC overexpressing Arabidopsis plants, in addition to a delayed onset of flowering. Also, the overexpression of AhNF-YC caused increased seedling sensitivity to abscisic acid (ABA), and influenced the expression of several genes involved in secondary metabolism, development and ABA-related responses. An altered expression of the latter in water stressed and recovered transgenic plants, together with the observed increase in ABA sensitivity, suggested that their increased water stress resistance was partly ABA-dependent. An untargeted metabolomic analysis also revealed an altered metabolite pattern, both in normal and water stress/recovery conditions. These results suggest that AhNF-YC may play an important regulatory role in both development and stress, and represents a candidate gene for the engineering of abiotic stress resistance in commercial crops.
Collapse
Affiliation(s)
- Paola A Palmeros-Suárez
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Julio A Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Norma A Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Josaphat M Montero-Vargas
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Juan F Gómez-Leyva
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco (ITTJ), Km 10 Carretera a San Miguel Cuyutlán, C.P. 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - John P Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N. (Cinvestav), Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, C.P. 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|