1
|
Shao Q, Khawaja A, Nguyen MD, Singh V, Zhang J, Liu Y, Nordin J, Adori M, Axel Innis C, Castro Dopico X, Rorbach J. T cell toxicity induced by tigecycline binding to the mitochondrial ribosome. Nat Commun 2025; 16:4080. [PMID: 40312422 PMCID: PMC12045974 DOI: 10.1038/s41467-025-59388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Tetracyclines are essential bacterial protein synthesis inhibitors under continual development to combat antibiotic resistance yet suffer from unwanted side effects. Mitoribosomes - responsible for generating oxidative phosphorylation (OXPHOS) subunits - share structural similarities with bacterial machinery and may suffer from cross-reactivity. Since lymphocytes rely upon OXPHOS upregulation to establish immunity, we set out to assess the impact of ribosome-targeting antibiotics on human T cells. We find tigecycline, a third-generation tetracycline, to be the most cytotoxic compound tested. In vitro, 5-10 μM tigecycline inhibits mitochondrial but not cytosolic translation, mitochondrial complex I, III and IV expression, and curtails the activation and expansion of unique T cell subsets. By cryo-EM, we find tigecycline to occupy three sites on T cell mitoribosomes. In addition to the conserved A-site found in bacteria, tigecycline also attaches to the peptidyl transferase center of the large subunit. Furthermore, a third, distinct binding site on the large subunit, aligns with helices analogous to those in bacteria, albeit lacking methylation in humans. The data provide a mechanism to explain part of the anti-inflammatory effects of these drugs and inform antibiotic design.
Collapse
Affiliation(s)
- Qiuya Shao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Minh Duc Nguyen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Faculty of Pharmacy, Phenikaa University, Ha Dong, Hanoi, Vietnam
| | - Vivek Singh
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yong Liu
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Joel Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - C Axel Innis
- ARNA Laboratory, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Animal and Veterinary Sciences, Aarhus Universitet, Tjele, Denmark.
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Alterations in gut microbiota and physiological factors associated with abdominal aortic aneurysm. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
3
|
Li Y, Wang W, Li L, Khalil RA. MMPs and ADAMs/ADAMTS inhibition therapy of abdominal aortic aneurysm. Life Sci 2020; 253:117659. [PMID: 32283055 DOI: 10.1016/j.lfs.2020.117659] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease featured by progressive dilation and remodeling of the vascular wall, which may lead to aortic rupture and high mortality. The occurrence and development of AAA involve multiple mechanisms, including extracellular matrix degradation, chronic inflammation, oxidative stress, apoptosis of vascular smooth muscle cells and innate immunity. Extracellular matrix degradation is considered as the most important mechanism causing AAA. Matrix metalloproteinases (MMPs) are key factors in this process, contributing greatly to the occurrence and development of AAA. But whether the zinc-dependent endopeptidases (ADAM/ADAMTS) are involved in this process is very little known. This study is a review about the role of MMPs and ADAM/ADAMT as well as the existing MMP inhibitors in abdominal aortic aneurysm, with the purpose of providing reference for the clinical treatment of abdominal aortic aneurysm.
Collapse
Affiliation(s)
- Yongqi Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Weicheng Wang
- Emergency Center, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Lu S, White JV, Judy RI, Merritt LL, Lin WL, Zhang X, Solomides C, Nwaneshiudu I, Gaughan J, Monos DS, Oleszak EL, Platsoucas CD. Clonally expanded alpha-chain T-cell receptor (TCR) transcripts are present in aneurysmal lesions of patients with Abdominal Aortic Aneurysm (AAA). PLoS One 2019; 14:e0218990. [PMID: 31310631 PMCID: PMC6634378 DOI: 10.1371/journal.pone.0218990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/14/2019] [Indexed: 01/25/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening immunological disease responsible for 1 to 2% of all deaths in 65 year old or older individuals. Although mononuclear cell infiltrates have been demonstrated in AAA lesions and autoimmunity may be responsible for the initiation and account for the propagation of the disease, the information available about the pathogenesis of AAA is limited. To examine whether AAA lesions from patients with AAA contain clonally expanded α-chain TCR transcripts, we amplified by the non-palindromic adaptor-PCR (NPA-PCR)/Vα-specific PCR and/or the Vα-specific PCR these α-chain TCR transcripts. The amplified transcripts were cloned and sequenced. Substantial proportions of identical α-chain TCR transcripts were identified in AAA lesions of 4 of 5 patients, demonstrating that clonally expanded T cells are present in these AAA lesions. These results were statistically significant by the bimodal distribution. Three of 5 of these patients were typed by DNA-based HLA-typing and all three expressed DRB1 alleles containing the DRβGln70 amino acid residue that has been demonstrated to be associated with AAA. All three patients exhibited clonally expanded T cells in AAA lesions. Four of the 5 patients with AAA who exhibited clonal expansions of α-chain TCR transcripts, also exhibited clonal expansions of β-chain TCR transcripts in AAA lesions, as we have demonstrated previously (J Immunol 192:4897, 2014). αβ TCR-expressing T cells infiltrating AAA lesions contain T-cell clones which have undergone proliferation and clonal expansion in vivo in response to as yet unidentified specific antigens that may be self or nonself. These results provide additional evidence supporting the hypothesis that AAA is a specific antigen-driven T-cell autoimmune disease.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amino Acid Sequence/genetics
- Antigens/genetics
- Antigens/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Clone Cells/immunology
- Humans
- Male
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Sequence Analysis, RNA
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Transcription, Genetic
Collapse
Affiliation(s)
- Song Lu
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - John V. White
- Department of Surgery, Advocate Lutheran General Hospital and University of Illinois School of Medicine, Park Ridge, IL, United States of America
| | - Raquel I. Judy
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
| | - Lisa L. Merritt
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
| | - Wan Lu Lin
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Xiaoying Zhang
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Charalambos Solomides
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Ifeyinwa Nwaneshiudu
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - John Gaughan
- Biostatistics Consulting Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Emilia L. Oleszak
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
| | - Chris D. Platsoucas
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
| |
Collapse
|
5
|
Protasoni M, Kroon AM, Taanman JW. Mitochondria as oncotarget: a comparison between the tetracycline analogs doxycycline and COL-3. Oncotarget 2018; 9:33818-33831. [PMID: 30333912 PMCID: PMC6173462 DOI: 10.18632/oncotarget.26107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/24/2018] [Indexed: 01/23/2023] Open
Abstract
Tetracyclines have anticancer properties in addition to their well-known antibacterial properties. It has been proposed that tetracyclines slow metastasis and angiogenesis through inhibition of matrix metalloproteinases. However, we believe that the anticancer effect of tetracyclines is due to their inhibition of mitochondrial protein synthesis, resulting in a decrease of the mitochondrial energy generating capacity. Several groups have developed analogs that are void of antibacterial action. An example is COL-3, which is currently tested for its anticancer effects in clinical trials. We have undertaken a comparative study of the tetracycline analogs COL-3 and doxycycline, which has an antibacterial function, to further investigate the role of the mitochondrial energy generating capacity in the anticancer mechanism and, thereby, evaluate the usefulness of mitochondria as an oncotarget. Our experiments with cultures of the human A549, COLO357 and HT29 cancer cells and fibroblasts indicated that COL-3 is significantly more cytotoxic than doxycycline. Mitochondrial translation assays demonstrated that COL-3 has retained its inhibitory effect on mitochondrial protein synthesis. Both drugs caused a severe decrease in the levels of mitochondrially encoded cytochrome-c oxidase subunits and cytochrome-c oxidase activity. In addition, COL-3 produced a marked drop in the level of nuclear-encoded succinate dehydrogenase subunit A and citrate synthase activity, indicating that COL-3 has multiple inhibitory effects. Contrary to COL-3, the anticancer action of doxycycline appears to be based specifically on inhibition of mitochondrial protein synthesis, which is thought to affect rapidly proliferating cancer cells more than healthy tissue. Doxycycline is likely to cause less side effects that COL-3.
Collapse
Affiliation(s)
- Margherita Protasoni
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Albert M Kroon
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| |
Collapse
|
6
|
Exploring antibody-dependent adaptive immunity against aortic extracellular matrix components in experimental aortic aneurysms. J Vasc Surg 2018. [PMID: 29519688 DOI: 10.1016/j.jvs.2017.11.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent evidence suggests that adaptive immunity develops during abdominal aortic aneurysm evolution. Uncertainties remain about the antigens implicated and their role in inducing rupture. Because antigens from the extracellular matrix (ECM) have been suspected, the aim of this experimental study was to characterize the role of adaptive immunity directed against antigens from the aortic ECM. METHODS In a first step, an experimental model of abdominal aortic aneurysm rupture based on adaptive immunity against the ECM was developed and characterized. Forty 4-week-old male Lewis rats were divided into two groups. In the ECM group (n = 20), rats were presensitized against the guinea pig aortic ECM before implantation of a decellularized aortic xenograft (DAX). In the control group (n = 20), rats were not presensitized before DAX implantation. In each group, half the rats were sacrificed at day 3 to analyze early mechanisms involved after DAX implantation. In a second step, we aimed to assess which ECM component was most efficient in inducing rupture. For this purpose, the nonfibrillar and fibrillar ECM components were sequentially extracted from the guinea pig aortic wall. Forty Lewis rats were then divided into four groups. Each group was presensitized against one ECM component (structural glycoproteins and proteoglycans, collagen, elastin alone, and elastin-associated glycoproteins) before DAX implantation. Apart from those that experienced rupture, rats were sacrificed at day 21. Xenografts were harvested for histologic, immunofluorescence, and conditioned medium analyses. RESULTS In total, early aortic rupture occurred in 80% of the ECM group vs 0% of the control group (P < .001). In the ECM group, major circumferential immunoglobulin deposits were observed in combination with the C3 complement fraction, without cell infiltration. Conditioned medium analysis revealed that matrix metalloproteinase 9 and myeloperoxidase levels and elastase activities were significantly increased in this group. Immunofluorescence analysis demonstrated that myeloperoxidase co-localized with tissue-free DNA and histone H4, highlighting local neutrophil activation and formation of neutrophil extracellular traps. Following differential presensitization, it appeared that rats presensitized against structural glycoproteins and proteoglycans were significantly more susceptible to rupture after DAX implantation. CONCLUSIONS Stimulating adaptive immunity against the aortic ECM, especially structural glycoproteins and proteoglycans, triggers rupture after DAX implantation. Further studies are needed to assess the precise proteins involved.
Collapse
|
7
|
Zehtabi F, Ispas-Szabo P, Djerir D, Sivakumaran L, Annabi B, Soulez G, Mateescu MA, Lerouge S. Chitosan-doxycycline hydrogel: An MMP inhibitor/sclerosing embolizing agent as a new approach to endoleak prevention and treatment after endovascular aneurysm repair. Acta Biomater 2017; 64:94-105. [PMID: 28927932 DOI: 10.1016/j.actbio.2017.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022]
Abstract
UNLABELLED The success of endovascular repair of abdominal aortic aneurysms remains limited due to the development of endoleaks. Sac embolization has been proposed to manage endoleaks, but current embolizing materials are associated with frequent recurrence. An injectable agent that combines vascular occlusion and sclerosing properties has demonstrated promise for the treatment of endoleaks. Moreover, the inhibition of aneurysmal wall degradation via matrix metalloproteinases (MMPs) may further prevent aneurysm progression. Thus, an embolization agent that promotes occlusion, MMP inhibition and endothelial ablation was hypothesized to provide a multi-faceted approach for endoleak treatment. In this study, an injectable, occlusive chitosan (CH) hydrogel containing doxycycline (DOX)-a sclerosant and MMP inhibitor-was developed. Several CH-DOX hydrogel formulations were characterized for their mechanical and sclerosing properties, injectability, DOX release rate, and MMP inhibition. An optimized formulation was assessed for its short-term ability to occlude blood vessels in vivo. All formulations were injectable and gelled rapidly at body temperature. Only hydrogels prepared with 0.075M sodium bicarbonate and 0.08M phosphate buffer as the gelling agent presented sufficient mechanical properties to immediately impede physiological flow. DOX release from this gel was in a two-stage pattern: a burst release followed by a slow continuous release. Released DOX was bioactive and able to inhibit MMP-2 activity in human glioblastoma cells. Preliminary in vivo testing in pig renal arteries showed immediate and delayed embolization success of 96% and 86%, respectively. Altogether, CH-DOX hydrogels appear to be promising new multifunctional embolic agents for the treatment of endoleaks. STATEMENT OF SIGNIFICANCE An injectable embolizing chitosan hydrogel releasing doxycycline (DOX) was developed as the first multi-faceted approach for the occlusion of blood vessels. It combines occlusive properties with DOX sclerosing and MMP inhibition properties, respectively known to prevent recanalization process and to counteract the underlying pathophysiology of vessel wall degradation and aneurysm progression. After drug release, the biocompatible scaffold can be invaded by cells and slowly degrade. Local DOX delivery requires lower drug amount and decreases risks of side effects compared to systemic administration. This new gel could be used for the prevention or treatment of endoleaks after endovascular aneurysm repair, but also for the embolization of other blood vessels such as venous or vascular malformations.
Collapse
Affiliation(s)
- Fatemeh Zehtabi
- CHUM Research Center (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; Department of Mechanical Engineering, École de technologie supérieure, 1100, rue Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.
| | - Pompilia Ispas-Szabo
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C. P. 8888, Branch A, Montreal, QC, Canada.
| | - Djahida Djerir
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C. P. 8888, Branch A, Montreal, QC, Canada.
| | - Lojan Sivakumaran
- CHUM Research Center (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; Department of Radiology, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, QC H3T 1J4, Canada.
| | - Borhane Annabi
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C. P. 8888, Branch A, Montreal, QC, Canada.
| | - Gilles Soulez
- CHUM Research Center (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; Department of Radiology, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, QC H3T 1J4, Canada.
| | - Mircea Alexandru Mateescu
- Department of Chemistry and Pharmaqam Center, Université du Québec à Montréal, C. P. 8888, Branch A, Montreal, QC, Canada.
| | - Sophie Lerouge
- CHUM Research Center (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; Department of Mechanical Engineering, École de technologie supérieure, 1100, rue Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada; Department of Radiology, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
8
|
Yu M, Chen C, Cao Y, Qi R. Inhibitory effects of doxycycline on the onset and progression of abdominal aortic aneurysm and its related mechanisms. Eur J Pharmacol 2017; 811:101-109. [PMID: 28545777 DOI: 10.1016/j.ejphar.2017.05.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/22/2017] [Accepted: 05/22/2017] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate whether doxycycline (DOX) given at different doses and via different administration routes had protective or therapeutic effects on abdominal aortic aneurysm (AAA) induced by elastase in mice. Moreover, the anti-AAA mechanism of DOX was studied in TNF-α-stimulated vascular smooth muscle cell (VSMC) in vitro. For in vivo study, either daily administration of 30mg/kg of DOX by gavage or intraperitoneal injection of 15mg/kg DOX every other day for 14 days significantly prevented the development of AAA at its early stage. Further study showed that intraperitoneal injection of 15mg/kg DOX every other day for 7 times in total could also cure the established AAA. In vitro study showed that treating VSMCs with TNF-α together with DOX remarkably inhibited the expressions and activities of MMPs (MMP-2 and MMP-9), significantly suppressed the activation of protein kinase B (AKT) signaling pathway and mitogen-activated protein kinases (MAPKs) signal proteins, including extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinases (JNK) and p38, and downregulated mRNA levels of interleukin-6 (IL-6) and monocyte chemotactic protein 1 (MCP-1), and significantly upregulated mRNA levels of transforming growth factor beta (TGF-β), heme oxygenase 1 (HO-1) and superoxide dismutase 1 (SOD-1), indicating that DOX inhibits activities of MMPs through reducing oxidative stress, suppressing MAPKs and AKT signaling pathways and ameliorating inflammation in VSMCs, and therefore, exerts preventive as well as therapeutic effects on AAA.
Collapse
Affiliation(s)
- Maomao Yu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China
| | - Cong Chen
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China
| | - Yini Cao
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China
| | - Rong Qi
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China.
| |
Collapse
|
9
|
Machado R, Antunes I, Oliveira P, Loureiro L, Almeida P, Pereira C, de Almeida R. Impact of Endovascular Aortic Aneurysm Repair in a Renal Transplantation Program. Ann Vasc Surg 2016; 36:290.e15-290.e23. [DOI: 10.1016/j.avsg.2016.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/27/2016] [Accepted: 02/28/2016] [Indexed: 01/16/2023]
|
10
|
Amelioration of salvianolic acid C on aortic structure in apolipoprotein E-deficient mice treated with angiotension II. Life Sci 2016; 166:75-81. [PMID: 27663582 DOI: 10.1016/j.lfs.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
Abstract
AIMS Aortic aneurysm is a disastrous vascular disease with high morbidity and mortality. Matrix metalloproteinases (MMPs), especially MMP-9, is implicated in the development of aortic aneurysm, but the effective MMP inhibitors are far from development. To develop new candidate compound for aortic aneurysm therapy, we evaluated the effects of salvianolic acid C (SalC) against the formation of aortic aneurysm. MATERIALS AND METHODS Aortic aneurysm was induced by implantation of angiotension II (AngII) minipump in apolipoprotein E-deficient (ApoE-/-) mice. MMPs activity was evaluated by enzyme kinetic analysis in vitro and in-gel gelatin zymography in vivo. The formation of aortic aneurysm was confirmed based on aortic maximum diameter. Hematoxylin and eosin stain was used to evaluate aortic structure, picrosirius red stain was for collagen deposition, and orcein stain was for elastin fragmentation. Macrophage infiltration was detected by CD68 immunohistochemistry. KEY FINDINGS Firstly, SalC showed significant inhibition on the activity of MMP-2 and MMP-9. Aortic aneurysm was defined as >50% increase in maximum diameter of aorta, and the down-regulated tendency of 20mg/kg SalC against formation of aortic aneurysm was detected. Also, 22.2% rupture was detected in ApoE-/- mice, while no rupture of aortic aneurysm was found with 20mg/kg SalC treatment. Then, SalC was detected to maintain the integrity of aortic structure and protect elastin against fragmentation. Finally, SalC considerably inhibited infiltration of macrophage in the injury site of aorta. SIGNIFICANCE SalC significantly ameliorated the progression of aortic aneurysm in ApoE-/- mice, and held great potential for aortic aneurysm therapy.
Collapse
|
11
|
Non-invasive Treatment of Abdominal Aortic Aneurysm Clinical Trial (N-TA(3)CT): Design of a Phase IIb, placebo-controlled, double-blind, randomized clinical trial of doxycycline for the reduction of growth of small abdominal aortic aneurysm. Contemp Clin Trials 2016; 48:91-8. [PMID: 27018941 DOI: 10.1016/j.cct.2016.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The Non-Invasive Treatment of Abdominal Aortic Aneurysm Clinical Trial (N-TA(3)CT) is a Phase IIb randomized, placebo-controlled clinical trial, testing doxycycline (100mg bid) for inhibition of growth in the greatest transverse, orthogonal diameter of small abdominal aortic aneurysms (AAA). METHODS We will enroll 258 patients, ≥55years of age who have AAA, men: 3.5-5.0cm and women: 3.5-4.5cm on CT scans confirmed centrally. The primary outcome is growth in maximal transverse, orthogonal diameter from baseline to 24-month follow-up. Secondary analyses address doxycycline effects on clinical events, aneurysm volume, and biomarkers. Primary analysis will be performed according to the principle of intention-to-treat accounting for death and ruptures by use of normal scores in analysis of covariance. At the time of the data file reported, 200 subjects have been randomized. We started enrollment in mid-2013 and will complete enrollment by mid-2016. RESULTS Participant average age=70.9years, (SD=7.6years) and maximum transverse diameter=4.3cm for men (SD=0.4) and 4.0cm for women (SD=0.3). CONCLUSION N-TA(3)CT is a critical experiment to determine whether doxycycline reduces growth of small AAA and systemic markers of inflammation previously seen in bench experiments and observational human studies to be associated with AAA growth. Our patient population baseline measurements agree with the design assumptions supporting our expectation of 90% power or greater to reject a null hypothesis in favor of an alternative hypothesis when growth is reduced by at least 40%. REGISTRATION clinicaltrials.gov #NCT01756833.
Collapse
|
12
|
Moxon JV, Golledge J. The Need for Translational Research to Advance Peripheral Artery Disease Management. Int J Mol Sci 2015. [PMCID: PMC4463693 DOI: 10.3390/ijms160511125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Joseph V. Moxon
- The Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD 4811, Australia; E-Mail:
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD 4811, Australia; E-Mail:
- Department of Vascular and Endovascular Surgery, the Townsville Hospital, Townsville, QLD 4814, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-4781-4130; Fax: +61-7-4781-3652
| |
Collapse
|