1
|
Üremiş MM, Türköz Y, Üremiş N. Investigation of apoptotic effects of Cucurbitacin D, I, and E mediated by Bax/Bcl-xL, caspase-3/9, and oxidative stress modulators in HepG2 cell line. Drug Dev Res 2024; 85:e22174. [PMID: 38494997 DOI: 10.1002/ddr.22174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Cucurbitacins, natural compounds highly abundant in the Cucurbitaceae plant family, are characterized by their anticancer, anti-inflammatory, and hepatoprotective properties. These compounds have potential as therapeutic agents in the treatment of liver cancer. This study investigated the association of cucurbitacin D, I, and E (CuD, CuI, and CuE) with the caspase cascade, Bcl-2 family, and oxidative stress modulators in the HepG2 cell line. We evaluated the antiproliferative effects of CuD, CuI, and CuE using the MTT assay. We analyzed Annexin V/PI double staining, cell cycle, mitochondrial membrane potential, and wound healing assays at different doses of the three compounds. To examine the modulation of the caspase cascade, we determined the protein and gene expression levels of Bax, Bcl-xL, caspase-3, and caspase-9. We evaluated the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), Total, and Native Thiol levels to measure cellular redox status. CuD, CuI, and CuE suppressed the proliferation of HepG2 cells in a dose-dependent manner. The cucurbitacins induced apoptosis by increasing caspase-3, caspase-9, and Bax activity, inhibiting Bcl-xL activation, causing loss of ΔΨm, and suppressing cell migration. Furthermore, cucurbitacins modulated oxidative stress by increasing TOS levels and decreasing SOD, GSH, TAS, and total and native Thiol levels. Our findings suggest that CuD, CuI, and CuE exert apoptotic effects on the hepatocellular carcinoma cell line by regulating Bax/Bcl-xL, caspase-3/9 signaling, and causing intracellular ROS increase in HepG2 cells.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nuray Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
2
|
Huang CF, Liu SH, Ho TJ, Lee KI, Fang KM, Lo WC, Liu JM, Wu CC, Su CC. Quercetin induces tongue squamous cell carcinoma cell apoptosis via the JNK activation-regulated ERK/GSK-3α/β-mediated mitochondria-dependent apoptotic signaling pathway. Oncol Lett 2022; 23:78. [PMID: 35111247 PMCID: PMC8771640 DOI: 10.3892/ol.2022.13198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
Tongue squamous cell carcinoma (SCC) is a most common type of oral cancer. Due to its highly invasive nature and poor survival rate, the development of effective pharmacological therapeutic agents is urgently required. Quercetin (3,3',4',5,7-pentahydroxyflavone) is a polyphenolic flavonoid found in plants and is an active component of Chinese herbal medicine. The present study investigated the pharmacological effects and possible mechanisms of quercetin on apoptosis of the tongue SCC-derived SAS cell line. Following treatment with quercetin, cell viability was assessed via the MTT assay. Apoptotic and necrotic cells, mitochondrial transmembrane potential and caspase-3/7 activity were analyzed via flow cytometric analyses. A caspase-3 activity assay kit was used to detect the expression of caspase-3 activity. Western blot analysis was performed to examine the expression levels of proteins associated with the MAPKs, AMPKα, GSK3-α/β and caspase-related signaling pathways. The results revealed that quercetin induced morphological alterations and decreased the viability of SAS cells. Quercetin also increased apoptosis-related Annexin V-FITC fluorescence and caspase-3 activity, and induced mitochondria-dependent apoptotic signals, including a decrease in mitochondrial transmembrane potential and Bcl-2 protein expression, and an increase in cytosolic cytochrome c, Bax, Bak, cleaved caspase-3, cleaved caspase-7 and cleaved poly (ADP-ribose) polymerase protein expression. Furthermore, quercetin significantly increased the protein expression levels of phosphorylated (p)-ERK, p-JNK1/2 and p-GSK3-α/β, but not p-p38 or p-AMPKα in SAS cells. Pretreatment with the pharmacological JNK inhibitor SP600125 effectively reduced the quercetin-induced apoptosis-related signals, as well as p-ERK1/2 and p-GSK3-α/β protein expression. Both ERK1/2 and GSK3-α/β inhibitors, PD98059 and LiCl, respectively, could significantly prevent the quercetin-induced phosphorylation of ERK1/2 and GSK3-α/β, but not JNK activation. Taken together, these results suggested that quercetin may induce tongue SCC cell apoptosis via the JNK-activation-regulated ERK1/2 and GSK3-α/β-mediated mitochondria-dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan, R.O.C
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan, R.O.C
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan, R.O.C
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan, R.O.C
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan, R.O.C
| | - Wu-Chia Lo
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan, R.O.C
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan, R.O.C
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| |
Collapse
|
3
|
Microwave- and Ultrasound-Assisted Extraction of Cucurbitane-Type Triterpenoids from Momordica charantia L. Cultivars and Their Antiproliferative Effect on SAS Human Oral Cancer Cells. Foods 2022; 11:foods11050729. [PMID: 35267362 PMCID: PMC8909074 DOI: 10.3390/foods11050729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
Cucurbitane-type triterpenoids are a major class of bioactive compounds present in bitter melon. In the present study, six different cultivars of bitter melon were extracted by using microwave- or ultrasound-assisted techniques to identify the prominent method that can extract the majority of cucurbitane-type triterpenoids. A UHPLC–MS/MS (ultra-high-performance liquid chromatography tandem mass spectrometry) system was used for the identification and quantification of ten cucurbitane-type triterpenoids. The results suggest that the use of microwave-assisted extraction on cultivars 4 and 5 produced higher amounts of the selected cucurbitane-type triterpenoids. The interpretation of principal component analysis also identified that cultivar 4 is significantly different from the others in which the compounds 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al and momordicine I were found in higher quantities. Upon further evaluation, it was also identified that these two triterpenoids can act as antiproliferative agents due to their effects on SAS human oral cancer cell lines.
Collapse
|
4
|
Patel K, Murray MG, Whelan KA. Roles for GADD45 in Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:23-39. [DOI: 10.1007/978-3-030-94804-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Ramezani M, Hasani M, Ramezani F, Karimi Abdolmaleki M. Cucurbitacins: A Focus on Cucurbitacin E As A Natural Product and Their Biological Activities. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For the last years, different types of cucurbitacins have been extracted from various species of Cucurbitaceae family. For this review, all related papers were accumulated by searching electronic databases in the English language, including PubMed, Scopus, and Google Scholar. The keywords of cucurbitacin, cucumber anticancer therapy, cytotoxic effects, chemotherapy, and inhibitor effect were searched until February 2020. According to the result of this review, cucurbitacin E as a tetracyclic triterpenes compound, has been exhibited cell cycle arrest, anti-inflammatory and anticancer activities. It showed tumor proliferation prevention, induction of apoptosis or synergistically acts with other established antitumor compounds and cytokines throughout many molecular mechanisms. In a function-structure association manner, cucurbitacin E can inhibit Janus kinas2 (JAK2) phosphorylation, the signal transducer activator of transcription 3 (STAT3) and subsequently block these pathways, which seems to be the main mechanism of its activity. Future studies could target its detection in uninvestigated sources, subsequently its derivatives to improve their anticancer activity.
Collapse
Affiliation(s)
| | | | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
7
|
Song H, Sui H, Zhang Q, Wang P, Wang F. Cucurbitacin E Induces Autophagy-Involved Apoptosis in Intestinal Epithelial Cells. Front Physiol 2020; 11:1020. [PMID: 32982778 PMCID: PMC7479753 DOI: 10.3389/fphys.2020.01020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis plays a crucial role in maintaining the structural and functional integrity of the intestinal epithelial barrier. Autophagy mediates injury to and repair of the intestinal epithelial barrier through multiple pathways in pathophysiological conditions. Our earlier study has found that cucurbitacin E (CuE) regulates the proliferation, migration, and permeability of human intestinal epithelial cells (IECs); however, its effects and mechanisms on apoptosis and autophagy are still unclear. This study reported CuE induced apoptosis and promoted autophagy of IECs in a concentration-dependent manner. The results showed that CuE could inhibit the expression of apoptosis-related protein Bcl-2 and drove activation of caspase-3 and cleavage of its substrate poly (ADP-ribose) polymerase. CuE also facilitated the expression of endoplasmic reticulum stress-related proteins, CHOP and Grp78, and autophagy-related proteins, Beclin1 and LC3, while inhibiting the phosphorylation of AKT and mammalian target of rapamycin (mTOR). An autophagy inhibitor, 3-methyladenine, reduced CuE-induced apoptosis. These results suggest that CuE may induce apoptosis and autophagy in IECs via the PI3K/AKT/mTOR signaling pathway and that autophagy following endoplasmic reticulum stress participates in the pro-apoptotic process induced by CuE.
Collapse
Affiliation(s)
- Huapei Song
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hehuan Sui
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Pharmacy, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, China.,Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
8
|
Traditional Herbal Medicine Mediated Regulations during Head and Neck Carcinogenesis. Biomolecules 2020; 10:biom10091321. [PMID: 32942674 PMCID: PMC7565208 DOI: 10.3390/biom10091321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 01/31/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. It is well recognized that environmental challenges such as smoking, viral infection and alcohol consumption are key factors underlying HNSCC pathogenesis. Other than major clinical interventions (e.g., surgical resection, chemical and radiotherapy) that have been routinely practiced over years, adjuvant anticancer agents from Traditional Herbal Medicine (THM) are proposed, either alone or together with conventional therapies, to be experimentally effective for improving treatment efficacy in different cancers including HNSCCs. At a cellular and molecular basis, THM extracts could modulate different malignant indices via distinct signaling pathways and provide better control in HNSCC malignancy and its clinical complications such as radiotherapy-induced xerostomia/oral mucositis. In this article, we aim to systemically review the impacts of THM in regulating HNSCC tumorous identities and its potential perspective for clinical use.
Collapse
|
9
|
Liu Y, Yang H, Guo Q, Liu T, Jiang Y, Zhao M, Zeng K, Tu P. Cucurbitacin E Inhibits Huh7 Hepatoma Carcinoma Cell Proliferation and Metastasis via Suppressing MAPKs and JAK/STAT3 Pathways. Molecules 2020; 25:molecules25030560. [PMID: 32012950 PMCID: PMC7037518 DOI: 10.3390/molecules25030560] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Cucurbitacin E (CuE), a highly oxygenated tetracyclic triterpene from Cucurbitaceae, has shown to exhibit potent cytotoxic and anti-proliferative properties against several human cancer cells. However, the underlying effects and mechanisms of CuE regarding hepatocellular carcinoma (HCC) have not been well understood. In the current study, unbiased RNA-sequencing (RNA-seq) and bioinformatics analysis was applied to elucidate the underlying molecular mechanism. CuE could significantly inhibit cell proliferation and migration of Huh7 cells, meanwhile CuE exhibited potent anti-angiogenic activity. RNA-seq analysis revealed that CuE negatively regulated 241 differentially expressed genes (DEGs) involved in multiple processes including cytoskeleton formation, angiogenesis and focal adhesion. Further analysis revealed that CuE effectually regulated diversified pharmacological signaling pathways such as MAPKs and JAK-STAT3. Our findings demonstrated the role of CuE in inhibiting proliferation and migration, providing an insight into the regulation of multiple signaling pathways as a new paradigm for anti-cancer treatment strategy.
Collapse
|
10
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
11
|
Hazekawa M, Nishinakagawa T, Kawakubo-Yasukochi T, Nakashima M. Evaluation of IC 50 levels immediately after treatment with anticancer reagents using a real-time cell monitoring device. Exp Ther Med 2019; 18:3197-3205. [PMID: 31555392 PMCID: PMC6755379 DOI: 10.3892/etm.2019.7876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 06/13/2019] [Indexed: 11/05/2022] Open
Abstract
A real-time cell-monitoring analysis (RTCA) system was previously developed based on the change in impedance when cells attach and spread in a culture dish coated with a gold microelectrode array. However, the potential applications of this system have not yet been fully demonstrated. The purpose of this study was to test the utility of the RTCA system to determine the cytotoxicity of four anticancer agents in carcinoma cells. The results were compared with those of the conventional WST-8 assay at the endpoint to determine the potential of the RTCA system as a new real-time assay method to evaluate cytotoxicity. iCELLigence was used as the RTCA system in this study. Suspensions of oral squamous cell carcinoma (OSCC) cell lines were seeded (2×104 cells/well) onto the E-plate (the culture plate of the iCELLigence system). After 24 h of culture, anticancer agents were added to each well, and changes in electrical impedance (cell index, CI) were recorded for another 72 h of culture. Cell proliferation was detected in real-time by the RTCA device in an automated, high throughput manner. Then, the IC50 profiles of the four anticancer agents were calculated based on the real-time cell index values. The results indicated that the RTCA system was useful in evaluating cytotoxic reactions immediately after the addition of the anticancer agents as it was able to record the data in real-time. Furthermore, the IC50 levels measured by the real-time assay were lower than those measured by the endpoint assay. Thus, RTCA systems can be used to evaluate chemotherapeutic agents in cancer cells as well as their side effects in normal cells.
Collapse
Affiliation(s)
- Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tomoyo Kawakubo-Yasukochi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Manabu Nakashima
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
12
|
Yasukochi A, Kawakubo-Yasukochi T, Morioka M, Hazekawa M, Nishinakagawa T, Ono K, Nakashima M, Nakamura S. Regulation of collagen type XVII expression by miR203a-3p in oral squamous cell carcinoma cells. J Biochem 2019; 166:163-173. [PMID: 30918974 DOI: 10.1093/jb/mvz024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
Collagen type XVII (COL17) is expressed in various tissues and its aberrant expression is associated with tumour progression. In this study, we investigated the regulation of COL17 expression in oral squamous cell carcinoma (OSCC) using the cell lines NA, SAS, Ca9-22, and Sa3. COL17 was induced upon p53 activation by cisplatin in SAS; however, this effect was more limited in NA and hardly in Ca9-22 and Sa3, with mutated p53. Moreover, COL17 was found to be regulated by miR203a-3p in all cell lines. Our data suggest that COL17 expression in OSCC cell lines is regulated by p53 and miR203a-3p.
Collapse
Affiliation(s)
- Atsushi Yasukochi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Tomoyo Kawakubo-Yasukochi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Masahiko Morioka
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Kazuhiko Ono
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Manabu Nakashima
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
13
|
Wang W, Yang H, Li Y, Zheng Z, Liu Y, Wang H, Mu Y, Yao Q. Identification of 16,25- O-diacetyl-cucurbitane F and 25- O-acetyl-23,24-dihydrocucurbitacin F as novel anti-cancer chemicals. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180723. [PMID: 30225067 PMCID: PMC6124052 DOI: 10.1098/rsos.180723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/11/2018] [Indexed: 05/14/2023]
Abstract
Seven new cucurbitane glucosides, hemslepensides J-P (1-7), and two known compounds, 16,25-O-diacetyl-cucurbitane F (8) and 25-O-acetyl-23,24-dihydrocucurbitacin F (9), were isolated from the tubers of Hemsleya pengxianensis var. jinfushanensis. The structures of 1-7 were elucidated using infrared absorption spectroscopy, nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. The treatment of HT29 cells, human colon cancer cells, with compounds 8 and 9 inhibited cell proliferation. Further study demonstrated that compounds 8 and 9 induced F-actin aggregation, G2/M phase cell cycle arrest and cell apoptosis in HT29 cells. In summary, the present study enriched the chemical composition research of H. pengxianensis, and suggested that the compounds 8/9 treatment may be a potentially useful therapeutic option for colon cancer.
Collapse
Affiliation(s)
- Wenxue Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, People's Republic of China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Haoran Yang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, People's Republic of China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Ying Li
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Zhongfei Zheng
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Yongjun Liu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Haiyang Wang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Yanling Mu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
- Authors for correspondence: Yanling Mu e-mail:
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
- Authors for correspondence: Qingqiang Yao e-mail:
| |
Collapse
|
14
|
Inducement of apoptosis by cucurbitacin E, a tetracyclic triterpenes, through death receptor 5 in human cervical cancer cell lines. Cell Death Discov 2017; 3:17014. [PMID: 28487767 PMCID: PMC5402524 DOI: 10.1038/cddiscovery.2017.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the most common malignancy in women, for which conization or hysterectomy are the main therapy. Curcubitacin E (Cu E) is a natural compound-based drug which from the Guadi (climbing stem of Cucumic melo L). Previously shown to be an anti-tumor as well as a potent chemopreventive agent against several types of tumors. The present study, investigated anti-proliferation and apoptosis induced by Cu E in cervical cancer cell lines (HeLa and Ca Ski). The results indicate that the cytotoxicity is associated with accumulation in apoptosis but not necrosis. Cu E produced apoptosis as well as the up-regulation the expression of death receptor 5 (DR5). In addition, the DR5 gene activation in apoptosis, both effects increased proportionally with the dose of Cu E; however, mitosis delay was also dependant on the amount of Cu E treatment in the cancer cells. These results indicate that Cu E may delay cancer cell growth by apoptosis via upregulation of DR5 gene expression.
Collapse
|
15
|
Su CC, Lee KI, Chen MK, Kuo CY, Tang CH, Liu SH. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways. PLoS One 2016; 11:e0168095. [PMID: 27930712 PMCID: PMC5145211 DOI: 10.1371/journal.pone.0168095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC). OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP) and induced cytochrome c and apoptosis inducing factor (AIF) release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER) stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.
Collapse
Affiliation(s)
- Chin-Chuan Su
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Cheng YM, Tsai CC, Hsu YC. Sulforaphane, a Dietary Isothiocyanate, Induces G₂/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association. Int J Mol Sci 2016; 17:ijms17091530. [PMID: 27626412 PMCID: PMC5037805 DOI: 10.3390/ijms17091530] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins.
Collapse
Affiliation(s)
- Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Ching-Chou Tsai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Chiayi 61333, Taiwan.
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
- Bachelor Degree Program of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| |
Collapse
|
17
|
Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chem Biol Interact 2016; 253:1-9. [PMID: 27106530 DOI: 10.1016/j.cbi.2016.04.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022]
Abstract
Cucurbitacin E (CuE) is a triterpenoid with potent anticancer activities while the underlying mechanisms remain elusive. In the present study, the anticancer effects of CuE on 95D lung cancer cells were investigated. CuE decreased cell viability, inhibited colony formation, and increased reactive oxygen species (ROS) in a concentration-dependent manner, which were reversed by N-acetyl-l-cysteine (NAC). CuE induced apoptosis as determined by JC-1 staining, expression of Bcl-2 family proteins, cleavage of caspases, and TUNEL staining. NAC and Ac-DEVD-CHO partially reversed CuE-induced cleavage of caspase-3, caspase-7, and PARP. Furthermore, CuE caused accumulation of autophagic vacuoles and concentration- and time-dependent expression of LC3II protein. Autophagy inhibitors chloroquine and bafilomycin A1 enhanced CuE-induced LC3II expression and cell death. CuE-triggered protein expression of p-AKT, p-mTOR, Beclin-1, and p-ULK1 was partially reversed by NAC pretreatment. In addition, CuE treatment damaged F-actin without affecting β-tubulin as confirmed by immunofluorescence. In conclusion, CuE induced ROS-dependent apoptosis through Bcl-2 family and caspases in 95D lung cancer cells. Furthermore, CuE induced protective autophagy mediated by ROS through AKT/mTOR pathway. This study provides novel roles of ROS in the anticancer effect of CuE.
Collapse
|
18
|
Cai Y, Fang X, He C, Li P, Xiao F, Wang Y, Chen M. Cucurbitacins: A Systematic Review of the Phytochemistry and Anticancer Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1331-50. [PMID: 26503558 DOI: 10.1142/s0192415x15500755] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cucurbitacins are highly oxidized tetracyclic triterpenoids that are widely present in traditional Chinese medicines (Cucurbitaceae family), possess strong anticancer activity, and are divided into 12 classes from A to T with over 200 derivatives. The eight most active cucurbitacin components against cancer are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R. Their mechanisms of action include antiproliferation, inhibition of migration and invasion, proapoptosis, and cell cycle arrest promotion. Cucurbitacins are also found to be the inhibitors of JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which play important roles in the apoptosis and survival of cancer cells. Recently, new studies have discovered synergistic anticancer effects by using cucurbitacins together with clinically approved chemotherapeutic drugs, such as docetaxel and methotrexate. This paper provides a summary of recent research progress on the anticancer property of cucurbitacins and the various intracellular signaling pathways involved in the regulation of cancer cell proliferation, death, invasion, and migration. Therefore, cucurbitacins are a class of promising anticancer drugs to be used alone or be intergraded in current chemotherapies and radiotherapies to treat many types of cancers.
Collapse
Affiliation(s)
- Yuee Cai
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiefan Fang
- † Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengwei He
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Peng Li
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Fei Xiao
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China.,‡ Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Yitao Wang
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Meiwan Chen
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
19
|
Tsai CC, Chang YH, Chang CC, Cheng YM, Ou YC, Chien CCC, Hsu YC. Induction of Apoptosis in Endometrial Cancer (Ishikawa) Cells by Pogostemon cablin Aqueous Extract (PCAE). Int J Mol Sci 2015; 16:12424-35. [PMID: 26042464 PMCID: PMC4490452 DOI: 10.3390/ijms160612424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022] Open
Abstract
Pogostemon cablin (PC) is a traditional herbal medicine used in the treatment of the common cold, nausea, diarrhea, and even for headaches and fever. However, the mechanisms underlying the anti-proliferative activity of PC in endometrial cancer (EC) cells have yet to be fully elucidated. This study investigated the anticancer effects of an aqueous extract of Pogostemon cablin (PCAE), specifically induced apoptosis in EC (Ishikawa) cells. Proliferation of EC cells following exposure to PCAE was assessed by an MTT assay. DNA content and the induction of cell cycle apoptosis were analyzed by flow cytometry (FACS Calibur). Protein caspase-3 and, -9 as well as AIF were investigated using Western blot. Our results demonstrate growth inhibition of Ishikawa cells by PCAE. Furthermore, caspase-3 activity caused PCAE-treated cell lines to accumulate in apoptosis. Gene expression profiling (GEP) results further suggest that, in addition to its known effects with regard to EC prevention, PCAE may also exert antitumor activity on established EC cells. Many previous studies have identified the chemo-preventive effects of natural plant materials and the potential role of these materials in chemotherapy. This current study used human EC Ishikawa cells to investigate the anti-tumor effects of PCAE in EC cells. Our results demonstrate that PCAE inhibits the growth of cancer cells and induces apoptosis, which suggests the potential applicability of PCAE as an antitumor agent.
Collapse
Affiliation(s)
- Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Ya-Huei Chang
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| | - Chi-Chang Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, Kaohsiung 82445, Taiwan.
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 71701, Taiwan.
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Chan-Chao Chang Chien
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Yi-Chiang Hsu
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 71701, Taiwan.
| |
Collapse
|
20
|
Chung SO, Kim YJ, Park SU. An updated review of Cucurbitacins and their biological and pharmacological activities. EXCLI JOURNAL 2015; 14:562-6. [PMID: 26648815 PMCID: PMC4669946 DOI: 10.17179/excli2015-283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| |
Collapse
|
21
|
Lohberger B, Kretschmer N, Bernhart E, Rinner B, Stuendl N, Kaltenegger H, Kahl S, Bauer R, Leithner A. 25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:265-272. [PMID: 25701753 DOI: 10.1016/j.jep.2015.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/22/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quisqualis indica is used in traditional Chinese medicine to treat cancer and related syndromes and also known for its anthelminthic effects. AIM OF THE STUDY Soft tissue sarcomas represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential. In this study, we evaluated the cytotoxic, apoptosis inducing and cell cycle arresting effects of 25-O-acetyl-23,24-dihydro-cucurbitacin F which has been isolated from leaves and twigs of Q. indica. MATERIAL AND METHODS The present study investigates the effects of 25-O-acetyl-23,24-dihydro-cucurbitacin F (1) on cell viability, cell cycle distribution, and apoptotic induction of three human sarcoma cell lines of various origins by using the CellTiter 96(®) AQueous One Solution Cell Proliferation Assay, flow cytometrical experiments, real-time RT-PCR, Western blotting, and the Caspase-Glo(®) 3/7 Assay RESULTS We could show that 1 reduced cell viability in a dose-dependent manner and arrested the cells at the G2/M interface. The accumulation of cells at the G2/M phase resulted in a significant decrease of the cell cycle checkpoint regulators cyclin B1, cyclin A, CDK1, and CDK2. Interestingly, 1 inhibited survivin expression significantly, which functions as a key regulator of mitosis and programmed cell death, and is overexpressed in many tumor types including sarcomas. Moreover, 1 induced apoptosis in liposarcoma and rhabdomyosarcoma cells caspase-3 dependently. CONCLUSION Our data strongly support 1 as a very interesting target for further investigation and development of novel therapeutics in sarcoma research.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopaedic Surgery, Medical University Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Harrachgasse 21/3, 8010 Graz, Austria
| | - Beate Rinner
- Center for Medical Research, Medical University Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Nicole Stuendl
- Department of Orthopaedic Surgery, Medical University Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - Heike Kaltenegger
- Department of Orthopaedic Surgery, Medical University Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - Stefan Kahl
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedic Surgery, Medical University Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| |
Collapse
|
22
|
Third-degree hindpaw burn injury induced apoptosis of lumbar spinal cord ventral horn motor neurons and sciatic nerve and muscle atrophy in rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:372819. [PMID: 25695065 PMCID: PMC4324890 DOI: 10.1155/2015/372819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022]
Abstract
Background. Severe burns result in hypercatabolic state and concomitant muscle atrophy that persists for several months, thereby limiting patient recovery. However, the effects of burns on the corresponding spinal dermatome remain unknown. This study aimed to investigate whether burns induce apoptosis of spinal cord ventral horn motor neurons (VHMNs) and consequently cause skeletal muscle wasting. Methods. Third-degree hindpaw burn injury with 1% total body surface area (TBSA) rats were euthanized 4 and 8 weeks after burn injury. The apoptosis profiles in the ventral horns of the lumbar spinal cords, sciatic nerves, and gastrocnemius muscles were examined. The Schwann cells in the sciatic nerve were marked with S100. The gastrocnemius muscles were harvested to measure the denervation atrophy. Result. The VHMNs apoptosis in the spinal cord was observed after inducing third-degree burns in the hindpaw. The S100 and TUNEL double-positive cells in the sciatic nerve increased significantly after the burn injury. Gastrocnemius muscle apoptosis and denervation atrophy area increased significantly after the burn injury. Conclusion. Local hindpaw burn induces apoptosis in VHMNs and Schwann cells in sciatic nerve, which causes corresponding gastrocnemius muscle denervation atrophy. Our results provided an animal model to evaluate burn-induced muscle wasting, and elucidate the underlying mechanisms.
Collapse
|
23
|
Hung CM, Chang CC, Lin CW, Chen CC, Hsu YC. GADD45γ induces G2/M arrest in human pharynx and nasopharyngeal carcinoma cells by cucurbitacin E. Sci Rep 2014; 4:6454. [PMID: 25245461 PMCID: PMC4171705 DOI: 10.1038/srep06454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common form of malignant cancer, for which radiotherapy or chemotherapy are the main treatment methods. Cucurbitacin E (CuE) is a natural compound-based drug which from the climbing stem of Cucumic melo L (Guadi). Previously shown to be an antifeedant as well as a potent chemopreventive agent against several types of cancer. The present study, investigated anti-proliferation and cell cycle G2/M arrest induced by CuE in Detroit 562 cells (pharynx carcinoma) and HONE-1 (nasopharyngeal carcinoma) cells. Results indicate that the cytotoxicity is associated with accumulation in G2/M cell-cycle phases. CuE produced cell cycle arrest as well as the downregulation of cyclin B1 and CDC2 expression. In addition, treated cells with CuE and GADD45γ SiRNA that also coincided with GADD45γ gene activation in cell cycle arrest. Both effects increased proportionally with the dose of CuE; however, proliferation inhibition and mitosis delay was dependant on the amount of CuE treatment in the cancer cells.
Collapse
Affiliation(s)
- Chao-Ming Hung
- Department of General Surgery, E-Da Hospital, I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chen-Wei Lin
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| | - Chih-Chen Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| |
Collapse
|
24
|
Kong Y, Chen J, Zhou Z, Xia H, Qiu MH, Chen C. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PLoS One 2014; 9:e103760. [PMID: 25072848 PMCID: PMC4114842 DOI: 10.1371/journal.pone.0103760] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive form of breast cancer resistant to many common treatments. In this study, we compared the effects of 12 phytochemical drugs on four cancer cell lines, and noticed that Cucurbitacin E (CuE) significantly inhibited TNBC cell growth by inducing cell cycle G2/M phase arrest and apoptosis. CuE reduced expression of Cyclin D1, Survivin, XIAP, Bcl2, and Mcl-1 in MDA-MB-468 and SW527, and within MDA-MB-468, CuE significantly increased activation of JNK and inhibited activation of AKT and ERK. Collectively, these results suggest that CuE may be a viable compound for developing novel TNBC therapeutics.
Collapse
Affiliation(s)
- Yanjie Kong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Houjun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China
- * E-mail: (MHQ) (MQ); (CC) (CC)
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (MHQ) (MQ); (CC) (CC)
| |
Collapse
|
25
|
Hsu YC, Huang TY, Chen MJ. Therapeutic ROS targeting of GADD45γ in the induction of G2/M arrest in primary human colorectal cancer cell lines by cucurbitacin E. Cell Death Dis 2014; 5:e1198. [PMID: 24763055 PMCID: PMC4001305 DOI: 10.1038/cddis.2014.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/21/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
Abstract
Cucurbitacin E (CuE) or α-elaterin is a natural compound previously shown to be an antifeedant as well as a potent chemopreventive agent against several types of cancer. The present study investigated the anticancer effects of CuE on colorectal cancer (CRC) using primary cell lines isolated from five CRC patients in Taiwan, Specifically, we explored the anti-proliferation and cell cycle G2/M arrest induced by CuE in CRC cells. MPM-2 flow cytometry tests show that CuE-treated cells accumulated in metaphase (CuE 2.5-7.5 μM). Results further indicate that CuE produced G2/M arrest as well as the downregulation of CDC2 and cyclin B1 expression and dissociation. Both effects increased proportionally with the dose of CuE; however, the inhibition of proliferation, arrest of mitosis, production of reactive oxygen species (ROS), and loss of mitochondrial membrane potential (ΔΨm) were found to be dependent on the quantity of CuE used to treat the cancer cells. In addition, cell cycle arrest in treated cells coincided with the activation of the gene GADD45(α, β, γ). Incubation with CuE resulted in the binding of GADD45γ to CDC2, which suggests that the delay in CuE-induced mitosis is regulated by the overexpression of GADD45γ. Our findings suggest that, in addition to the known effects on cancer prevention, CuE may have antitumor activities in established CRC.
Collapse
Affiliation(s)
- Y-C Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - T-Y Huang
- Department of Neurosurgery, Tainan Sin-Lau Hospital, Tainan, Taiwan
| | - M-J Chen
- Division of Traumatology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Sports Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
26
|
Inducement of mitosis delay by cucurbitacin E, a novel tetracyclic triterpene from climbing stem of Cucumis melo L., through GADD45γ in human brain malignant glioma (GBM) 8401 cells. Cell Death Dis 2014; 5:e1087. [PMID: 24577085 PMCID: PMC3944240 DOI: 10.1038/cddis.2014.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 01/26/2023]
Abstract
Cucurbitacin E (CuE) is a natural compound previously shown to have anti-feedant, antioxidant and antitumor activities as well as a potent chemo-preventive action against cancer. The present study investigates its anti-proliferative property using MTT assay; CuE demonstrated cytotoxic activity against malignant glioma GBM 8401 cells and induced cell cycle G2/M arrest in these cells. CuE-treated cells accumulated in metaphase (CuE 2.5–10 μM) as determined using MPM-2 by flow cytometry. We attempted to characterize the molecular pathways responsible for cytotoxic effects of CuE in GBM 8401 cells. We studied the genome-wide gene expression profile on microarrays and molecular networks by using pathway analysis tools of bioinformatics. The CuE reduced the expression of 558 genes and elevated the levels of 1354 genes, suggesting an existence of the common pathways involved in induction of G2/M arrest. We identified the RB (GADD45β and GADD45γ) and the p53 (GADD45α) signaling pathways as the common pathways, serving as key molecules that regulate cell cycle. Results indicate that CuE produced G2/M arrest as well as the upregulation of GADD45 γ and binding with CDC2. Both effects increased proportionally with the dose of CuE, suggesting that the CuE-induced mitosis delay is regulated by GADD45γ overexpression. Our findings suggest that, in addition to the known effects on cancer prevention, CuE may have antitumor activity in glioma therapy.
Collapse
|