1
|
Chackartchi T, Bosshardt DD, Imber JC, Stähli A, Sacks H, Nagy K, Sculean A. Histological evaluation following treatment of recession-type defects with coronally advanced flap and a novel human recombinant amelogenin. Clin Oral Investig 2023; 27:5041-5048. [PMID: 37421492 PMCID: PMC10492744 DOI: 10.1007/s00784-023-05123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVES To histologically evaluate the effects of a novel human recombinant amelogenin (rAmelX) on periodontal wound healing / regeneration in recession-type defects. MATERIALS AND METHODS A total of 17 gingival recession-type defects were surgically created in the maxilla of three minipigs. The defects were randomly treated with a coronally advanced flap (CAF) and either rAmelX (test), or a CAF and placebo (control). At three months following reconstructive surgery, the animals were euthanized, and the healing outcomes histologically evaluated. RESULTS The test group yielded statistically significantly (p = 0.047) greater formation of cementum with inserting collagen fibers compared with the control group (i.e., 4.38 mm ± 0.36 mm vs. 3.48 mm ± 1.13 mm). Bone formation measured 2.15 mm ± 0.8 mm in the test group and 2.24 mm ± 1.23 mm in the control group, respectively, without a statistically significant difference (p = 0.94). CONCLUSIONS The present data have provided for the first-time evidence for the potential of rAmelX to promote regeneration of periodontal ligament and root cementum in recession-type defects, thus warranting further preclinical and clinical testing. CLINICAL RELEVANCE The present results set the basis for the potential clinical application of rAmelX in reconstructive periodontal surgery.
Collapse
Affiliation(s)
- Tali Chackartchi
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dieter D Bosshardt
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Robert K. Schenk Laboratory of Oral Histology, Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | | | - Katalin Nagy
- Department of Oral Surgery, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| |
Collapse
|
2
|
Sung TC, Wang T, Liu Q, Ling QD, Subbiah SK, Renuka RR, Hsu ST, Umezawa A, Higuchi A. Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. J Mater Chem B 2023; 11:1389-1415. [PMID: 36727243 DOI: 10.1039/d2tb02601e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human cells, especially stem cells, need to communicate and interact with extracellular matrix (ECM) proteins, which not only serve as structural components but also guide and support cell fate and properties such as cell adhesion, proliferation, survival and differentiation. The binding of the cells with ECM proteins or ECM-derived peptides via cell adhesion receptors such as integrins activates several signaling pathways that determine the cell fate, morphological change, proliferation and differentiation. The development of synthetic ECM protein-derived peptides that mimic the biological and biochemical functions of natural ECM proteins will benefit academic and clinical application. Peptides derived from or inspired by specific ECM proteins can act as agonists of each ECM protein receptor. Given that most ECM proteins function in cell adhesion via integrin receptors, many peptides have been developed that bind to specific integrin receptors. In this review, we discuss the peptide sequence, immobilization design, reaction method, and functions of several ECM protein-derived peptides. Various peptide sequences derived from mainly ECM proteins, which are used for coating or grafting on dishes, scaffolds, hydrogels, implants or nanofibers, have been developed to improve the adhesion, proliferation or differentiation of stem cells and to culture differentiated cells. This review article will help to inform the optimal choice of ECM protein-derived peptides for the development of scaffolds, implants, hydrogels, nanofibers and 2D cell culture dishes to regulate the proliferation and direct the differentiation of stem cells into specific lineages.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77 Kuangtai Road, Pingjen City, Tao-Yuan County 32405, Taiwan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China. .,Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan. .,R & D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung-Bei Rd., Jhongli, Taoyuan 320, Taiwan
| |
Collapse
|
3
|
Enamel Matrix Derivative Enhances the Odontoblastic Differentiation of Dental Pulp Stem Cells via Activating MAPK Signaling Pathways. Stem Cells Int 2022; 2022:2236250. [PMID: 35530415 PMCID: PMC9071913 DOI: 10.1155/2022/2236250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
The odontoblastic differentiation of dental pulp stem cells (DPSCs) contributes to pulp-dentin regeneration. Enamel matrix derivative (EMD) is considered to be a critical epithelial signal to induce cell differentiation during odontogenesis and has been widely applied to clinical periodontal tissue regeneration. The purpose of this study was to explore the effect of EMD on DPSCs proliferation and odontoblastic differentiation, as well as the underlying mechanisms. We conducted in vitro and in vivo researches to get a comprehensive understanding of EMD. In vitro phase: cell proliferation was assessed by a cell counting kit-8 (CCK-8) assay; then, alkaline phosphatase (ALP) activity and staining, alizarin red staining, real-time RT-PCR, and western blot analysis were conducted to determine the odontoblastic potential and involvement of MAPK signaling pathways. In vivo phase: after ensuring the biocompatibility of VitroGel 3D-RGD via scanning electron microscopy (SEM), the hydrogel mixture was subcutaneously injected into nude mice followed by histological and immunohistochemical analyses. The results revealed that EMD did not interfere with DPSCs proliferation but promoted the odontoblastic differentiation of DPSCs in vitro and in vivo. Furthermore, blocking the MAPK pathways suppressed the EMD-enhanced differentiation of DPSCs. Finally, VitroGel 3D-RGD could well support the proliferation, differentiation, and regeneration of DPSCs. Overall, this study demonstrates that EMD enhances the odontoblastic differentiation of DPSCs through triggering MAPK signaling pathways. The findings provide a new insight into the mechanism by which EMD affects DPSCs differentiation and proposes EMD as a promising candidate for future stem cell therapy in endodontics.
Collapse
|
4
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Human dental pulp stem cells and hormesis. Ageing Res Rev 2022; 73:101540. [PMID: 34890824 DOI: 10.1016/j.arr.2021.101540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
This paper represents the first assessment of hormetic dose responses by human dental pulp stem cells (hDPSCs) with particular emphasis on cell renewal (proliferation) and differentiation. Hormetic dose responses were commonly reported in this model, encompassing a broad range of chemicals, including principally pharmaceuticals (e.g., metformin and artemisinin), dietary supplements/extracts from medicinal plants (e.g., berberine, N-acetyl-L-cysteine, and ginsenoside Rg1) and endogenous agents (e.g., ATP, TNF-α). The paper assesses mechanistic foundations of the hDPSCs hormetic dose responses for both cell proliferation and cell differentiation, study design considerations, and therapeutic implications.
Collapse
|
5
|
Li B, Tang H, Bian X, Ma K, Chang J, Fu X, Zhang C. Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions. BURNS & TRAUMA 2021; 9:tkab029. [PMID: 34604395 PMCID: PMC8484206 DOI: 10.1093/burnst/tkab029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 06/16/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Human epidermal stem cells (hESCs) play an important role in re-epithelialization and thereby in facilitating wound healing, while an effective way to activate hESCs remains to be explored. Calcium silicate (CS) is a form of bioceramic that can alter cell behavior and promote tissue regeneration. Here, we have observed the effect of CS on hESCs and investigated its possible mechanism. METHODS Using a mouse full-thickness skin excision model, we explored the therapeutic effect of CS on wound healing and re-epithelialization. In vitro, hESCs were cultured with diluted CS ion extracts (CSIEs), and the proliferation, migration ability and stemness of hESCs were evaluated. The effects of CS on the epidermal growth factor (EGF), epidermal growth factor receptor (EGFR) and extracellular signal-related kinase (ERK) signaling pathway were also explored. RESULTS In vivo, CS accelerated wound healing and re-epithelialization. Immunohistochemistry demonstrated that CS upregulated cytokeratin 19 and integrin β1 expression, indicating that CS improved hESCs stemness. In vitro studies confirmed that CS improved the biological function of hESCs. And the possible mechanism could be due to the activation of the EGF/EGFR/ERK signaling pathway. CONCLUSION CS can promote re-epithelialization and improve the biological functions of hESCs via activating the EGF/EGFR/ERK signaling pathway.
Collapse
Affiliation(s)
- Bingmin Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Haowen Tang
- Faculty of Hepato-Biliary-Pancreatic Surgery, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xiaowei Bian
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Jiang Chang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 100048, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| |
Collapse
|
6
|
Puah PY, Moh PY, Sipaut CS, Lee PC, How SE. Peptide Conjugate on Multilayer Graphene Oxide Film for the Osteogenic Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells. Polymers (Basel) 2021; 13:3290. [PMID: 34641106 PMCID: PMC8512023 DOI: 10.3390/polym13193290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Graphene oxide (GO) is extensively studied as a template material for mesenchymal stem cell application due to its two-dimensional nature and unique functionalization chemistries. Herein, a new type of peptide-conjugated multilayer graphene oxide (peptide/m-GO film) was fabricated and used as biomaterial for culturing human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). The characterization of the peptide/m-GO films was performed, and the biocompatibility of the WJ-MSCs on the peptide/m-GO films was investigated. The results demonstrated that the peptide conjugate on the m-GO film did not hamper the normal growth of WJ-MSCs but supported the growth of WJ-MSCs after the 6-day culture period. In addition, the osteogenic differentiation of WJ-MSCs on the peptide/m-GO films was enhanced as compared with the parent m-GO film. Therefore, such peptide-conjugated m-GO films could provide a highly biocompatible and multifunctional 2D material to tailor the potential application of WJ-MSCs in bone tissue regeneration.
Collapse
Affiliation(s)
- Perng Yang Puah
- Programme of Biotechnology, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (P.Y.P.); (P.C.L.)
- Programme of Industrial Chemistry, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Pak Yan Moh
- Programme of Industrial Chemistry, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Coswald Stephen Sipaut
- Programme of Chemical Engineering, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Ping Chin Lee
- Programme of Biotechnology, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (P.Y.P.); (P.C.L.)
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Siew Eng How
- Programme of Industrial Chemistry, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
7
|
Amelogenin-Derived Peptides in Bone Regeneration: A Systematic Review. Int J Mol Sci 2021; 22:ijms22179224. [PMID: 34502132 PMCID: PMC8431254 DOI: 10.3390/ijms22179224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Amelogenins are enamel matrix proteins currently used to treat bone defects in periodontal surgery. Recent studies have highlighted the relevance of amelogenin-derived peptides, named LRAP, TRAP, SP, and C11, in bone tissue engineering. Interestingly, these peptides seem to maintain or even improve the biological activity of the full-length protein, which has received attention in the field of bone regeneration. In this article, the authors combined a systematic and a narrative review. The former is focused on the existing scientific evidence on LRAP, TRAP, SP, and C11's ability to induce the production of mineralized extracellular matrix, while the latter is concentrated on the structure and function of amelogenin and amelogenin-derived peptides. Overall, the collected data suggest that LRAP and SP are able to induce stromal stem cell differentiation towards osteoblastic phenotypes; specifically, SP seems to be more reliable in bone regenerative approaches due to its osteoinduction and the absence of immunogenicity. However, even if some evidence is convincing, the limited number of studies and the scarcity of in vivo studies force us to wait for further investigations before drawing a solid final statement on the real potential of amelogenin-derived peptides in bone tissue engineering.
Collapse
|
8
|
Ruan Y, Kato H, Taguchi Y, Yamauchi N, Umeda M. Irradiation by high-intensity red light-emitting diode enhances human bone marrow mesenchymal stem cells osteogenic differentiation and mineralization through Wnt/β-catenin signaling pathway. Lasers Med Sci 2020; 36:55-65. [PMID: 32588268 DOI: 10.1007/s10103-020-03002-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/25/2020] [Indexed: 01/15/2023]
Abstract
Photobiomodulation therapy (PBMT) using a light-emitting diode (LED) has been employed for various photomedicine studies. The aim of this study was to determine the effects of a high-intensity red LED on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) and the related mechanism. BMSCs were subjected to high-intensity red LED (LZ1-00R205 Deep Red LED) irradiations for 0 to 40 s with energy densities ranging from 0 to 8 J/cm2. The distance from the LED to the cell layer was 40 mm. The spot size on the target was 4 cm2. Cell proliferation was measured at 3, 24, 48, and 72 h. The effects of LED irradiation on osteogenic differentiation and mineralization were examined with a particular focus on the Wnt/β-catenin signaling pathway. The high-intensity red LED irradiations did not alter BMSC proliferation after 72 h. LED exposure of 6 J/cm2 (30 s) led to significant enhancements of osteogenic differentiation and mineralization. Additionally, the high-intensity LED irradiation induced activation of Wnt/β-catenin. The effects of the high-intensity LED irradiation on BMSC osteogenic differentiation and mineralization were suppressed by treatment with the Wnt/β-catenin inhibitor XAV939. P < 0.05 was considered significant. The results indicate that high-intensity red LED irradiation increases BMSC osteogenic differentiation and mineralization via Wnt/β-catenin activation. Therefore, short duration irradiation with a portable high-intensity LED may be used as a potential approach in hard tissue regeneration therapy.
Collapse
Affiliation(s)
- Yaru Ruan
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, Japan.
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| |
Collapse
|
9
|
Takeuchi T, Masuno K, Kato H, Taguchi Y, Umeda M, Okusa N, Tanaka A, Tominaga K. A Human Amelogenin-Derived Oligopeptide Enhances Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Kazuya Masuno
- Department of Innovations in Dental Education, Osaka Dental University
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University
| | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| | - Nobutaka Okusa
- Department of Forensic Dentistry, Osaka Dental University
| | - Akio Tanaka
- Department of Pathology, Osaka Dental University
| | | |
Collapse
|