1
|
Nijholt KT, Sánchez-Aguilera PI, Mahmoud B, Gerding A, Wolters JC, Wolters AHG, Giepmans BNG, Silljé HHW, de Boer RA, Bakker BM, Westenbrink BD. A Kinase Interacting Protein 1 regulates mitochondrial protein levels in energy metabolism and promotes mitochondrial turnover after exercise. Sci Rep 2023; 13:18822. [PMID: 37914850 PMCID: PMC10620178 DOI: 10.1038/s41598-023-45961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes mitochondrial respiration and attenuates mitochondrial oxidative stress in cultured cardiomyocytes. We sought to determine whether AKIP1 influences mitochondrial function and the mitochondrial adaptation in response to exercise in vivo. We assessed mitochondrial respiratory capacity, as well as electron microscopy and mitochondrial targeted-proteomics in hearts from mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and their wild type (WT) littermates. These parameters were also assessed after four weeks of voluntary wheel running. In contrast to our previous in vitro study, respiratory capacity measured as state 3 respiration on palmitoyl carnitine was significantly lower in AKIP1-TG compared to WT mice, whereas state 3 respiration on pyruvate remained unaltered. Similar findings were observed for maximal respiration, after addition of FCCP. Mitochondrial DNA damage and oxidative stress markers were not elevated in AKIP1-TG mice and gross mitochondrial morphology was similar. Mitochondrial targeted-proteomics did reveal reductions in mitochondrial proteins involved in energy metabolism. Exercise performance was comparable between genotypes, whereas exercise-induced cardiac hypertrophy was significantly increased in AKIP1-TG mice. After exercise, mitochondrial state 3 respiration on pyruvate substrates was significantly lower in AKIP1-TG compared with WT mice, while respiration on palmitoyl carnitine was not further decreased. This was associated with increased mitochondrial fission on electron microscopy, and the activation of pathways associated with mitochondrial fission and mitophagy. This study suggests that AKIP1 regulates the mitochondrial proteome involved in energy metabolism and promotes mitochondrial turnover after exercise. Future studies are required to unravel the mechanistic underpinnings and whether the mitochondrial changes are required for the AKIP1-induced physiological cardiac growth.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Belend Mahmoud
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Albert Gerding
- Department of Metabolic Disease, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, Systems Medicine of Metabolism and Signalling, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Cardiology, Erasmus University Medical, Rotterdam, The Netherlands
| | - Barbara M Bakker
- Department of Metabolic Disease, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
2
|
Nijholt KT, Sánchez-Aguilera PI, Booij HG, Oberdorf-Maass SU, Dokter MM, Wolters AHG, Giepmans BNG, van Gilst WH, Brown JH, de Boer RA, Silljé HHW, Westenbrink BD. A Kinase Interacting Protein 1 (AKIP1) promotes cardiomyocyte elongation and physiological cardiac remodelling. Sci Rep 2023; 13:4046. [PMID: 36899057 PMCID: PMC10006410 DOI: 10.1038/s41598-023-30514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes physiological hypertrophy in vitro. The purpose of this study is to determine if AKIP1 promotes physiological cardiomyocyte hypertrophy in vivo. Therefore, adult male mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and wild type (WT) littermates were caged individually for four weeks in the presence or absence of a running wheel. Exercise performance, heart weight to tibia length (HW/TL), MRI, histology, and left ventricular (LV) molecular markers were evaluated. While exercise parameters were comparable between genotypes, exercise-induced cardiac hypertrophy was augmented in AKIP1-TG vs. WT mice as evidenced by an increase in HW/TL by weighing scale and in LV mass on MRI. AKIP1-induced hypertrophy was predominantly determined by an increase in cardiomyocyte length, which was associated with reductions in p90 ribosomal S6 kinase 3 (RSK3), increments of phosphatase 2A catalytic subunit (PP2Ac) and dephosphorylation of serum response factor (SRF). With electron microscopy, we detected clusters of AKIP1 protein in the cardiomyocyte nucleus, which can potentially influence signalosome formation and predispose a switch in transcription upon exercise. Mechanistically, AKIP1 promoted exercise-induced activation of protein kinase B (Akt), downregulation of CCAAT Enhancer Binding Protein Beta (C/EBPβ) and de-repression of Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4 (CITED4). Concludingly, we identified AKIP1 as a novel regulator of cardiomyocyte elongation and physiological cardiac remodelling with activation of the RSK3-PP2Ac-SRF and Akt-C/EBPβ-CITED4 pathway. These findings suggest that AKIP1 may serve as a nodal point for physiological reprogramming of cardiac remodelling.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Harmen G Booij
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Silke U Oberdorf-Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Joan H Brown
- Department of Pharmacology, University of California San Diego, La Jolla, USA
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, Hanzeplein 1, 9713 GZ, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
3
|
Nijholt KT, Voorrips SN, Sánchez-Aguilera PI, Westenbrink BD. Exercising heart failure patients: cardiac protection through preservation of mitochondrial function and substrate utilization? CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Nijholt KT, Sánchez-Aguilera PI, Voorrips SN, de Boer RA, Westenbrink BD. Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure? Eur J Heart Fail 2021; 24:287-298. [PMID: 34957643 PMCID: PMC9302125 DOI: 10.1002/ejhf.2407] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Impaired exercise capacity is the key symptom of heart failure (HF) and is associated with reduced quality of life and higher mortality rates. Unfortunately, current therapies, although generally lifesaving, have only small or marginal effects on exercise capacity. Specific strategies to alleviate exercise intolerance may improve quality of life, while possibly improving prognosis as well. There is overwhelming evidence that physical exercise improves performance in cardiac and skeletal muscles in health and disease. Unravelling the mechanistic underpinnings of exercise‐induced improvements in muscle function could provide targets that will allow us to boost exercise performance in HF. With the current review we discuss: (i) recently discovered signalling pathways that govern physiological muscle growth as well as mitochondrial quality control mechanisms that underlie metabolic adaptations to exercise; (ii) the mechanistic underpinnings of exercise intolerance in HF and the benefits of exercise in HF patients on molecular, functional and prognostic levels; and (iii) potential molecular therapeutics to improve exercise performance in HF. We propose that novel molecular therapies to boost adaptive muscle growth and mitochondrial quality control in HF should always be combined with some form of exercise training.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne N Voorrips
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Nijholt KT, Meems LMG, Ruifrok WPT, Maass AH, Yurista SR, Pavez-Giani MG, Mahmoud B, Wolters AHG, van Veldhuisen DJ, van Gilst WH, Silljé HHW, de Boer RA, Westenbrink BD. The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise. Pflugers Arch 2021; 473:1301-1313. [PMID: 34142210 PMCID: PMC8302562 DOI: 10.1007/s00424-021-02577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO) is a haematopoietic hormone that regulates erythropoiesis, but the EPO-receptor (EpoR) is also expressed in non-haematopoietic tissues. Stimulation of the EpoR in cardiac and skeletal muscle provides protection from various forms of pathological stress, but its relevance for normal muscle physiology remains unclear. We aimed to determine the contribution of the tissue-specific EpoR to exercise-induced remodelling of cardiac and skeletal muscle. Baseline phenotyping was performed on left ventricle and m. gastrocnemius of mice that only express the EpoR in haematopoietic tissues (EpoR-tKO). Subsequently, mice were caged in the presence or absence of a running wheel for 4 weeks and exercise performance, cardiac function and histological and molecular markers for physiological adaptation were assessed. While gross morphology of both muscles was normal in EpoR-tKO mice, mitochondrial content in skeletal muscle was decreased by 50%, associated with similar reductions in mitochondrial biogenesis, while mitophagy was unaltered. When subjected to exercise, EpoR-tKO mice ran slower and covered less distance than wild-type (WT) mice (5.5 ± 0.6 vs. 8.0 ± 0.4 km/day, p < 0.01). The impaired exercise performance was paralleled by reductions in myocyte growth and angiogenesis in both muscle types. Our findings indicate that the endogenous EPO-EpoR system controls mitochondrial biogenesis in skeletal muscle. The reductions in mitochondrial content were associated with reduced exercise capacity in response to voluntary exercise, supporting a critical role for the extra-haematopoietic EpoR in exercise performance.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Laura M G Meems
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Willem P T Ruifrok
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Salva R Yurista
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Belend Mahmoud
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chen D, Cao G, Liu Q. A-kinase-interacting protein 1 facilitates growth and metastasis of gastric cancer cells via Slug-induced epithelial-mesenchymal transition. J Cell Mol Med 2019; 23:4434-4442. [PMID: 31020809 PMCID: PMC6533465 DOI: 10.1111/jcmm.14339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
A‐kinase‐interacting protein 1 (AKIP1) has previously been reported to act as a potential oncogenic protein in various cancers. The clinical significance and biological role of AKIP1 in gastric cancer (GC) is, however, still elusive. Herein, this study aimed to investigate the functional and molecular mechanism by which AKIP1 influences GC. AKIP1 mRNA and protein expressions in GC tissues were examined by quantitative real‐time PCR (qRT‐PCR), Western blot and immunohistochemistry. Other methods including stably transfected against AKIP1 into gastric cancer cells, wound healing, transwell assays, CCK‐8, colony formation, qRT‐PCR and Western blot in vitro and tumorigenesis in vivo were also performed. The up‐regulated expression of AKIP1 in GC specimens significantly correlated with clinical metastasis and poor prognosis in patients with GC. AKIP1 knockdown markedly suppressed GC cells proliferation, invasion and metastasis both in vitro and in vivo. In contrast, AKIP1 overexpression resulted in the opposite effects. Moreover, mechanistic analyses indicated that Slug‐induced epithelial‐mesenchymal transition (EMT) might be responsible for AKIP1‐influenced GC cells behaviour. Our findings demonstrated that high AKIP1 expression significantly correlated with clinical metastasis and unfavourable prognosis in patients with GC. Additionally, AKIP1 promoted GC cells proliferation, migration and invasion by activating Slug‐induced EMT.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| |
Collapse
|
7
|
Bei Y, Pan LL, Zhou Q, Zhao C, Xie Y, Wu C, Meng X, Gu H, Xu J, Zhou L, Sluijter JPG, Das S, Agerberth B, Sun J, Xiao J. Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Med 2019; 17:42. [PMID: 30782145 PMCID: PMC6381635 DOI: 10.1186/s12916-019-1268-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cathelicidins are a major group of natural antimicrobial peptides which play essential roles in regulating host defense and immunity. In addition to the antimicrobial and immunomodulatory activities, recent studies have reported the involvement of cathelicidins in cardiovascular diseases by regulating inflammatory response and microvascular dysfunction. However, the role of cathelicidins in myocardial apoptosis upon cardiac ischemia/reperfusion (I/R) injury remains largely unknown. METHODS CRAMP (cathelicidin-related antimicrobial peptide) levels were measured in the heart and serum from I/R mice and in neonatal mouse cardiomyocytes treated with oxygen glucose deprivation/reperfusion (OGDR). Human serum cathelicidin antimicrobial peptide (LL-37) levels were measured in myocardial infarction (MI) patients. The role of CRAMP in myocardial apoptosis upon I/R injury was investigated in mice injected with the CRAMP peptide and in CRAMP knockout (KO) mice, as well as in OGDR-treated cardiomyocytes. RESULTS We observed reduced CRAMP level in both heart and serum samples from I/R mice and in OGDR-treated cardiomyocytes, as well as reduced LL-37 level in MI patients. Knockdown of CRAMP enhanced cardiomyocyte apoptosis, and CRAMP KO mice displayed increased infarct size and myocardial apoptosis. In contrast, the CRAMP peptide reduced cardiomyocyte apoptosis and I/R injury. The CRAMP peptide inhibited cardiomyocyte apoptosis by activation of Akt and ERK1/2 and phosphorylation and nuclear export of FoxO3a. c-Jun was identified as a negative regulator of the CRAMP gene. Moreover, lower level of serum LL-37/neutrophil ratio was associated with readmission and/or death in MI patients during 1-year follow-up. CONCLUSIONS CRAMP protects against cardiomyocyte apoptosis and cardiac I/R injury via activation of Akt and ERK and phosphorylation and nuclear export of FoxO3a. Increasing LL-37 might be a novel therapy for cardiac ischemic injury.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Cuimei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yuan Xie
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Huanyu Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Utrecht, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, F68, Stockholm, Sweden
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
8
|
Tian ZQ, Jiang H, Lu ZB. MiR-320 regulates cardiomyocyte apoptosis induced by ischemia-reperfusion injury by targeting AKIP1. Cell Mol Biol Lett 2018; 23:41. [PMID: 30181740 PMCID: PMC6114048 DOI: 10.1186/s11658-018-0105-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs play important roles in regulation of the cardiovascular system. The purpose of this study was to investigate microRNA-320 (miR-320) expression in myocardial ischemia-reperfusion (I/R) injury and the roles of miR-320 in cardiomyocyte apoptosis by targeting AKIP1 (A kinase interacting protein 1). Methods The level of miR-320 was detected using quantitative real-time polymerase chain reaction (qRT-PCR), and cardiomyocyte apoptosis was detected via terminal dUTP nick end-labeling assay. Cardiomyocyte apoptosis and the mitochondrial membrane potential were evaluated via flow cytometry. Bioinformatics tools were used to identify the target gene of miR-320. The expression levels of AKIP1 mRNA and protein were detected via qRT-PCR and Western blot, respectively. Results Both the level of miR-320 and the rate of cardiomyocyte apoptosis were substantially higher in the I/R group and H9c2 cells subjected to H/R than in the corresponding controls. Overexpression of miR-320 significantly promoted cardiomyocyte apoptosis and increased the loss of the mitochondrial membrane potential, whereas downregulation of miR-320 had an opposite effect. Luciferase reporter assay showed that miR-320 directly targets AKIP1. Moreover, knock down and overexpression of AKIP1 had similar effects on the H9c2 cells subjected to H/R. Conclusions miR-320 plays an important role in regulating cardiomyocyte apoptosis induced by I/R injury by targeting AKIP1 and inducing the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Zhi-Qiang Tian
- 1Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, 010017 People's Republic of China
| | - Hong Jiang
- 2Department of Cardiology, Remin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060 People's Republic of China
| | - Zhi-Bing Lu
- 2Department of Cardiology, Remin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060 People's Republic of China
| |
Collapse
|
9
|
Does BCA3 Play a Role in the HIV-1 Replication Cycle? Viruses 2018; 10:v10040212. [PMID: 29677171 PMCID: PMC5923506 DOI: 10.3390/v10040212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
The cellular role of breast carcinoma-associated protein (BCA3), also known as A-kinase-interacting protein 1 (AKIP-1), is not fully understood. Recently, we reported that full-length, but not C-terminally truncated, BCA3 is incorporated into virions of Mason-Pfizer monkey virus, and that BCA3 enhances HIV-1 protease-induced apoptosis. In the present study, we report that BCA3 is associated with purified and subtilisin-treated HIV particles. Using a combination of immune-based methods and confocal microscopy, we show that the C-terminus of BCA3 is required for packaging into HIV-1 particles. However, we were unable to identify an HIV-1 binding domain for BCA3, and we did not observe any effect of incorporated BCA3 on HIV-1 infectivity. Interestingly, the BCA3 C-terminus was previously identified as a binding site for the catalytic subunit of protein kinase A (PKAc), a cellular protein that is specifically packaged into HIV-1 particles. Based on our analysis of PKAc–BCA3 interactions, we suggest that BCA3 incorporation into HIV-1 particles is mediated by its ability to interact with PKAc.
Collapse
|
10
|
Ma D, Li M, Su J, Zhang S. BCA3 contributes to the malignant progression of hepatocellular carcinoma through AKT activation and NF-κB translocation. Exp Cell Res 2017; 362:142-151. [PMID: 29133128 DOI: 10.1016/j.yexcr.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide with elusive molecular mechanisms. The aim of this study is to investigate the clinical significance and biological roles of breast cancer-associated protein 3 (BCA3) in HCC. Our investigation demonstrated that BCA3 expression was up-regulated in primary HCC tissues, and BCA3 levels were positively correlated with tumor size, TNM stage, microvascular invasion and poor prognosis. BCA3 promoted tumor growth, metastasis and angiogenesis of HCC in vitro and in vivo. Moreover, we found that BCA3 induced aggressive behaviors were mediated by AKT activation, which in turn activated mTOR signalling pathway and induced cytoplasm-nuclear translocation of NF-κB p65. Blockage of AKT signalling pathway by a specific AKT inhibitor LY294002 impaired BCA3 mediated phenotypes. Collectively, our current study indicated the pleiotropic effects of BCA3 in HCC progression, and blockage of BCA3-AKT pathway might contribute to development of therapeutic measures for HCC.
Collapse
Affiliation(s)
- Dong Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China; Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengquan Li
- Henan Key Laboratory of Digestive Organ Transplantation, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China; Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Su
- Henan Key Laboratory of Digestive Organ Transplantation, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China; Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China.
| |
Collapse
|
11
|
Tigchelaar W, De Jong AM, van Gilst WH, De Boer RA, Silljé HHW. In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain. Bioessays 2017; 38 Suppl 1:S136-45. [PMID: 27417117 DOI: 10.1002/bies.201670914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 11/10/2022]
Abstract
Depletion of mitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease G-like-depleted cells, and this is marked by a decrease in mitochondrial reserve capacity. Neurohormonal stimulation with phenylephrine (PE) did not have an additive effect on the hypertrophic response induced by endo/exonuclease G-like depletion. Interestingly, PE-induced atrial natriuretic peptide (ANP) gene expression was completely abolished in endo/exonuclease G-like-depleted cells, suggesting a reverse signaling function of endo/exonuclease G-like. Endo/exonuclease G-like depletion initially resulted in increased mitochondrial OCR, but this declined upon PE stimulation. In particular, the reserve capacity of the mitochondrial respiratory chain and maximal respiration were the first indicators of perturbations in mitochondrial respiration, and these marked the subsequent decline in mitochondrial function. Although pathological stimulation accelerated these processes, prolonged EXOG depletion also resulted in a decline in mitochondrial function. At early stages of endo/exonuclease G-like depletion, mitochondrial ROS production was increased, but this did not affect mitochondrial DNA (mtDNA) integrity. After prolonged depletion, ROS levels returned to control values, despite hyperpolarization of the mitochondrial membrane. The mitochondrial dysfunction finally resulted in cell death, which appears to be mainly a form of necrosis. In conclusion, endo/exonuclease G-like plays an essential role in cardiomyocyte physiology. Loss of endo/exonuclease G-like results in diminished adaptation to pathological stress. The decline in maximal respiration and reserve capacity is the first sign of mitochondrial dysfunction that determines subsequent cell death.
Collapse
Affiliation(s)
- Wardit Tigchelaar
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Margreet De Jong
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A De Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Mo D, Li X, Li C, Liang J, Zeng T, Su N, Jiang Q, Huang J. Overexpression of AKIP1 predicts poor prognosis of patients with breast carcinoma and promotes cancer metastasis through Akt/GSK-3β/Snail pathway. Am J Transl Res 2016; 8:4951-4959. [PMID: 27904695 PMCID: PMC5126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Recent evidence has demonstrated that A kinase interacting protein 1 (AKIP1), a molecular regulator of protein kinase A, was overexpressed in breast cancer. However, the prognostic and biological role of AKIP1 in breast cancer is still elusive. The purpose of our study was to elucidate the role and molecular mechanism of AKIP1 in breast cancer development. The mRNA levels of AKIP1 in breast cancer and paired normal breast tissues were examined by quantitative real-time PCR. The relationship of AKIP1 expression with clinicopathological characteristics and clinical prognosis of breast cancer patients was investigated. In vitro migration and invasion assays were performed in MCF-7 and SK-BR-3 cells to determine its role in metastasis and the possible mechanism. The result showed that AKIP1 expression was up-regulated in breast cancer tissues compared with that in normal breast tissues. High expression of AKIP1 was associated significantly with advanced tumor stage (P<0.001), tumor size (P=0.029), and lymph node metastasis (P=0.004). Moreover, overexpression of AKIP1 was significantly correlated with poor overall survival and recurrence-free survival (P=0.038 and P=0.005, respectively). Furthermore, down-regulation of AKIP1 remarkably inhibited breast cancer cell motility and invasion through inhibiting the Akt/GSK-3β/Snail pathway. Therefore, AKIP1 may represent a prospective prognostic indicator and a potential therapeutic target of breast cancer.
Collapse
Affiliation(s)
- Dan Mo
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Xinning Li
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Chunhong Li
- School of Public Health, Guangxi Medical UniversityNanning, China
| | - Junrong Liang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Tian Zeng
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Naiwei Su
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Qipei Jiang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Jingjing Huang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| |
Collapse
|
13
|
Booij HG, Yu H, De Boer RA, van de Kolk CWA, van de Sluis B, Van Deursen JM, Van Gilst WH, Silljé HHW, Westenbrink BD. Overexpression of A kinase interacting protein 1 attenuates myocardial ischaemia/reperfusion injury but does not influence heart failure development. Cardiovasc Res 2016; 111:217-26. [PMID: 27302402 DOI: 10.1093/cvr/cvw161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
AIMS A kinase interacting protein 1 (AKIP1) stimulates physiological growth in cultured cardiomyocytes and attenuates ischaemia/reperfusion (I/R) injury in ex vivo perfused hearts. We aimed to determine whether AKIP1 modulates the cardiac response to acute and chronic cardiac stresses in vivo. METHODS AND RESULTS Transgenic mice with cardiac-specific overexpression of AKIP1 (AKIP1-TG) were created. AKIP1-TG mice and their wild-type (WT) littermates displayed similar cardiac structure and function. Likewise, cardiac remodelling in response to transverse aortic constriction or permanent coronary artery ligation was identical in AKIP1-TG and WT littermates, as evidenced by serial cardiac magnetic resonance imaging and pressure-volume loop analysis. Histological indices of remodelling, including cardiomyocyte cross-sectional diameter, capillary density, and left ventricular fibrosis were also similar in AKIP1-TG mice and WT littermates. When subjected to 45 min of ischaemia followed by 24 h of reperfusion, AKIP1-TG mice displayed a significant two-fold reduction in myocardial infarct size and reductions in cardiac apoptosis. In contrast to previous reports, AKIP1 did not co-immunoprecipitate with or regulate the activity of the signalling molecules NF-κB, protein kinase A, or AKT. AKIP1 was, however, enriched in cardiac mitochondria and co-immunoprecipitated with a key component of the mitochondrial permeability transition (MPT) pore, ATP synthase. Finally, mitochondria isolated from AKIP1-TG hearts displayed markedly reduced calcium-induced swelling, indicative of reduced MPT pore formation. CONCLUSIONS In contrast to in vitro studies, AKIP1 overexpression does not influence cardiac remodelling in response to chronic cardiac stress. AKIP1 does, however, reduce myocardial I/R injury through stabilization of the MPT pore. These findings suggest that AKIP1 deserves further investigation as a putative treatment target for cardioprotection from I/R injury during acute myocardial infarction.
Collapse
Affiliation(s)
- Harmen G Booij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Experimental Cardiology Section HPC AB 43, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Hongjuan Yu
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Experimental Cardiology Section HPC AB 43, PO Box 30.001, Groningen 9700 RB, The Netherlands Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rudolf A De Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Experimental Cardiology Section HPC AB 43, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Cees W A van de Kolk
- Central Animal Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Wiek H Van Gilst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Experimental Cardiology Section HPC AB 43, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Experimental Cardiology Section HPC AB 43, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Experimental Cardiology Section HPC AB 43, PO Box 30.001, Groningen 9700 RB, The Netherlands
| |
Collapse
|
14
|
Yang L, Li Y, Wang X, Mu X, Qin D, Huang W, Alshahrani S, Nieman M, Peng J, Essandoh K, Peng T, Wang Y, Lorenz J, Soleimani M, Zhao ZQ, Fan GC. Overexpression of miR-223 Tips the Balance of Pro- and Anti-hypertrophic Signaling Cascades toward Physiologic Cardiac Hypertrophy. J Biol Chem 2016; 291:15700-13. [PMID: 27226563 DOI: 10.1074/jbc.m116.715805] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223. Our results showed that elevation of miR-223 caused physiological cardiac hypertrophy with enhanced cardiac function but no fibrosis. Using the next generation RNA sequencing, we observed that most of dys-regulated genes (e.g. Atf3/5, Egr1/3, Sfrp2, Itgb1, Ndrg4, Akip1, Postn, Rxfp1, and Egln3) in miR-223-transgenic hearts were associated with cell growth, but they were not directly targeted by miR-223. Interestingly, these dys-regulated genes are known to regulate the Akt signaling pathway. We further identified that miR-223 directly interacted with 3'-UTRs of FBXW7 and Acvr2a, two negative regulators of the Akt signaling. However, we also validated that miR-223 directly inhibited the expression of IGF-1R and β1-integrin, two positive regulators of the Akt signaling. Lastly, Western blotting did reveal that Akt was activated in miR-223-overexpressing hearts. Adenovirus-mediated overexpression of miR-223 in neonatal rat cardiomyocytes induced cell hypertrophy, which was blocked by the addition of MK2206, a specific inhibitor of Akt Taken together, these data represent the first piece of work showing that miR-223 tips the balance of promotion and inactivation of Akt signaling cascades toward activation of Akt, a key regulator of physiological cardiac hypertrophy. Thus, our study suggests that the ultimate phenotype outcome of a miRNA may be decided by the secondary net effects of the whole target network rather than by several primary direct targets in an organ/tissue.
Collapse
Affiliation(s)
- Liwang Yang
- From the Shanxi Medical University, Taiyuan 030001, China, Department of Pharmacology and Cell Biophysics
| | - Yutian Li
- Department of Pharmacology and Cell Biophysics
| | | | | | - Dongze Qin
- From the Shanxi Medical University, Taiyuan 030001, China, Department of Pharmacology and Cell Biophysics
| | - Wei Huang
- Department of Pathology and Laboratory Medicine
| | - Saeed Alshahrani
- Department of Pharmacology and Cell Biophysics, Research Services, Veterans Affairs Hospital and Department of Medicine, and
| | - Michelle Nieman
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575
| | - Jiangtong Peng
- Department of Pharmacology and Cell Biophysics, Department of Cardiology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, and
| | | | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, Ontario N6A 4G5, Canada
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine
| | - John Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575
| | - Manoocher Soleimani
- Research Services, Veterans Affairs Hospital and Department of Medicine, and
| | - Zhi-Qing Zhao
- From the Shanxi Medical University, Taiyuan 030001, China
| | | |
Collapse
|
15
|
Ma C, Ying Y, Zhang T, Zhang W, Peng H, Cheng X, Xu L, Tong H. Establishment of a prediction model of changing trends in cardiac hypertrophy disease based on microarray data screening. Exp Ther Med 2016; 11:1734-1740. [PMID: 27168795 PMCID: PMC4840528 DOI: 10.3892/etm.2016.3105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to construct a mathematical model to predict the changing trends of cardiac hypertrophy at gene level. Microarray data were downloaded from Gene Expression Omnibus database (accession, GSE21600), which included 35 samples harvested from the heart of Wistar rats on postoperative days 1 (D1 group), 6 (D6 group) and 42 (D42 group) following aorta ligation and sham operated Wistar rats, respectively. Each group contained six samples, with the exception of the samples harvested from the aorta ligated group after 6 days, where n=5. Differentially expressed genes (DEGs) were identified using a Limma package in R. Hierarchical clustering analysis was performed on common DEGs in order to construct a linear equation between the D1 and D42 groups, using linear discriminant analysis. Subsequent verification was performed using receiver operating characteristic (ROC) curve and the measurement data at day 42. A total of 319, 44 and 57 DEGs were detected in D1, D6 and D42 sample groups, respectively. AKIP1, ANKRD23, LTBP2, TGF-β2 and TNFRSF12A were identified as common DEGs in all groups. The predicted linear equation between D1 and D42 group was calculated to be y=1.526×-186.671. Assessment of the ROC curve demonstrated that the area under the curve was 0.831, with a specificity and sensitivity of 0.8. As compared with the predictive and measurement data at day 42, the consistency of the two sets of data was 76.5%. In conclusion, the present model may contribute to the early prediction of changing trends in cardiac hypertrophy disease at gene level.
Collapse
Affiliation(s)
- Caiyan Ma
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Yongjun Ying
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Tianjie Zhang
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei Zhang
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Hui Peng
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xufeng Cheng
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Lin Xu
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Hong Tong
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
16
|
Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling. Arch Biochem Biophys 2014; 562:22-30. [DOI: 10.1016/j.abb.2014.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/28/2014] [Accepted: 08/11/2014] [Indexed: 12/20/2022]
|