1
|
Oh C, Kim MS, Shin U, Kang JW, Kim YH, Ko HS, Ra JS, Ahn S, Choi EY, Yu S, Nam U, Choi T, Myung K, Lee Y. SMC2 and Condensin II Subunits Are Essential for the Development of Hematopoietic Stem and Progenitor Cells in Zebrafish. J Cell Physiol 2025; 240:e70023. [PMID: 40134128 PMCID: PMC11937623 DOI: 10.1002/jcp.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) play a pivotal role in blood cell production, maintaining the health and homeostasis of individuals. Dysregulation of HSPC function can lead to blood-related diseases, including cancer. Despite its importance, our understanding of the genes and pathways underlying HSPC development and the associated pathological mechanisms remains limited. To elucidate these unknown mechanisms, we analyzed databases of patients with blood disorders and performed functional gene studies using zebrafish. We employed bioinformatics tools to explore three public databases focusing on patients with myelodysplastic syndrome (MDS) and related model studies. This analysis identified significant alterations in several genes, especially SMC2 and other condensin-related genes, in patients with MDS. To further investigate the role of Smc2 in hematopoiesis, we generated smc2 loss-of-function zebrafish mutants using CRISPR mutagenesis. Further analyses of the mutants revealed that smc2 depletion induced G2/M cell cycle arrest in HSPCs, leading to their maintenance and expansion failure. Notably, although the condensin II subunits (ncaph2, ncapg2, and ncapd3) were essential for HSPC maintenance, the condensin I subunits did not affect HSPC development. These findings emphasize the crucial role of condensin II in ensuring healthy hematopoiesis via promoting HSPC proliferation.
Collapse
Affiliation(s)
- Chang‐Kyu Oh
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Man S. Kim
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| | - Unbeom Shin
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Ji Wan Kang
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Hwa Soo Ko
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Soyul Ahn
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Eun Young Choi
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Sanghyeon Yu
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Uijeong Nam
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Taesoo Choi
- Department of Urology, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biomedical EngineeringUlsan National Institute for Science and TechnologyUlsanRepublic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
2
|
Sampaio LR, Viana MDA, de Oliveira VS, Ferreira BV, Melo MML, de Oliveira RTG, Borges DDP, Magalhãesa SMM, Pinheiro RF. High PD-L1 expression is associated with unfavorable clinical features in myelodysplastic neoplasms. Hematol Transfus Cell Ther 2024; 46:146-152. [PMID: 37543491 DOI: 10.1016/j.htct.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 05/15/2023] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION Immune checkpoints are regulators of the immune system response that allow self-tolerance. Molecules such as Programmed Cell Death Protein 1 (PD-1) and its Ligand (PD-L1) participate in the immune checkpoint by signaling co-inhibition of lymphocyte responses. In cancers, PD-L1 expression is associated with the immune evasion mechanism, which favors tumor growth. The use of anti-PD-1/PD-L1 drugs is already well described in solid tumors, but still not fully understood in hematologic malignancies. Myelodysplastic neoplasms (MDSs) are heterogeneous bone marrow disorders with an increased risk of progression to Acute Myeloid Leukemia (AML). The MDS affects hematopoietic stem cells and its pathogenesis is linked to genetic and epigenetic defects, in addition to immune dysregulation. The influence of the PD-L1 on the MDS remains unknown. METHODS In this study, we evaluated the mRNA expression of the PD-L1 in 53 patients with MDS, classified according to the WHO 2016 Classification. RESULTS Patients with dyserythropoiesis presented significantly higher PD-L1 expression than patients without dyserythropoiesis (p= 0.050). Patients classified as having MDS with an excess of blasts 2 (MDS-EB2) presented a significant upregulation in the mRNA expression of the PD-L1 compared to the MDS with an excess of blasts 1 (MDS-EB1) (p= 0.050). Furthermore, we detected three patients with very high levels of PD-L1 expression, being statistically classified as outliers. CONCLUSION We suggested that the high expression of the PD-L1 is associated with a worse prognosis in the MDS and functional studies are necessary to evaluate the possible use of anti-PD-L1 therapies for high-risk MDS, such as the MDS-EBs.
Collapse
Affiliation(s)
- Leticia Rodrigues Sampaio
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Mateus de Aguiar Viana
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Vanessa Silva de Oliveira
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Bruna Vitoriano Ferreira
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Mayara Magna Lima Melo
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Roberta Taiane Germano de Oliveira
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Daniela de Paula Borges
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Silvia Maria Meira Magalhãesa
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil
| | - Ronald F Pinheiro
- Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
4
|
An enzyme-free and label-free electrochemical biosensor for polynucleotide kinase. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
6
|
Aplastic Anemia as a Roadmap for Bone Marrow Failure: An Overview and a Clinical Workflow. Int J Mol Sci 2022; 23:ijms231911765. [PMID: 36233062 PMCID: PMC9569739 DOI: 10.3390/ijms231911765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, it has become increasingly apparent that bone marrow (BM) failures and myeloid malignancy predisposition syndromes are characterized by a wide phenotypic spectrum and that these diseases must be considered in the differential diagnosis of children and adults with unexplained hematopoiesis defects. Clinically, hypocellular BM failure still represents a challenge in pathobiology-guided treatment. There are three fundamental topics that emerged from our review of the existing data. An exogenous stressor, an immune defect, and a constitutional genetic defect fuel a vicious cycle of hematopoietic stem cells, immune niches, and stroma compartments. A wide phenotypic spectrum exists for inherited and acquired BM failures and predispositions to myeloid malignancies. In order to effectively manage patients, it is crucial to establish the right diagnosis. New theragnostic windows can be revealed by exploring BM failure pathomechanisms.
Collapse
|
7
|
Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021; 10:51. [PMID: 34732266 PMCID: PMC8564991 DOI: 10.1186/s40164-021-00242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.
Collapse
Affiliation(s)
- Mohsen Valikhani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences, Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Thomas ME, Abdelhamed S, Hiltenbrand R, Schwartz JR, Sakurada SM, Walsh M, Song G, Ma J, Pruett-Miller SM, Klco JM. Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. Leukemia 2021; 35:3232-3244. [PMID: 33731850 PMCID: PMC8446103 DOI: 10.1038/s41375-021-01212-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Pediatric myelodysplastic syndromes (MDS) are a heterogeneous disease group associated with impaired hematopoiesis, bone marrow hypocellularity, and frequently have deletions involving chromosome 7 (monosomy 7). We and others recently identified heterozygous germline mutations in SAMD9 and SAMD9L in children with monosomy 7 and MDS. We previously demonstrated an antiproliferative effect of these gene products in non-hematopoietic cells, which was exacerbated by their patient-associated mutations. Here, we used a lentiviral overexpression approach to assess the functional impact and underlying cellular processes of wild-type and mutant SAMD9 or SAMD9L in primary mouse or human hematopoietic stem and progenitor cells (HSPC). Using a combination of protein interactome analyses, transcriptional profiling, and functional validation, we show that SAMD9 and SAMD9L are multifunctional proteins that cause profound alterations in cell cycle, cell proliferation, and protein translation in HSPCs. Importantly, our molecular and functional studies also demonstrated that expression of these genes and their mutations leads to a cellular environment that promotes DNA damage repair defects and ultimately apoptosis in hematopoietic cells. This study provides novel functional insights into SAMD9 and SAMD9L and how their mutations can potentially alter hematopoietic function and lead to bone marrow hypocellularity, a hallmark of pediatric MDS.
Collapse
Affiliation(s)
- Melvin E Thomas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason R Schwartz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sadie Miki Sakurada
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Mutation profiles of classic myeloproliferative neoplasms detected by a customized next-generation sequencing-based 50-gene panel. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol 2020; 9:2. [PMID: 31921515 PMCID: PMC6945703 DOI: 10.1186/s40164-019-0158-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023] Open
Abstract
Background In this study, we retrospectively summarized the differences of molecular gene mutations between MDS and AML patients, as well as the young and older age groups of MDS and AML patients. We also analyzed the response of newly diagnosed AML patients to standard DA or IA induction chemotherapy and the relationship between the chemotherapy outcome and the frequency of different gene mutation abnormalities. Methods NGS assay covering 43 genes was studied in 93 de novo MDS and 325 non-M3 AML patients. Bone marrow samples from all patients underwent gene mutational analysis by NGS. Results At least one non-synonymous gene mutation was detected in 279 AML patients (85.8%) and 85 MDS patients (91.4%). Contrary to 59 years and younger AML patients, there was a significantly higher incidence of gene mutation in 60 years and older AML patients (2.37 vs 1.94, p = 0.034). Gene mutation incidence in 60 years and older MDS patients increased, but no statistical significance was present (1.95 vs 1.64, p = 0.216). AML patients had a significantly higher gene mutation incidence compared with MDS-MLD patients (2.02 vs 1.63, p = 0.046). Gene mutation incidence was higher in patients with MDS-EB1/EB2 compared with patients with MDS-MLD but there was no statistical significance present (2.14 vs 1.63, p = 0.081). AML patients had significantly higher incidences of CEBPA, FLT3-ITD, DNMT3A, NPM1 and IDH1/2 gene mutations (p = 0.0043, 0.000, 0.030962, 0.002752, and 0.000628, respectively) and a lower incidence of TET2 and U2AF1 gene mutations (p = 0.000004 and 0.000, respectively) compared with MDS patients. Among the individual genes in different age groups, there were significantly higher incidences of RUNX1, IDH2, TP53 and SF3B1 gene mutations (p = 0.0478, 0.0028, 0.0024 and 0.005, respectively) as well as a trend of higher ASXL gene mutation (p = 0.057) in 60 years and older AML patients compared to 59 years and younger patients. There was no statistically significant difference in MDS patients with the different age groups and among the individual genes. Between AML patients and MDS patients among the different gene functional groups, AML patients had a significantly higher incidence of transcriptional deregulation (27.4% vs 15.1%, p = 0.014963), activated signalling (36.3% vs 10.8%, p = 0.000002) related gene mutations as well as a significantly lower incidence of RNA spliceosome (6.15% vs 60.1%, p = 0.000) related gene mutations. Furthermore, among the patients who received either IA or DA regimen for induction chemotherapy, patients with IA regimen had a significantly better CR rate than those with DA regimen (76.6% vs 57.1%, p = 0.0228). Conclusions Different gene mutations had been found in majority of MDS and AML patients. MDS and AML patients had different gene mutation patterns. AML patients with fewer or no gene mutations had a better chance of achieving CR when treated with IA and DA regimen induction chemotherapy.
Collapse
|
11
|
Jiang Y, Cui J, Zhang T, Wang M, Zhu G, Miao P. Electrochemical detection of T4 polynucleotide kinase based on target-assisted ligation reaction coupled with silver nanoparticles. Anal Chim Acta 2019; 1085:85-90. [DOI: 10.1016/j.aca.2019.07.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
|
12
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
13
|
Valka J, Vesela J, Votavova H, Dostalova-Merkerova M, Urbanova Z, Jonasova A, Cermak J, Belickova M. Genetic Variant Screening of DNA Repair Genes in Myelodysplastic Syndrome Identifies a Novel Mutation in the XRCC2 Gene. Oncol Res Treat 2019; 42:263-268. [PMID: 30861523 DOI: 10.1159/000497209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND We aimed to detect single nucleotide polymorphisms (SNPs) and mutations in DNA repair genes and their possible association with myelodysplastic syndrome (MDS). METHODS Targeted enrichment resequencing of 84 DNA repair genes was initially performed on a screening cohort of MDS patients. Real-time polymerase chain reaction was used for genotyping selected SNPs in the validation cohort of patients. RESULTS A heterozygous frameshift mutation in the XRCC2 gene was identified. It leads to the formation of a truncated non-functional protein and decreased XRCC2 expression level. Decreased expression levels of all DNA repair genes functionally connected with mutated XRCC2 were also present. Moreover, a synonymous substitution in the PRKDC gene and 2 missense mutations in the SMUG1 and XRCC1 genes were also found. In the screening cohort, 6 candidate SNPs were associated with the tendency to develop MDS: rs4135113 (TDG, p = 0.03), rs12917 (MGMT, p = 0.003), rs2230641 (CCNH, p = 0.01), rs2228529 and rs2228526 (ERCC6, p = 0.04 and p = 0.03), and rs1799977 (MLH1, p = 0.04). In the validation cohort, only a polymorphism in MLH1 was significantly associated with development of MDS in patients with poor cytogenetics (p = 0.0004). CONCLUSION Our study demonstrates that genetic variants are present in DNA repair genes of MDS patients and may be associated with susceptibility to MDS.
Collapse
Affiliation(s)
- Jan Valka
- Institute of Hematology and Blood Transfusion, Prague, Czechia, .,Charles University,1st Faculty of Medicine, Prague, Czechia,
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czechia
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czechia
| | | | - Zuzana Urbanova
- Institute of Hematology and Blood Transfusion, Prague, Czechia.,Charles University,1st Faculty of Medicine, Prague, Czechia
| | - Anna Jonasova
- First Internal Clinic - Clinic of Hematology, General University Hospital, Prague, Czechia
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czechia
| | | |
Collapse
|
14
|
Diagnostic algorithm for lower-risk myelodysplastic syndromes. Leukemia 2018; 32:1679-1696. [PMID: 29946191 DOI: 10.1038/s41375-018-0173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a "real-world" context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an "integrated" diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis.
Collapse
|
15
|
Valka J, Vesela J, Votavova H, Dostalova-Merkerova M, Horakova Z, Campr V, Brezinova J, Zemanova Z, Jonasova A, Cermak J, Belickova M. Differential expression of homologous recombination DNA repair genes in the early and advanced stages of myelodysplastic syndrome. Eur J Haematol 2017; 99:323-331. [PMID: 28681469 DOI: 10.1111/ejh.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests that defects in DNA repair mechanisms. We monitored DNA repair pathways in MDS and their alterations during disease progression. METHODS Expression profiling of DNA repair genes was performed on CD34+ cells, and paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 was done on histology samples. RESULTS RAD51 and XRCC2 showed differential expression between low-risk and high-risk MDS (P<.0001), whereas RPA3 was generally decreased among the entire cohort (FC=-2.65, P<.0001). We demonstrated that RAD51 and XRCC2 expression gradually decreased during the progression of MDS. Down-regulation of XRCC2 and RAD51 expression was connected with abnormalities on chromosome 7 (P=.0858, P=.0457). Immunohistochemical staining revealed the presence of RAD51 only in the cytoplasm in low-risk MDS, while in both the cytoplasm and nucleus in high-risk MDS. The multivariate analysis identified RAD51 expression level (HR 0.49; P=.01) as significant prognostic factor for overall survival of patients with MDS. CONCLUSIONS Our study demonstrates that the expression of DNA repair factors, primarily RAD51 and XRCC2, is deregulated in patients with MDS and presents a specific pattern with respect to prognostic categories.
Collapse
Affiliation(s)
- Jan Valka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zuzana Horakova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vit Campr
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jana Brezinova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenetics, General University Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Anna Jonasova
- First Internal Clinic-Clinic of Hematology, General University Hospital, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
16
|
Biechonski S, Yassin M, Milyavsky M. DNA-damage response in hematopoietic stem cells: an evolutionary trade-off between blood regeneration and leukemia suppression. Carcinogenesis 2017; 38:367-377. [PMID: 28334174 DOI: 10.1093/carcin/bgx002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Self-renewing and multipotent hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis. Their enormous regenerative potential coupled with lifetime persistence in the body, in contrast with the Progenitors, demand tight control of HSCs genome stability. Indeed, failure to accurately repair DNA damage in HSCs is associated with bone marrow failure and accelerated leukemogenesis. Recent observations exposed remarkable differences in several DNA-damage response (DDR) aspects between HSCs and Progenitors, especially in their DNA-repair capacities and susceptibility to apoptosis. Human HSCs in comparison with Progenitors exhibit delayed DNA double-strand break rejoining, persistent DDR signaling activation, higher sensitivity to the cytotoxic effects of ionizing radiation and attenuated expression of DNA-repair genes. Importantly, the distinct DDR of HSCs was also documented in mouse models. Nevertheless, physiological significance and the molecular basis of the HSCs-specific DDR features are only partially understood. Taking radiation-induced DDR as a paradigm, this review will focus on the current advances in understanding the role of cell-intrinsic DDR regulators and the cellular microenvironment in balancing stemness with genome stability. Pre-leukemia HSCs and clonal hematopoiesis evolvement will be discussed as an evolutionary compromise between the need for lifelong blood regeneration and DDR. Uniquely for this review, we outline the differences in HSCs-related DDR as highlighted by various experimental systems and attempt to provide their critical analysis.
Collapse
Affiliation(s)
- Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
17
|
Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood 2017; 129:2479-2492. [PMID: 28270450 DOI: 10.1182/blood-2016-06-725093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.
Collapse
|
18
|
Influence of functional polymorphisms in DNA repair genes of myelodysplastic syndrome. Leuk Res 2016; 48:62-72. [DOI: 10.1016/j.leukres.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
|
19
|
Son MY, Deng CX, Hoeijmarkers JH, Rebel VI, Hasty P. A mechanism for 1,4-Benzoquinone-induced genotoxicity. Oncotarget 2016; 7:46433-46447. [PMID: 27340773 PMCID: PMC5216808 DOI: 10.18632/oncotarget.10184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
Benzene is a common environmental toxin and its metabolite, 1-4-Benzoquinone (BQ) causes hematopoietic cancers like myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). BQ has not been comprehensively assessed for its impact on genome maintenance, limiting our understanding of the true health risks associated with benzene exposure and our ability to identify people with increased sensitivity to this genotoxin. Here we analyze the impact BQ exposure has on wild type and DNA repair-defective mouse embryonic stem (ES) cells and wild type human cells. We find that double strand break (DSB) repair and replication fork maintenance pathways including homologous recombination (HR) and Fanconi anemia (FA) suppress BQ toxicity. BQ-induced damage efficiently stalls replication forks, yet poorly induces ATR/DNA-PKCS responses. Furthermore, the pattern of BQ-induced γH2AX and 53BP1foci is consistent with the formation of poly(ADP-ribose) polymerase 1 (PARP1)-stabilized regressed replication forks. At a biochemical level, BQ inhibited topoisomerase 1 (topo1)-mediated DNA ligation and nicking in vitro; thus providing mechanism for the cellular phenotype. These data are consistent with a model that proposes BQ interferes with type I topoisomerase's ability to maintain replication fork restart and progression leading to chromosomal instability that has the potential to cause hematopoietic cancers like MDS and AML.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR China
| | - Jan H. Hoeijmarkers
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, The Netherlands
| | - Vivienne I. Rebel
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Cancer Therapy Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Barshop Center of Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Greehey Children's Cancer Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Current address: BioAffinity, San Antonio, Texas, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Cancer Therapy Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Barshop Center of Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Gonçalves AC, Alves R, Baldeiras I, Cortesão E, Carda JP, Branco CC, Oliveiros B, Loureiro L, Pereira A, Nascimento Costa JM, Sarmento-Ribeiro AB, Mota-Vieira L. Genetic variants involved in oxidative stress, base excision repair, DNA methylation, and folate metabolism pathways influence myeloid neoplasias susceptibility and prognosis. Mol Carcinog 2016; 56:130-148. [PMID: 26950655 DOI: 10.1002/mc.22478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 12/27/2022]
Abstract
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) share common features: elevated oxidative stress, DNA repair deficiency, and aberrant DNA methylation. We performed a hospital-based case-control study to evaluate the association in variants of genes involved in oxidative stress, folate metabolism, DNA repair, and DNA methylation with susceptibility and prognosis of these malignancies. To that end, 16 SNPs (one per gene: CAT, CYBA, DNMT1, DNMT3A, DNMT3B, GPX1, KEAP1, MPO, MTRR, NEIL1, NFE2F2, OGG1, SLC19A1, SOD1, SOD2, and XRCC1) were genotyped in 191 patients (101 MDS and 90 AML) and 261 controls. We also measured oxidative stress (reactive oxygen species/total antioxidant status ratio), DNA damage (8-hydroxy-2'-deoxyguanosine), and DNA methylation (5-methylcytosine) in 50 subjects (40 MDS and 10 controls). Results showed that five genes (GPX1, NEIL1, NFE2L2, OGG1, and SOD2) were associated with MDS, two (DNMT3B and SLC19A1) with AML, and two (CYBA and DNMT1) with both diseases. We observed a correlation of CYBA TT, GPX1 TT, and SOD2 CC genotypes with increased oxidative stress levels, as well as NEIL1 TT and OGG1 GG genotypes with higher DNA damage. The 5-methylcytosine levels were negatively associated with DNMT1 CC, DNMT3A CC, and MTRR AA genotypes, and positively with DNMT3B CC genotype. Furthermore, DNMT3A, MTRR, NEIL1, and OGG1 variants modulated AML transformation in MDS patients. Additionally, DNMT3A, OGG1, GPX1, and KEAP1 variants influenced survival of MDS and AML patients. Altogether, data suggest that genetic variability influence predisposition and prognosis of MDS and AML patients, as well AML transformation rate in MDS patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal
| | - Raquel Alves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal.,Department of Neurology, Laboratory of Neurochemistry, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal
| | - Emília Cortesão
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Clinical Hematology Department, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal
| | - José Pedro Carda
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Clinical Hematology Department, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal
| | - Claudia C Branco
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Ponta Delgada, São Miguel Island, Azores, Portugal.,Azores Genetics Research Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Bárbara Oliveiros
- Laboratory for Biostatistics and Medical Informatics, FMUC, Coimbra, Portugal
| | - Luísa Loureiro
- Department of Medicine, Hospital Distrital da Figueira da Foz, EPE (HDFF, EPE), Figueira da Foz, Portugal
| | - Amélia Pereira
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Department of Medicine, Hospital Distrital da Figueira da Foz, EPE (HDFF, EPE), Figueira da Foz, Portugal
| | - José Manuel Nascimento Costa
- Department of Oncology, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal.,Faculty of Medicine, University Clinic of Oncology, University of Coimbra-FMUC, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra-FMUC, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), FMUC, Coimbra, Portugal.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal.,Clinical Hematology Department, Centro Hospitalar e Universitário de Coimbra, EPE (CHUC, EPE), Coimbra, Portugal
| | - Luisa Mota-Vieira
- Molecular Genetics and Pathology Unit, Hospital of Divino Espírito Santo of Ponta Delgada, EPE, Ponta Delgada, São Miguel Island, Azores, Portugal.,Azores Genetics Research Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| |
Collapse
|