1
|
Adedara IA, Mohammed KA, Canzian J, Rosemberg DB, Aschner M, Farombi EO, Rocha JB. Nauphoeta cinerea as an emerging model in neurotoxicology. ADVANCES IN NEUROTOXICOLOGY 2023; 9:181-196. [PMID: 37389201 PMCID: PMC10310038 DOI: 10.1016/bs.ant.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao Batista Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
2
|
Adedara IA, Mohammed KA, Da-Silva OF, Salaudeen FA, Gonçalves FL, Rosemberg DB, Aschner M, Rocha JBT, Farombi EO. Utility of cockroach as a model organism in the assessment of toxicological impacts of environmental pollutants. ENVIRONMENTAL ADVANCES 2022; 8:100195. [PMID: 35992224 PMCID: PMC9390120 DOI: 10.1016/j.envadv.2022.100195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Environmental pollution is a global concern because of its associated risks to human health and ecosystem. The bio-monitoring of environmental health has attracted much attention in recent years and efforts to minimize environmental contamination as well as to delineate toxicological mechanisms related to toxic exposure are essential to improve the health conditions of both humans and animals. This review aims to substantiate the need and advantages in utilizing cockroaches as a complementary, non-mammalian model to further understand the noxious impact of environmental contaminants on humans and animals. We discuss recent advances in neurotoxicology, immunotoxicology, reproductive and developmental toxicology, environmental forensic entomotoxicology, and environmental toxicology that corroborate the utility of the cockroach (Periplaneta americana, Blaptica dubia, Blattella germanica and Nauphoeta cinerea) in addressing toxicological mechanisms as well as a sensor of environmental pollution. Indeed, recent improvements in behavioural assessment and the detection of potential biomarkers allow for the recognition of phenotypic alterations in cockroaches following exposure to toxic chemicals namely saxitoxin, methylmercury, polychlorinated biphenyls, electromagnetic fields, pharmaceuticals, polycyclic aromatic hydrocarbon, chemical warfare agents and nanoparticles. The review provides a state-of-the-art update on the current utility of cockroach models in various aspects of toxicology as well as discusses the potential limitations and future perspectives.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
- Corresponding author. (I.A. Adedara)
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F. Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faoziyat A. Salaudeen
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Falco L.S. Gonçalves
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Joao B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
PaOctβ2R: Identification and Functional Characterization of an Octopamine Receptor Activating Adenylyl Cyclase Activity in the American Cockroach Periplaneta americana. Int J Mol Sci 2022; 23:ijms23031677. [PMID: 35163598 PMCID: PMC8835733 DOI: 10.3390/ijms23031677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Biogenic amines constitute an important group of neuroactive substances that control and modulate various neural circuits. These small organic compounds engage members of the guanine nucleotide-binding protein coupled receptor (GPCR) superfamily to evoke specific cellular responses. In addition to dopamine- and 5-hydroxytryptamine (serotonin) receptors, arthropods express receptors that are activated exclusively by tyramine and octopamine. These phenolamines functionally substitute the noradrenergic system of vertebrates Octopamine receptors that are the focus of this study are classified as either α- or β-adrenergic-like. Knowledge on these receptors is scarce for the American cockroach (Periplaneta americana). So far, only an α–adrenergic-like octopamine receptor that primarily causes Ca2+ release from intracellular stores has been studied from the cockroach (PaOctα1R). Here we succeeded in cloning a gene from cockroach brain tissue that encodes a β-adrenergic-like receptor and leads to cAMP production upon activation. Notably, the receptor is 100-fold more selective for octopamine than for tyramine. A series of synthetic antagonists selectively block receptor activity with epinastine being the most potent. Bioinformatics allowed us to identify a total of 19 receptor sequences that build the framework of the biogenic amine receptor clade in the American cockroach. Phylogenetic analyses using these sequences and receptor sequences from model organisms showed that the newly cloned gene is an β2-adrenergic-like octopamine receptor. The functional characterization of PaOctβ2R and the bioinformatics data uncovered that the monoaminergic receptor family in the hemimetabolic P. americana is similarly complex as in holometabolic model insects like Drosophila melanogaster and the honeybee, Apis mellifera. Thus, investigating these receptors in detail may contribute to a better understanding of monoaminergic signaling in insect behavior and physiology.
Collapse
|
4
|
Liu T, Zhan X, Yu Y, Wang S, Lu C, Lin G, Zhu X, He W, You M, You S. Molecular and pharmacological characterization of biogenic amine receptors from the diamondback moth, Plutella xylostella. PEST MANAGEMENT SCIENCE 2021; 77:4462-4475. [PMID: 34004073 DOI: 10.1002/ps.6481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUD Insect biogenic amines play important roles in mediating behavioral and physiological processes. They exert their effects by binding to biogenic amine receptors (BARs), which are specific receptor proteins in the G-protein-coupled receptor superfamily. BAR genes have been cloned and characterized from multiple model insects, including Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Apis mellifera and Tribolium castaneum. However, relatively little work has addressed the molecular properties, expression profiles, and pharmacological characterization of BARs from other insects, including important pests. RESULTS In this study, we cloned 17 genes encoding putative biogenic amine receptor proteins from Plutella xylostella, a global pest of Brassica crops. These PxBAR genes were five octopamine receptors (PxOA1, PxOA2B1, PxOA2B2, PxOA2B3, and PxOA3), three tyramine receptors (PxTAR1A, PxTAR1B, and PxTAR2), four dopamine receptors (PxDOP1, PxDOP2, PxDOP3, and PxDopEcR), and five serotonin receptors (Px5-HT1A , Px5-HT1B , Px5-HT2A , Px5-HT2B , and Px5-HT7 ). All PxBARs showed considerable sequence identity with orthologous BARs, and phylogenetic analysis clustered the receptors within their respective groups while preserving organismal evolutionary relationships. We investigated their molecular properties and expression profiles, and pharmacologically characterized the dopamine receptor, PxDOP2. CONCLUSIONS Our study provides important information and resources on biogenic amine receptors from P. xylostella, which suggests potential target sites for controlling this pest species. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tiansheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Xue Zhan
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Yuan Yu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Shaozhen Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cong Lu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Xiangyu Zhu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| |
Collapse
|
5
|
Schwartz J, Réalis-Doyelle E, Le Franc L, Favrel P. A Novel Dop2/Invertebrate-Type Dopamine Signaling System Potentially Mediates Stress, Female Reproduction, and Early Development in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:683-694. [PMID: 34365528 DOI: 10.1007/s10126-021-10052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The dopaminergic signaling pathway is involved in many physiological functions in vertebrates, but poorly documented in protostome species except arthropods. We functionally characterized a novel dopamine receptor in the Pacific oyster (Crassostrea gigas), activated by dopamine and tyramine with different efficacy and potency orders. This receptor - Cragi-DOP2R - belongs to the D1-like family of receptors and corresponds to the first representative of the Dop2/invertebrate-type dopamine receptor (Dop2/INDR) group ever identified in Lophotrochozoa. Cragi-DOP2R transcripts were expressed in various adult tissues, with higher expression levels in the visceral ganglia and the gills. Following an experiment under acute osmotic conditions, Cragi-DOP2R transcripts significantly increased in the visceral ganglia and decreased in the gills, suggesting a role of dopamine signaling in the mediation of osmotic stress. Furthermore, a role of the Cragi-DOP2R signaling pathway in female gametogenesis and in early oyster development was strongly suggested by the significantly higher levels of receptor transcripts in mature female gonads and in the early embryonic stages.
Collapse
Affiliation(s)
- Julie Schwartz
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France.
| | - Emilie Réalis-Doyelle
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| | - Lorane Le Franc
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| | - Pascal Favrel
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| |
Collapse
|
6
|
Blenau W, Wilms JA, Balfanz S, Baumann A. AmOctα2R: Functional Characterization of a Honeybee Octopamine Receptor Inhibiting Adenylyl Cyclase Activity. Int J Mol Sci 2020; 21:E9334. [PMID: 33302363 PMCID: PMC7762591 DOI: 10.3390/ijms21249334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Abstract
The catecholamines norepinephrine and epinephrine are important regulators of vertebrate physiology. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they use the phenolamines tyramine and octopamine for similar physiological functions. These biogenic amines activate specific members of the large protein family of G protein-coupled receptors (GPCRs). Based on molecular and pharmacological data, insect octopamine receptors were classified as either α- or β-adrenergic-like octopamine receptors. Currently, one α- and four β-receptors have been molecularly and pharmacologically characterized in the honeybee. Recently, an α2-adrenergic-like octopamine receptor was identified in Drosophila melanogaster (DmOctα2R). This receptor is activated by octopamine and other biogenic amines and causes a decrease in intracellular cAMP ([cAMP]i). Here, we show that the orthologous receptor of the honeybee (AmOctα2R), phylogenetically groups in a clade closely related to human α2-adrenergic receptors. When heterologously expressed in an eukaryotic cell line, AmOctα2R causes a decrease in [cAMP]i. The receptor displays a pronounced preference for octopamine over tyramine. In contrast to DmOctα2R, the honeybee receptor is not activated by serotonin. Its activity can be blocked efficiently by 5-carboxamidotryptamine and phentolamine. The functional characterization of AmOctα2R now adds a sixth member to this subfamily of monoaminergic receptors in the honeybee and is an important step towards understanding the actions of octopamine in honeybee behavior and physiology.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany;
| | - Joana Alessandra Wilms
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (J.A.W.); (S.B.)
| | - Sabine Balfanz
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (J.A.W.); (S.B.)
| | - Arnd Baumann
- Institute of Biological Information Processing, IBI-1, Research Center Jülich, 52428 Jülich, Germany; (J.A.W.); (S.B.)
| |
Collapse
|
7
|
Wang YH, Lv HN, Cui QH, Tu PF, Jiang Y, Zeng KW. Isosibiricin inhibits microglial activation by targeting the dopamine D1/D2 receptor-dependent NLRP3/caspase-1 inflammasome pathway. Acta Pharmacol Sin 2020; 41:173-180. [PMID: 31506572 PMCID: PMC7471458 DOI: 10.1038/s41401-019-0296-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Microglia-mediated neuroinflammation is a crucial risk factor for neurological disorders. Recently, dopamine receptors have been found to be involved in multiple immunopathological processes and considered as valuable therapeutic targets for inflammation-associated neurologic diseases. In this study we investigated the anti-neuroinflammation effect of isosibiricin, a natural coumarin compound isolated from medicinal plant Murraya exotica. We showed that isosibiricin (10-50 μM) dose-dependently inhibited lipopolysaccharide (LPS)-induced BV-2 microglia activation, evidenced by the decreased expression of inflammatory mediators, including nitrite oxide (NO), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-18 (IL-18). By using transcriptomics coupled with bioinformatics analysis, we revealed that isosibiricin treatment mainly affect dopamine receptor signalling pathway. We further demonstrated that isosibiricin upregulated the expression of dopamine D1/2 receptors in LPS-treated BV-2 cells, resulting in inhibitory effect on nucleotide binding domain-like receptor protein 3 (NLRP3)/caspase-1 inflammasome pathway. Treatment with dopamine D1/2 receptor antagonists SCH 23390 (1 μM) or sultopride (1 μM) could reverse the inhibitory effects of isosibiricin on NLRP3 expression as well as the cleavages of caspase-1 and IL-1β. Collectively, this study demonstrates a promising therapeutic strategy for neuroinflammation by targeting dopamine D1/2 receptors.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hai-Ning Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qing-Hua Cui
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Na +/K +-pump and neurotransmitter membrane receptors. INVERTEBRATE NEUROSCIENCE 2018; 19:1. [PMID: 30488358 PMCID: PMC6267510 DOI: 10.1007/s10158-018-0221-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023]
Abstract
Na+/K+-pump is an electrogenic transmembrane ATPase located in the outer plasma membrane of cells. The Na+/K+-ATPase pumps 3 sodium ions out of cells while pumping 2 potassium ions into cells. Both cations move against their concentration gradients. This enzyme's electrogenic nature means that it has a chronic role in stabilizing the resting membrane potential of the cell, in regulating the cell volume and in the signal transduction of the cell. This review will mainly consider the role of the Na+/K+-pump in neurons, with an emphasis on its role in modulating neurotransmitter receptor. Most of the literature on the modulation of neurotransmitter receptors refers to the situation in the mammalian nervous system, but the position is likely to be similar in most, if not all, invertebrate nervous systems.
Collapse
|
9
|
Sukumar V, Liu H, Meisner S, French AS, Torkkeli PH. Multiple Biogenic Amine Receptor Types Modulate Spider, Cupiennius salei, Mechanosensory Neurons. Front Physiol 2018; 9:857. [PMID: 30050453 PMCID: PMC6052906 DOI: 10.3389/fphys.2018.00857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/15/2018] [Indexed: 12/02/2022] Open
Abstract
The biogenic amines octopamine (OA), tyramine (TA), dopamine (DA), serotonin (5-HT), and histamine (HA) affect diverse physiological and behavioral processes in invertebrates, but recent findings indicate that an additional adrenergic system exists in at least some invertebrates. Transcriptome analysis has made it possible to identify biogenic amine receptor genes in a wide variety of species whose genomes have not yet been sequenced. This approach provides new sequences for research into the evolutionary history of biogenic amine receptors and allows them to be studied in experimentally accessible animal models. The Central American Wandering spider, Cupiennius salei, is an experimental model for neurophysiological, developmental and behavioral research. We identified ten different biogenic amine receptors in C. salei transcriptomes. Phylogenetic analysis indicated that, in addition to the typical receptors for OA, TA, DA, and 5-HT in protostome invertebrates, spiders also have α1- and α2-adrenergic receptors, but lack TAR2 receptors and one invertebrate specific DA receptor type. In situ hybridization revealed four types of biogenic amine receptors expressed in C. salei mechanosensory neurons. We used intracellular electrophysiological experiments and pharmacological tools to determine how each receptor type contributes to modulation of these neurons. We show that arachnids have similar groups of biogenic amine receptors to other protostome invertebrates, but they lack two clades. We also clarify that arachnids and many other invertebrates have both α1- and α2-adrenergic, likely OA receptors. Our results indicate that in addition to an OAβ-receptor that regulates rapid and large changes in sensitivity via a Gs-protein activating a cAMP mediated pathway, the C. salei mechanosensory neurons have a constitutively active TAR1 and/or α2-adrenergic receptor type that adjusts the baseline sensitivity to a level appropriate for the behavioral state of the animal by a Gq-protein that mobilizes Ca2+.
Collapse
Affiliation(s)
- Vaishnavi Sukumar
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Shannon Meisner
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Verlinden H. Dopamine signalling in locusts and other insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:40-52. [PMID: 29680287 DOI: 10.1016/j.ibmb.2018.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Dopamine is an important catecholamine neurotransmitter in invertebrates and vertebrates. It is biochemically derived from tyrosine via L-DOPA. It is most abundant in the central nervous system, but can also be produced in e.g. epidermal cells. Dopamine has conserved roles in the control of movement, pleasure, motivation, arousal and memory between invertebrate and vertebrate animals. It is crucial for melanisation and sclerotisation, important processes for the formation of the exoskeleton of insects and immune function. In this brief review I will discuss some general aspects of insect dopamine biosynthesis and breakdown, dopamine receptors and their pharmacology. In addition, I will provide a glance on the multitude of biological functions of dopamine in insects. More detail is provided concerning the putative roles of dopamine in phase related phenomena in locusts. Finally, molecular and pharmacological adjustments of insect dopamine signalling are discussed in the light of possible approaches towards insect pest management.
Collapse
Affiliation(s)
- Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana. Int J Mol Sci 2017; 18:ijms18112279. [PMID: 29084141 PMCID: PMC5713249 DOI: 10.3390/ijms18112279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.
Collapse
|
12
|
Two dopamine D2-like receptor genes from the silkworm (Bombyx mori) and their evolutionary history in metazoan. Sci Rep 2017; 7:6848. [PMID: 28754962 PMCID: PMC5533763 DOI: 10.1038/s41598-017-07055-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Dopamine is widely distributed in metazoans and is implicated in many physiological functions. Dopaminergic signaling is mediated through two classes of dopamine receptors, D1-like and D2-like. Phylogeny analysis reveals that, the dopamine receptors probably appeared ahead of the cnidarian divergence, two distinct classes of dopamine receptors likely formed prior to the separation of deuterostomes and protostomes, and INDRs probably split from its ancestor before the emergence of nematodes. Two D2-like genes are closely linked on the same scaffold, and the chromosome region around D2-like gene loci show colinearity among different species within Lepidoptera. These indicate two D2-like and their adjunction genes are likely Lepidoptera-specific orthologs, and occur by gene duplication event taken place after Lepidoptera ancestor split from the common ancestor of Lepidoptera and Diptera. In silkworm, two D2-like genes were expressed in examined tissues, and encoded BmDop2R2 having all the features of D2-like receptors and BmDop2R1 being a truncated variant without the region of N-terminal to TM II. Only dopamine distinctly lowered cAMP levels in BmDop2R2-expressing cells, whereas all tested amines for BmDop2R1 had not markedly effect in pharmacological test. These suggest there is functional difference between the two genes, which are likely resulted from subfunctionalization of gene duplication.
Collapse
|
13
|
Xu G, Wu SF, Gu GX, Teng ZW, Ye GY, Huang J. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:80-93. [PMID: 28302436 DOI: 10.1016/j.ibmb.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca2+ and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana. PLoS One 2016; 11:e0160531. [PMID: 27494326 PMCID: PMC4975486 DOI: 10.1371/journal.pone.0160531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects.
Collapse
|
15
|
Regna K, Kurshan PT, Harwood BN, Jenkins AM, Lai CQ, Muskavitch MAT, Kopin AS, Draper I. A critical role for the Drosophila dopamine D1-like receptor Dop1R2 at the onset of metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:15. [PMID: 27184815 PMCID: PMC4868058 DOI: 10.1186/s12861-016-0115-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/08/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Insect metamorphosis relies on temporal and spatial cues that are precisely controlled. Previous studies in Drosophila have shown that untimely activation of genes that are essential to metamorphosis results in growth defects, developmental delay and death. Multiple factors exist that safeguard these genes against dysregulated expression. The list of identified negative regulators that play such a role in Drosophila development continues to expand. RESULTS By using RNAi transgene-induced gene silencing coupled to spatio/temporal assessment, we have unraveled an important role for the Drosophila dopamine 1-like receptor, Dop1R2, in development. We show that Dop1R2 knockdown leads to pre-adult lethality. In adults that escape death, abnormal wing expansion and/or melanization defects occur. Furthermore we show that salivary gland expression of this GPCR during the late larval/prepupal stage is essential for the flies to survive through adulthood. In addition to RNAi-induced effects, treatment of larvae with the high affinity D1-like receptor antagonist flupenthixol, also results in developmental arrest, and in morphological defects comparable to those seen in Dop1R2 RNAi flies. To examine the basis for pupal lethality in Dop1R2 RNAi flies, we carried out transcriptome analysis. These studies revealed up-regulation of genes that respond to ecdysone, regulate morphogenesis and/or modulate defense/immunity. CONCLUSION Taken together our findings suggest a role for Dop1R2 in the repression of genes that coordinate metamorphosis. Premature release of this inhibition is not tolerated by the developing fly.
Collapse
Affiliation(s)
- Kimberly Regna
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Peri T Kurshan
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Present Address: Department of Biology, Stanford University, California, 94305, USA
| | - Benjamin N Harwood
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Adam M Jenkins
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Marc A T Muskavitch
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.,Discovery Research, Biogen Idec, Cambridge, MA, 02142, USA
| | - Alan S Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Verlinden H, Vleugels R, Verdonck R, Urlacher E, Vanden Broeck J, Mercer A. Pharmacological and signalling properties of a D2-like dopamine receptor (Dop3) in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 56:9-20. [PMID: 25449128 DOI: 10.1016/j.ibmb.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species. The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca(2+) signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 - amino- 6,7 - dihydroxy - 1,2,3,4 - tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.
Collapse
Affiliation(s)
- Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand.
| | - Rut Vleugels
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Rik Verdonck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Elodie Urlacher
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Alison Mercer
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand
| |
Collapse
|
17
|
Blankenburg S, Balfanz S, Hayashi Y, Shigenobu S, Miura T, Baumann O, Baumann A, Blenau W. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology 2014; 88:134-44. [PMID: 25242738 DOI: 10.1016/j.neuropharm.2014.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/10/2014] [Accepted: 08/23/2014] [Indexed: 11/29/2022]
Abstract
γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron.
Collapse
Affiliation(s)
- S Blankenburg
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - S Balfanz
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Research Center Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Y Hayashi
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - S Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - O Baumann
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - A Baumann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Research Center Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - W Blenau
- Institut für Bienenkunde, Polytechnische Gesellschaft, Goethe-Universität Frankfurt am Main, FB Biowissenschaften, Karl-von-Frisch-Weg 2, 61440, Oberursel, Germany.
| |
Collapse
|