1
|
Sun Y, Li B, Zhou X, Rao T, Cheng F. The identification of key molecules and pathways in the crosstalk of calcium oxalate-treated TCMK-1 cells and macrophage via exosomes. Sci Rep 2024; 14:20949. [PMID: 39251681 PMCID: PMC11383970 DOI: 10.1038/s41598-024-71755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The interplay between crystals and epithelial cells forms the cornerstone of kidney stone development, communication between epithelial cells and macrophages emerging as a pivotal role in this process. We conducted next-generation sequencing on the secreted exosomes of TCMK-1 cells treated with calcium oxalate monohydrate (OX_EXO) or controls (NC_EXO), and on the macrophage cell line RAW264.7 stimulated with OX_EXO or NC_EXO, followed by validation of differentially expressed target proteins and miRNAs through Western blot and PCR. UPSET plots were employed to identify genes co-targeted by exosomal miRNAs. Various bioinformatic analyses were employed to predict potential mechanisms of the dysregulated genes. We integrated sequencing data from the GEO database, and validated findings using clinical patient urine and kidney tissues. We identified 665 differentially expressed exosomal miRNAs between OX_EXO and NC_EXO. Among the top 10 down-regulated miRNAs, the most targeted genes were AAK1 and NUFIP2, whereas PLCB1 was significantly targeted among the top 10 up-regulated miRNAs. In clinical specimens, we confirmed the differential expressions of five homologous miRNAs, as well as CNOT3, CNCNA1C, APEX1, and TMEM199. In conclusion, treatment of TCMK-1 cells with calcium oxalate significantly alerted the expression profile of exosomal miRNAs, subsequently influencing gene expression in macrophages, thereby modulating the processes of kidney stone formation.
Collapse
Affiliation(s)
- Yushi Sun
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
2
|
High-Calcium Microenvironment during the Development of Kidney Calculi Can Promote Phenotypic Transformation of NRK-52E Cells by Inhibiting the Expression of Stromal Interaction Molecule-1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2350198. [PMID: 35274024 PMCID: PMC8904096 DOI: 10.1155/2022/2350198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore whether Stromal Interaction Molecule-1 (STIM1) participates in the phenotypic transformation of NRK-52E cells under high-calcium microenvironment. Materials and Methods NRK-52E cells were treated with high concentration of calcium. The viability and apoptosis of cells were detected by CCK-8 (cell counting kit-8) and flow cytometry, respectively. The expression changes of phenotypic marker proteins (E-cadherin and OPN) and calcium channel proteins (STIMl and Orai1) in high-calcium environment were detected by western blotting and real-time quantitative polymerase chain reaction. The expression of STIMl protein in NRK-52E cells was upregulated and downregulated by plasmid-STIM1 and plasmid-shRNA-STIMl, respectively. The expressions of phenotypic marker proteins after upregulation or downregulation of STIMl were detected again. Besides, the intracellular calcium concentrations of NRK-52E cells in different treatments were detected by flow cytometry. Results High-calcium microenvironment can promote the phenotypic transformation and the adhesion of calcium salts in NRK-52E cells and simultaneously suppress the expression of STIMl protein in NRK-52E cells. Downregulation of STIMl protein could also promote the phenotype transformation, while both the gene silence of matrix gla protein (MGP) and overexpression of STIMl showed reverse results. Conclusion STIMl protein plays an important role in promoting phenotypic transformation of NRK-52E cells in high-calcium microenvironment.
Collapse
|
3
|
Li Y, Ding T, Hu H, Zhao T, Zhu C, Ding J, Yuan J, Guo Z. LncRNA-ATB participates in the regulation of calcium oxalate crystal-induced renal injury by sponging the miR-200 family. Mol Med 2021; 27:143. [PMID: 34736391 PMCID: PMC8567594 DOI: 10.1186/s10020-021-00403-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022] Open
Abstract
Background LncRNA-ATB is a long noncoding RNA (lncRNA) activated by transforming growth factor β (TGF-β) and it has important biological functions in tumours and nontumour diseases. Meanwhile, TGF-β is the most critical regulatory factor in the process of nephrotic fibrosis and calcium oxalate (CaOx) crystal-induced renal injury. The present study aimed to investigate the biological function and mechanism of lncRNA-ATB in CaOx crystal-induced renal injury. Methods The expression level of lncRNA-ATB was detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), the expression levels of epithelial-mesenchymal transition (EMT) markers, TGF-β1 and Kidney Injury Molecule-1 (KIM-1) were detected by qRT-PCR, immunofluorescence staining or western blot analysis, cell proliferation was measured with a CCK-8 kit, cell apoptosis was measured by flow cytometry and TUNEL staining, and cell injury was detected with the Cytotoxicity lactate dehydrogenase (LDH) Assay kit and the expression level of KIM-1. Results The expression levels of lncRNA-ATB and TGF-β1 were significantly increased in HK-2 cells after coincubation with calcium oxalate monohydrate (COM). COM stimulation caused significant injury in the HK-2 cells, induced cell apoptosis, inhibited cell proliferation, and induced EMT changes. After COM stimulation, the expression levels of the epithelial cell markers E-cadherin and zonula occludens (ZO)-1 in HK-2 cells significantly decreased, whereas the levels of the mesenchymal cell markers N-cadherin, vimentin and α-smooth muscle actin (α-SMA) significantly increased. Interference with lncRNA-ATB expression significantly relieved the COM-induced cell injury, cell apoptosis, proliferation inhibition, and EMT changes. The expression levels of the microRNA-200 (miR-200) family in the HK-2 cells after coincubation with COM were significantly decreased. MiR-200a mimics relieved the COM-induced cell injury, apoptosis, proliferation inhibition, and EMT changes, whereas miR-200a inhibitors abolished the lncRNA-ATB interference-induced relief of the COM-induced cell injury, apoptosis, proliferation inhibition, and EMT. Conclusion LncRNA-ATB promoted the COM-induced cell injury, cell apoptosis, proliferation inhibition, and EMT to participate in the process of CaOx crystal-induced renal injury by sponging miR-200s. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00403-2.
Collapse
Affiliation(s)
- Yinhui Li
- Department of Nephrology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, 200433, People's Republic of China
| | - Tao Ding
- Department of Nephrology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, 200433, People's Republic of China
| | - Haiyan Hu
- Department of Nephrology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, 200433, People's Republic of China
| | - Tingting Zhao
- Department of Nephrology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, 200433, People's Republic of China
| | - Chao Zhu
- Department of Nephrology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jiarong Ding
- Department of Nephrology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jihang Yuan
- Department of Medical Genetics, The Naval Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Zhiyong Guo
- Department of Nephrology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
4
|
Mutation of Klotho rs3752472 protect the kidney from the renal epithelial cell injury caused by CaOx crystals through the Wnt/β-catenin signaling pathway. Urolithiasis 2021; 49:543-550. [PMID: 34050772 DOI: 10.1007/s00240-021-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Calcium oxalate (CaOx) is a major contributor to urolithiasis, one of the most common urological diseases. Our previous study has shown that Klotho rs3752472 polymorphism correlates with an increased risk of CaOx-related urolithiasis in human cohorts. This study aims to identify the effect of Klotho rs3752472 polymorphism on the renal epithelium injury caused by CaOx. A rat urolithiasis model was established and validated. Renal function was assessed, and histological examination was performed. The distribution and expression of Klotho in the rat model were detected by immunohistochemical staining and western blotting analysis. A renal epithelial cell line (HK2) was used and intervened by COM crystals with several concentrations and time points. Expression of Klotho and key mediators in Wnt/β-catenin pathway were assessed by Western blotting analysis. Wide-type and mutated plasmids of Klotho rs3752472 were added in the cell culture, and the activation of Wnt/β-catenin signaling was tested. Finally, Wide-type and mutated plasmids of Klotho rs3752472 were adoptively transferred to the rat model, and the expression of Klotho was verified. In the rat model, Klotho was mainly distributed in the renal tubular area, which significantly declined in the urolithiasis group. In vitro, COM crystals significantly inhibited the expression of Klotho and induced remarkable renal epithelial cell injury. The mutation of Klotho rs3752472 can notably enhance the expression of Klotho, as well as the protection from renal epithelial cell injury and the inhibition of Wnt/β-catenin signaling pathway. After adoptively transferred to the rat urolithiasis model, similar results were observed for the mutation of Klotho rs3752472. Klotho was significantly correlated with the renal epithelial cell injury induced by CaOx crystals. Furthermore, the mutation of Klotho rs3752472 can remarkably enhance the expression of Klotho in renal tissues and cells, and subsequently protect the renal epithelial cell from the formation of CaOx crystals through the inhibition of Wnt/β-catenin signaling pathway.
Collapse
|
5
|
Hirano T, Saito D, Yamada H, Ishisaki A, Kamo M. TGF-β1 induces N-cadherin expression by upregulating Sox9 expression and promoting its nuclear translocation in human oral squamous cell carcinoma cells. Oncol Lett 2020; 20:474-482. [PMID: 32565972 PMCID: PMC7285821 DOI: 10.3892/ol.2020.11582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Squamous cell carcinoma (SCC) is the most frequent cancer that develops in the oral cavity. Epithelial-mesenchymal transition (EMT) is known to play an important role in the process of metastasis of SCC cells. In our previous study, we demonstrated that TGF-β1 induced EMT in the human oral SCC (hOSCC) cell line HSC-4. We also found that Slug plays an important role in suppressing E-cadherin expression and promotion of the migratory activity of HSC-4 cells. However, we also demonstrated that Slug does not participate in upregulation of N-cadherin expression, suggesting that EMT-related transcription factors other than Slug also play an important role in the process. In the present study, we aimed to elucidate how the transcription factor Sox9 affects the TGF-β1-induced upregulation of N-cadherin expression in HSC-4 cells. We found that TGF-β1 upregulated Sox9 expression in HSC-4 cells. In addition, Sox9 siRNA significantly abrogated the TGF-β1-induced upregulation of N-cadherin expression and inhibited the TGF-β1-promoted migratory activity in HSC-4 cells. We also demonstrated that TGF-β1 upregulated the phosphorylation status of Sox9 and then promoted nuclear translocation of Sox9 from the cytoplasm, possibly resulting in an increase in N-cadherin expression. The cyclic AMP-dependent protein kinase A inhibitor H-89, which is known to suppress phosphorylation of Sox9, significantly abrogated the TGF-β1-induced upregulation of N-cadherin expression. These results suggested that TGF-β1 induced N-cadherin expression by upregulating Sox9 expression and promoting its nuclear translocation, which results in EMT progression in hOSCC cells.
Collapse
Affiliation(s)
- Taifu Hirano
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan.,Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Daishi Saito
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba-cho, Iwate 028-3694, Japan
| |
Collapse
|
6
|
Liu Y, Chen S, Liu J, Jin Y, Yu S, An R. Telmisartan inhibits oxalate and calcium oxalate crystal-induced epithelial-mesenchymal transformation via PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway. Life Sci 2019; 241:117108. [PMID: 31786192 DOI: 10.1016/j.lfs.2019.117108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
AIMS Telmisartan (TLM), a highly selective angiotensin II type 1 receptor blocker (ARB) and partial PPAR-γ agonist, has versatile beneficial effects against oxidative stress, apoptosis, inflammatory responses and epithelial-mesenchymal transition (EMT). However, its underlying mechanism of inhibiting oxalate and calcium oxalate (CaOx) crystal-induced EMT by activating the PPAR-γ pathway remains unclear. MAIN METHODS CCK-8 assays were used to evaluate the effects of TLM on cell viability. In addition, intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Wound-healing and Transwell assays were used to evaluate the migration ability of HK2 cells exposed to oxalate. Moreover, immunofluorescence, immunohistochemistry and western blotting were used to examine the expression of E-cadherin, N-cadherin, vimentin and α-SMA and explore the underlying molecular mechanisms in HK2 cells and a stone-forming rat model. KEY FINDINGS Our results showed that TLM treatment could protect HK2 cells from oxalate-induced cytotoxicity and oxidative stress injury. Additionally, TLM prevented EMT induction by oxalate and CaOx crystals via the PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway in vitro and in vivo. However, knockdown of PPAR-γ with small interfering RNA or the PPAR-γ-specific antagonist GW9662 abrogated these protective effects of TLM. SIGNIFICANCE As a PPAR-γ agonist, TLM can ameliorate oxalate and CaOx crystal-induced EMT by exerting an antioxidant effect through the PPAR-γ-AKT/STAT3/p38 MAPK-Snail signaling pathway. Therefore, TLM can block EMT progression and could be a potential therapeutic agent for preventing and treating calcium oxalate urolithiasis formation and recurrence.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Song Chen
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Jiannan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Yinshan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China.
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, No.23 You Zheng Street, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Wnt-11 Expression Promotes Invasiveness and Correlates with Survival in Human Pancreatic Ductal Adeno Carcinoma. Genes (Basel) 2019; 10:genes10110921. [PMID: 31718047 PMCID: PMC6895970 DOI: 10.3390/genes10110921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer, proving difficult to manage clinically. Wnt-11, a developmentally regulated gene producing a secreted protein, has been associated with various carcinomas but has not previously been studied in PDAC. The present study aimed to elucidate these aspects first in vitro and then in a clinical setting in vivo. Molecular analyses of Wnt-11 expression as well as other biomarkers involved qRT-PCR, RNA-seq and siRNA. Proliferation was measured by MTT; invasiveness was quantified by Boyden chamber (Matrigel) assay. Wnt-11 mRNA was present in three different human PDAC cell lines. Wnt-11 loss affected epithelial-mesenchymal transition and expression of neuronal and stemness biomarkers associated with metastasis. Indeed, silencing Wnt-11 in Panc-1 cells significantly inhibited their Matrigel invasiveness without affecting their proliferative activity. Consistently with the in vitro data, human biopsies of PDAC showed significantly higher Wnt-11 mRNA levels compared with matched adjacent tissues. Expression was significantly upregulated during PDAC progression (TNM stage I to II) and maintained (TNM stages III and IV). Wnt-11 is expressed in PDAC in vitro and in vivo and plays a significant role in the pathophysiology of the disease; this evidence leads to the conclusion that Wnt-11 could serve as a novel, functional biomarker PDAC.
Collapse
|
8
|
Zhu J, Wang Q, Li C, Lu Y, Hu H, Qin B, Xun Y, Zhu Y, Wu Y, Zhang J, Wang S. Inhibiting inflammation and modulating oxidative stress in oxalate-induced nephrolithiasis with the Nrf2 activator dimethyl fumarate. Free Radic Biol Med 2019; 134:9-22. [PMID: 30599261 DOI: 10.1016/j.freeradbiomed.2018.12.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/25/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
Hyperoxaluria induces oxidative stress, and inflammation causes renal epithelial cell injury in nephrolithiasis, suggesting that reduced oxalate toxicity may be beneficial. This study aimed to investigate whether nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also called Nfe2l2) induced by dimethyl fumarate (DMF) could protect renal epithelial cells against oxalate-mediated injury both in vivo and in vitro. Glyoxylic acid monohydrate was intraperitoneally injected into Sprague-Dawley rats with or without intragastric administration of DMF. We showed that calcium oxalate crystallisation, accompanied by overexpression of oxidant species and inflammatory cytokines and apoptosis in the rat kidney, was partially reversed by treatment with DMF. Furthermore, oxalate induced a reduction in cell viability, cell damage, oxidant species overexpression, mitochondrial dysfunction, and apoptosis in normal rat kidney epithelial-like (NRK-52E) cells, which were reversed by DMF. Pretreatment of NRK-52E cells with DMF significantly increased Nrf2 levels in the nucleus, with subsequent inhibition of the expression of the nicotinamide adenine dinucleotide phosphate subunits Nox4 and P22, canonical inflammation, and osteogenesis-associated differentiation of target genes in the cytoplasm. This effect was partially inhibited by transfection with Nrf2 siRNA and strengthened by transfection with Kelch-like ECH-associated protein 1 siRNA. These results suggest that DMF exerts beneficial effects in nephrolithiasis by inhibiting inflammation and modulating oxidative stress via regulation of Nrf2.
Collapse
Affiliation(s)
- Jianning Zhu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cong Li
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuchao Lu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Henglong Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Baolong Qin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Xun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunpeng Zhu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqiao Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Li S, Lan Y, Wu W, Duan X, Kong Z, Wu W, Zeng G. Peroxisome proliferator‐activated receptor γ modulates renal crystal retention associated with high oxalate concentration by regulating tubular epithelial cellular transdifferentiation. J Cell Physiol 2018; 234:2837-2850. [PMID: 30317563 DOI: 10.1002/jcp.27102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Shujue Li
- Department of UrologyMinimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou China
- Guangdong Key Laboratory of UrologyGuangzhou Institute of UrologyGuangzhou China
| | - Yu Lan
- Department of UrologyMinimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou China
- Guangdong Key Laboratory of UrologyGuangzhou Institute of UrologyGuangzhou China
| | - Wenzheng Wu
- Department of UrologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou China
| | - Xiaolu Duan
- Department of UrologyMinimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou China
- Guangdong Key Laboratory of UrologyGuangzhou Institute of UrologyGuangzhou China
| | - Zhenzhen Kong
- Department of UrologyMinimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou China
- Guangdong Key Laboratory of UrologyGuangzhou Institute of UrologyGuangzhou China
| | - Wenqi Wu
- Department of UrologyMinimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou China
- Guangdong Key Laboratory of UrologyGuangzhou Institute of UrologyGuangzhou China
| | - Guohua Zeng
- Department of UrologyMinimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou China
- Guangdong Key Laboratory of UrologyGuangzhou Institute of UrologyGuangzhou China
| |
Collapse
|
10
|
Integrative Analysis of miRNA and mRNA Expression Profiles in Calcium Oxalate Nephrolithiasis Rat Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8306736. [PMID: 29392139 PMCID: PMC5748115 DOI: 10.1155/2017/8306736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
The microRNA (miRNA) expression profiles and their biological functions in calcium oxalate nephrolithiasis remain unclear. In this study, we investigate the miRNA and mRNA expression profiles of kidney tissues in calcium oxalate stone rats. 16 Sprague Dawley rats were divided into control group and stone-forming group. 24-hour urine samples and kidney tissues were collected for biochemical and histological determination after 4 weeks. MiRNA and mRNA microarray were applied to evaluate the miRNA and mRNA expression profiles. To validate the microarray results, the quantitative real-time PCR (qRT-PCR) was performed. A total of 38 miRNAs and 2728 mRNAs were significantly and differentially expressed in kidney tissues of stone-forming group versus control group. Gene Ontology (GO) analysis revealed that most of the target genes were enriched in terms of oxidation reduction, ion transport, inflammatory response, and response to wounding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these targets highlights their critical role in cytokine-cytokine receptor interaction, gap junction, and chemokine signaling pathway. Furthermore, the reliability of the microarray-based results was confirmed by using qRT-PCR determination. The miRNA and mRNA expressions in calcium oxalate stone rat kidneys might provide a basis for further research on urolithiasis mechanism.
Collapse
|
11
|
Bird VY, Khan SR. How do stones form? Is unification of theories on stone formation possible? ARCH ESP UROL 2017; 70:12-27. [PMID: 28221139 PMCID: PMC5683182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are two basic pathways for formation of calcium based kidney stones. Most idiopathic calcium oxalate (CaOx) stones are formed in association with sub-epithelial plaques of calcium phosphate (CaP), known as Randall's plaques, on renal papillary surfaces. Crystal formation and retention within the terminal collecting ducts, the ducts of Bellini, leading to the formation of Randall's plugs, is the other pathway. Both pathways require supersaturation leading to crystallization, regulated by various crystallization modulators produced in response to changing urinary conditions. High supersaturation, as a result of a variety of genetic and environmental factors, leads to crystallization in the terminal collecting ducts, eventually plugging their openings into the renal pelvis. Stasis behind the plugs may lead to the formation of attached or unattached stones in the tubular lumen. Deposition of crystals on the plug surface facing the pelvic or tubular urine may result in stone formation on the Randall's plugs. Kidneys of idiopathic stone formers may be subjected to oxidative stress as a result of increased urinary excretion of calcium/oxalate/phosphate and/or decrease in the production of functional crystallization inhibitors or in relation to co-morbidities such as hypertension, atherosclerosis, or acute kidney injury. We have proposed that production of reactive oxygen species (ROS) causes dedifferentiation of epithelial/endothelial cells into osteoblast type cells and deposition of CaP in the basement membrane of renal tubules or vessels. Growth, aggregation and melding of CaP crystals leads to the formation of plaque which grows by further calcification of interstitial collagen and membranous vesicles. Plaque becomes exposed to pelvic urine once the covering papillary epithelium is breached. Surface layers of CaP are replaced by CaOx through direct transformation or demineralization of CaP and mineralization of CaOx. Alternatively, or in addition, CaOx crystals nucleate directly on the plaque surface. Stone growth may also depend upon supersaturation in the pelvic urine, triggering further nucleation, growth and aggregation.
Collapse
Affiliation(s)
- Victoria Y. Bird
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida. EE.UU
| | - Saeed R. Khan
- Department of Urology, College of Medicine, University of Florida, Gainesville, Florida. EE.UU
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida. EE.UU
| |
Collapse
|
12
|
Donmez C, Konac E, Aydogan BT, Bilen CY. Might E-cadherin promoter polymorphisms of rs16260 and rs5030625 associate with the risk of nephrolithiasis? SPRINGERPLUS 2016; 5:1673. [PMID: 27733975 PMCID: PMC5040654 DOI: 10.1186/s40064-016-3363-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
Purpose To study whether −160 C > A (rs16260) and −347 G > GA (rs5030625) single nucleotide polymorphisms of the regulatory region (rSNPs) of CDH1 gene modulate the risk of nephrolithiasis. Methods Genomic DNA of 101 patients with calcium oxalate nephrolithiasis and 114 healthy controls were screened for both polymorphisms, using polymerase chain reaction-restriction fragments length polymorphism method (PCR-RLFP). Haplotype frequencies were also analyzed. To determine the association of rSNPs of CDH1 gene with the clinicopathological features of nephrolithiasis, nearly all possible etiological factors were documented. These factors were family history, gender, age, body mass index, liquid consumption, eating habits, tea–coffee and meat (oxalate rich) consumption, adequate physical activity, and all serum and urine levels—the serum levels of Na, K, Cl, phosphate, Ca, Mg, uric acid, albumin, blood urea nitrogen (BUN), creatinine and serum parathyroid hormone (PTH) as well as 24 h urine excretions of creatinine, Na, K, Cl, phosphate, Ca, Mg, citrate, oxalate, uric acid, albumin and BUN. Results Significant differences were found between rs16260 and the risk of nephrolithiasis. Patients having CA genotype of rs16260 CDH1 polymorphism were associated with an almost trifold increased risk for developing kidney stone than those with the AA genotype (95 % CI 1.08–7.28, OR 2.8, P = 0.033). We also found that non-A allele carriers (CC) had significantly higher nephrolithiasis risk associated with the clinicopathological characteristics including serum calcium (P = 0.027) and 24 h urinary magnesium level (P = 0.042). Moreover, we did find a directly proportional relationship between the CA genotype and serum calcium levels (P = 0.041). There was no significant difference between patients and controls in terms of the distribution of rs5030625 genotypes and alleles (P > 0.05). Likewise, no associations between the rs16260 and rs5030625 haplotypes and susceptibility to kidney stone were observed (P > 0.05). Conclusion Regulatory variants of rs16260 of the CDH1 gene may confer susceptibility to nephrolithiasis. This may have important implications for understanding the pathophysiological mechanisms of the disease and suggesting novel targets for drug treatment.
Collapse
Affiliation(s)
- Cigdem Donmez
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06510 Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06510 Ankara, Turkey
| | - Batuhan T Aydogan
- Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey
| |
Collapse
|
13
|
Lu Y, Qin B, Hu H, Zhang J, Wang Y, Wang Q, Wang S. Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney. PeerJ 2016; 4:e1884. [PMID: 27069814 PMCID: PMC4824905 DOI: 10.7717/peerj.1884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background. MicroRNAs (miRNAs) influence a variety of biological functions by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been associated with many human diseases. Urolithiasis is a common disease, and idiopathic hypercalciuria (IH) is an important risk factor for calcium urolithiasis. However, miRNA expression patterns and their biological functions in urolithiasis remain unknown. Methods and Results. A multi-step approach combining microarray miRNA and mRNA expression profile and bioinformatics analysis was adopted to analyze dysregulated miRNAs and genes in genetic hypercalciuric stone-forming (GHS) rat kidneys, using normal Sprague-Dawley (SD) rats as controls. We identified 2418 mRNAs and 19 miRNAs as significantly differentially expressed, over 700 gene ontology (GO) terms and 83 KEGG pathways that were significantly enriched in GHS rats. In addition, we constructed an miRNA-gene network that suggested that rno-miR-674-5p, rno-miR-672-5p, rno-miR-138-5p and rno-miR-21-3p may play important roles in the regulatory network. Furthermore, signal-net analysis suggested that NF-kappa B likely plays a crucial role in hypercalciuria urolithiasis. Conclusions. This study presents a global view of mRNA and miRNA expression in GHS rat kidneys, and suggests that miRNAs may be important in the regulation of hypercalciuria. The data provide valuable insights for future research, which should aim at validating the role of the genes featured here in the pathophysiology of hypercalciuria.
Collapse
Affiliation(s)
- Yuchao Lu
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Baolong Qin
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Henglong Hu
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Jiaqiao Zhang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Yufeng Wang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Qing Wang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Shaogang Wang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| |
Collapse
|