1
|
Roshanara, Tandon R, Puri N, Selvapandiyan A. Mechanistic insights into LdCen1-LdDRP interaction facilitating UV-induced DNA damage repair in Leishmania donovani. Med Microbiol Immunol 2025; 214:18. [PMID: 40205189 DOI: 10.1007/s00430-025-00825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025]
Abstract
Leishmania donovani is the causative agent of the fatal visceral leishmaniasis (VL) disease in humans in the tropical regions, mainly the Indian Subcontinent and Africa. We have previously described centrin1, a basal body associated cell division specific protein in this parasite important for the parasite's host intracellular stage. In this study, we identified a novel centrin1-binding protein called LdDRP through pull-down and MS/MS analysis, which is a homolog of the XPC protein of humans involved in DNA damage. The protein interaction with LdCen1 was also confirmed through peptide spectrum analysis against the UniProt database. Immunofluorescence analysis confirms that LdDRP is localized within the nucleus, suggesting the protein's possible role in DNA interaction. The overexpression of three LdDRP forms in the parasite, each fused with HA-tag (LdDRPF [full length] LdDRPN [only N-terminal], and LdDRPC [only C-terminal]), revealed that only LdDRPF and LdDRPC were able to support the retention of the parasite's shape and promote rapid division following the UV-damage recovery period. This was also correlated to the elevated expression level of both LdDRPC and LdCen1, by Western blot analysis soon after UV-C exposure in the parasites compared to control. The study emphasizes the role of the LdDRP, and its crucial domains involved in the DNA binding process, DNA damage response, and interaction with centrin, particularly in response to UV-C light-induced DNA damage.
Collapse
Affiliation(s)
- Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A Selvapandiyan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Fanourgakis S, Synacheri AC, Lavigne MD, Konstantopoulos D, Fousteri M. Histone H2Bub dynamics in the 5' region of active genes are tightly linked to the UV-induced transcriptional response. Comput Struct Biotechnol J 2022; 21:614-629. [PMID: 36659919 PMCID: PMC9823127 DOI: 10.1016/j.csbj.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The timing and location of writing and erasing of histone modifications determine gene expression programs and are tightly controlled processes. One such modification is the monoubiquitination of histone H2B (H2Bub), whose precise level during transcription elongation is dynamically regulated by the synergistic action of RNF20/40 ubiquitin-ligase and the de-ubiquitinase (DUB) of the ATXN7L3-containing DUB modules. Here, we characterize the dynamics of H2Bub in transcription and explore its role in perspective with the recently updated model of UV damage-induced transcription reorganization. Employing integrative analysis of genome-wide high-throughput approaches, transcription inhibitors and ATXN7L3-DUB knockdown cells, we find that H2Bub levels and patterns depend on intron-exon architecture both in steady state and upon UV. Importantly, our analysis reveals a widespread redistribution of this histone mark, rather than a uniform loss as previously suggested, which closely mirrors the post-UV dynamics of elongating RNA Polymerase II (RNAPII) at transcribed loci. The observed effects are due to a direct inter-dependence on RNAPII local concentration and speed, and we show that deficient ATXN7L3-mediated DUB activity leads to increased elongation rates in both non-irradiated and irradiated conditions. Our data and the implementation of a high-resolution computational framework reveal that the H2Bub pattern follows that of RNAPII, both in the ATXNL3 knockdown and in response to UV guaranteeing faithful elongation speed, especially in the context of the transcription-driven DNA damage response.
Collapse
|
3
|
Batnasan E, Koivukoski S, Kärkkäinen M, Latonen L. Nuclear Organization in Response to Stress: A Special Focus on Nucleoli. Results Probl Cell Differ 2022; 70:469-494. [PMID: 36348119 DOI: 10.1007/978-3-031-06573-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, we discuss the nuclear organization and how it responds to different types of stress. A key component in these responses is molecular traffic between the different sub-nucleolar compartments, such as nucleoplasm, chromatin, nucleoli, and various speckle and body compartments. This allows specific repair and response activities in locations where they normally are not active and serve to halt sensitive functions until the stress insult passes and inflicted damage has been repaired. We focus on mammalian cells and their nuclear organization, especially describing the central role of the nucleolus in nuclear stress responses. We describe events after multiple stress types, including DNA damage, various drugs, and toxic compounds, and discuss the involvement of macromolecular traffic between dynamic, phase-separated nuclear organelles and foci. We delineate the key proteins and non-coding RNA in the formation of stress-responsive, non-membranous nuclear organelles, many of which are relevant to the formation of and utilization in cancer treatment.
Collapse
Affiliation(s)
- Enkhzaya Batnasan
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Minttu Kärkkäinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
4
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
5
|
Zhu W, Hu J, Chi J, Li Y, Yang B, Hu W, Chen F, Xu C, Chai L, Bao Y. Label-Free Proteomics Reveals the Molecular Mechanism of Subculture Induced Strain Degeneration and Discovery of Indicative Index for Degeneration in Pleurotus ostreatus. Molecules 2020; 25:molecules25214920. [PMID: 33114310 PMCID: PMC7660624 DOI: 10.3390/molecules25214920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Pleurotus ostreatus is one of the widely cultivated edible fungi across the world. Mycelial subculture is an indispensable part in the process of cultivation and production for all kinds of edible fungi. However, successive subcultures usually lead to strain degeneration. The degenerated strains usually have a decrease in stress resistance, yield, and an alteration in fruiting time, which will subsequently result in tremendous economic loss. Through proteomic analysis, we identified the differentially expressed proteins (DEPs) in the mycelium of Pleurotus ostreatus from different subcultured generations. We found that the DNA damage repair system, especially the double-strand breaks (DSBs), repairs via homologous recombination, was impaired in the subcultured mycelium, and gradual accumulation of the DSBs would lead to the strain degeneration after successive subculture. The TUNEL assay further confirmed our finding about the DNA breaks in the subcultured mycelium. Interestingly, the enzyme activity of laccase, carboxylic ester hydrolase, α-galactosidase, and catalase directly related to passage number could be used as the characteristic index for strain degeneration determination. Our results not only reveal for the first time at the molecular level that genomic instability is the cause of degeneration, but also provide an applicable approach for monitoring strain degeneration in process of edible fungi cultivation and production.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingliang Chi
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Yang Li
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Bing Yang
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Wenli Hu
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Fei Chen
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Chong Xu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Linshan Chai
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124021, China
- Correspondence: ; Tel.: +86-427-2631777; Fax: +86-411-84706365
| |
Collapse
|
6
|
Kciuk M, Marciniak B, Mojzych M, Kontek R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci 2020; 21:ijms21197264. [PMID: 33019598 PMCID: PMC7582305 DOI: 10.3390/ijms21197264] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The protective ozone layer is continually depleting due to the release of deteriorating environmental pollutants. The diminished ozone layer contributes to excessive exposure of cells to ultraviolet (UV) radiation. This leads to various cellular responses utilized to restore the homeostasis of exposed cells. DNA is the primary chromophore of the cells that absorbs sunlight energy. Exposure of genomic DNA to UV light leads to the formation of multitude of types of damage (depending on wavelength and exposure time) that are removed by effectively working repair pathways. The aim of this review is to summarize current knowledge considering cellular response to UV radiation with special focus on DNA damage and repair and to give a comprehensive insight for new researchers in this field. We also highlight most important future prospects considering application of the progressing knowledge of UV response for the clinical control of diverse pathologies.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence:
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
7
|
Chitale S, Richly H. H4K20me2: Orchestrating the recruitment of DNA repair factors in nucleotide excision repair. Nucleus 2019; 9:212-215. [PMID: 29482435 PMCID: PMC5973261 DOI: 10.1080/19491034.2018.1444327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The integrity of the genome is maintained by specific DNA repair pathways. The main pathway removing DNA lesions induced by exposure to UV light is nucleotide excision repair (NER). The DNA damage response at chromatin is accompanied by the recruitment of DNA repair factors to the lesion site and the deposition of specific histone marks. The function of these histone marks in NER stays for the most part elusive. We have recently reported that the methyltransferase MMSET catalyzes the dimethylation of histone H4 at lysine 20 (H4K20me2) at the lesion site. The deposition of H4K20me2 at DNA damage sites elicits the recruitment of the NER factor XPA providing evidence for an H4K20me2-dependent DNA repair factor recruitment mechanism during lesion recognition in the global-genomic branch of NER. Here we discuss how H4K20me2 might impact on the chromatin conformation and the DNA damage response.
Collapse
Affiliation(s)
- Shalaka Chitale
- a Laboratory of Molecular Epigenetics , Institute of Molecular Biology (IMB) , Mainz , Germany.,b Faculty of Biology , Johannes Gutenberg University , Mainz , Germany
| | - Holger Richly
- a Laboratory of Molecular Epigenetics , Institute of Molecular Biology (IMB) , Mainz , Germany
| |
Collapse
|
8
|
Klein CB. Emerging confluences of epigenetics and DNA repair in cancer and disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:11-14. [PMID: 31395354 DOI: 10.1016/j.mrrev.2019.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Catherine B Klein
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25 Street, New York, NY, 10010, United States.
| |
Collapse
|
9
|
Martínez-López W, Moreno-Ortega D, Valencia-Payan J, Sammader P, Meschini R, Palitti F. Influence of chromatin remodeling in the removal of UVC-induced damage in TCR proficient and deficient Chinese hamster cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:124-131. [DOI: 10.1016/j.mrgentox.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/12/2023]
|
10
|
Chitale S, Richly H. Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation. Oncotarget 2018; 8:30870-30887. [PMID: 28416769 PMCID: PMC5458174 DOI: 10.18632/oncotarget.16142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023] Open
Abstract
One of the major cellular DNA repair pathways is nucleotide excision repair (NER). It is the primary pathway for repair of various DNA lesions caused by exposure to ultraviolet (UV) light, such as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts. Although lesion-containing DNA associates with the nuclear matrix after UV irradiation it is still not understood how nuclear organization affects NER. Analyzing unscheduled DNA synthesis (UDS) indicates that NER preferentially occurs in specific nuclear areas, viz the nucleolus. Upon inducing localized damage, we observe migration of damaged DNA towards the nucleolus. Employing a LacR-based tethering system we demonstrate that H2A-ubiquitylation via the UV-RING1B complex localizes chromatin close to the nucleolus. We further show that the H2A-ubiquitin binding protein ZRF1 resides in the nucleolus, and that it anchors ubiquitylated chromatin along with XPC. Our data thus provide insight into the sub-nuclear organization of NER and reveal a novel role for histone H2A-ubiquitylation.
Collapse
Affiliation(s)
- Shalaka Chitale
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany, Ackermannweg, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Mainz, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany, Ackermannweg, Mainz, Germany
| |
Collapse
|
11
|
Abstract
How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.
Collapse
|
12
|
Tripathi AK, Singh K, Pareek A, Singla-Pareek SL. Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC PLANT BIOLOGY 2015; 15:42. [PMID: 25849155 PMCID: PMC4357127 DOI: 10.1186/s12870-015-0414-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/05/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Histone chaperones modulate chromatin architecture and hence play a pivotal role in epigenetic regulation of gene expression. In contrast to their animal and yeast counterparts, not much is known about plant histone chaperones. To gain insights into their functions in plants, we sought to identify histone chaperones from two model plant species and investigated their phylogeny, domain architecture and transcriptional profiles to establish correlation between their expression patterns and potential role in stress physiology and plant development. RESULTS Through comprehensive whole genome analyses of Arabidopsis and rice, we identified twenty-two and twenty-five genes encoding histone chaperones in these plants, respectively. These could be classified into seven different families, namely NAP, CAF1, SPT6, ASF1, HIRA, NASP, and FACT. Phylogenetic analyses of histone chaperones from diverse organisms including representative species from each of the major plant groups, yeast and human indicated functional divergence in NAP and CAF1C in plants. For the largest histone chaperone family, NAP, phylogenetic reconstruction suggested the presence of two distinct groups in plants, possibly with differing histone preferences. Further, to comment upon their physiological roles in plants, we analyzed their expression at different developmental stages, across various plant tissues, and under biotic and abiotic stress conditions using pre-existing microarray and qRT-PCR. We found tight transcriptional regulation of some histone chaperone genes during development in both Arabidopsis and rice, suggesting that they may play a role in genetic reprogramming associated with the developmental process. Besides, we found significant differential expression of a few histone chaperones under various biotic and abiotic stresses pointing towards their potential function in stress response. CONCLUSIONS Taken together, our findings shed light onto the possible evolutionary trajectory of plant histone chaperones and present novel prospects about their physiological roles. Considering that the developmental process and stress response require altered expression of a large array of genes, our results suggest that some plant histone chaperones may serve a regulatory role by controlling the expression of genes associated with these vital processes, possibly via modulating chromatin dynamics at the corresponding genetic loci.
Collapse
Affiliation(s)
- Amit K Tripathi
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Khushwant Singh
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ashwani Pareek
- />Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh L Singla-Pareek
- />Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
13
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
14
|
Adam S, Dabin J, Bai SK, Polo SE. Imaging local deposition of newly synthesized histones in UVC-damaged chromatin. Methods Mol Biol 2015; 1288:337-47. [PMID: 25827889 DOI: 10.1007/978-1-4939-2474-5_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage not only jeopardizes genome integrity but also challenges the well-organized association of DNA with histone proteins into chromatin, which is key for regulating gene expression and cell functions. The extent to which the original chromatin structure is altered after repair of DNA lesions is thus a critical issue. Dissecting histone dynamics at sites of DNA damage has provided mechanistic insights into chromatin plasticity in response to genotoxic stress. Here, we present an experimental protocol for visualizing the deposition of newly synthesized histone H3 variants at sites of UVC damage in human cells that couples SNAP-tag based labeling of new histones with local UVC irradiation of cells through micropore filters.
Collapse
Affiliation(s)
- Salomé Adam
- Epigenetics and Cell Fate Centre, UMR7216 CNRS/Paris Diderot University, Bâtiment Lamarck (4ème étage) Case 7042, 35 rue Hélène Brion, Paris, 75205, France
| | | | | | | |
Collapse
|
15
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
16
|
Pan L, Penney J, Tsai LH. Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J Mol Biol 2014; 426:3376-88. [PMID: 25128619 DOI: 10.1016/j.jmb.2014.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
Abstract
With the continued extension of lifespan, aging and age-related diseases have become a major medical challenge to our society. Aging is accompanied by changes in multiple systems. Among these, the aging process in the central nervous system is critically important but very poorly understood. Neurons, as post-mitotic cells, are devoid of replicative associated aging processes, such as senescence and telomere shortening. However, because of the inability to self-replenish, neurons have to withstand challenge from numerous stressors over their lifetime. Many of these stressors can lead to damage of the neurons' DNA. When the accumulation of DNA damage exceeds a neuron's capacity for repair, or when there are deficiencies in DNA repair machinery, genome instability can manifest. The increased mutation load associated with genome instability can lead to neuronal dysfunction and ultimately to neuron degeneration. In this review, we first briefly introduce the sources and types of DNA damage and the relevant repair pathways in the nervous system (summarized in Fig. 1). We then discuss the chromatin regulation of these processes and summarize our understanding of the contribution of genomic instability to neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Pan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Polo SE. Reshaping chromatin after DNA damage: the choreography of histone proteins. J Mol Biol 2014; 427:626-36. [PMID: 24887097 PMCID: PMC5111727 DOI: 10.1016/j.jmb.2014.05.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/03/2023]
Abstract
DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.
Collapse
Affiliation(s)
- Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, 75205 Paris Cedex 13, France.
| |
Collapse
|
18
|
Adam S, Polo SE, Almouzni G. How to restore chromatin structure and function in response to DNA damage--let the chaperones play: delivered on 9 July 2013 at the 38th FEBS Congress in St Petersburg, Russia. FEBS J 2014; 281:2315-23. [PMID: 24673849 DOI: 10.1111/febs.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023]
Abstract
Histone deposition onto DNA assisted by specific chaperones forms the chromatin basic unit and serves to package the genome within the cell nucleus. The resulting chromatin organization, often referred to as the epigenome, contributes to a unique transcriptional program that defines cell identity. Importantly, during cellular life, substantial alterations in chromatin structure may arise due to cell stress, including DNA damage, which not only challenges the integrity of the genome but also threatens the epigenome. Considerable efforts have been made to decipher chromatin dynamics in response to genotoxic stress, and to assess how it affects both genome and epigenome stability. Here, we review recent advances in understanding the mechanisms of DNA damage-induced chromatin plasticity in mammalian cells. We focus specifically on the dynamics of histone H3 variants in response to UV irradiation, and highlight the role of their dedicated chaperones in restoring both chromatin structure and function. Finally, we discuss how, in addition to restoring chromatin integrity, the cellular networks that signal and repair DNA damage may also provide a window of opportunity for modulating the information conveyed by chromatin.
Collapse
Affiliation(s)
- Salomé Adam
- Institut Curie, Centre de Recherche, Paris, France; Centre National de la Recherche Scientifique, UMR3664, Paris, France; Equipe Labellisée Ligue Contre le Cancer, Paris, France; Institut de Formation Doctorale, University Pierre & Marie Curie, Paris, France; Sorbonne University, PSL*, Paris, France; Epigenetics and Cell Fate Centre, UMR7216, Centre National de la Recherche Scientifique/Paris Diderot University, Paris, France
| | | | | |
Collapse
|
19
|
Adam S, Polo SE, Almouzni G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 2013; 155:94-106. [PMID: 24074863 DOI: 10.1016/j.cell.2013.08.029] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/17/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Understanding how to recover fully functional and transcriptionally active chromatin when its integrity has been challenged by genotoxic stress is a critical issue. Here, by investigating how chromatin dynamics regulate transcriptional activity in response to DNA damage in human cells, we identify a pathway involving the histone chaperone histone regulator A (HIRA) to promote transcription restart after UVC damage. Our mechanistic studies reveal that HIRA accumulates at sites of UVC irradiation upon detection of DNA damage prior to repair and deposits newly synthesized H3.3 histones. This local action of HIRA depends on ubiquitylation events associated with damage recognition. Furthermore, we demonstrate that the early and transient function of HIRA in response to DNA damage primes chromatin for later reactivation of transcription. We propose that HIRA-dependent histone deposition serves as a chromatin bookmarking system to facilitate transcription recovery after genotoxic stress.
Collapse
Affiliation(s)
- Salomé Adam
- Chromatin Dynamics, Institut Curie Research Centre, 75248 Paris Cedex 5, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
| | | | | |
Collapse
|
20
|
Peterson CL, Almouzni G. Nucleosome dynamics as modular systems that integrate DNA damage and repair. Cold Spring Harb Perspect Biol 2013; 5:5/9/a012658. [PMID: 24003210 DOI: 10.1101/cshperspect.a012658] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
By some estimates, a eukaryotic cell must repair up to 10,000 DNA lesions per cell cycle to counteract endogenous sources of DNA damage. Exposure to environmental toxins, UV sources, or other radiations only increases this enormous number. Failure to repair such lesions can lead to a deleterious mutation rate, genomic instability, or cell death. The timely and efficient repair of eukaryotic DNA damage is further complicated by the realization that DNA lesions must be detected and repaired in the context of chromatin with its complex organization within the nucleus. Numerous studies have shown that chromatin packaging can inhibit nearly all repair pathways, and recent work has defined specific mechanisms that facilitate DNA repair within the chromatin context. In this review, we provide a broad overview of chromatin regulatory mechanisms, mainly at the nucleosomal level, and then focus on recent work that elucidates the role of chromatin structure in regulating the timely and efficient repair of DNA double-strand breaks (DSBs).
Collapse
Affiliation(s)
- Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|