1
|
Yin R, Cheng J, Lin J. The role of the type VI secretion system in the stress resistance of plant-associated bacteria. STRESS BIOLOGY 2024; 4:16. [PMID: 38376647 PMCID: PMC10879055 DOI: 10.1007/s44154-024-00151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.
Collapse
Affiliation(s)
- Rui Yin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
2
|
Liyanapathiranage P, Jones JB, Potnis N. Mutation of a Single Core Gene, tssM, of Type VI Secretion System of Xanthomonas perforans Influences Virulence, Epiphytic Survival, and Transmission During Pathogenesis on Tomato. PHYTOPATHOLOGY 2022; 112:752-764. [PMID: 34543058 DOI: 10.1094/phyto-02-21-0069-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas perforans is a seedborne hemibiotrophic pathogen that successfully establishes infection in the phyllosphere of tomato. While most studies investigating mechanistic basis of pathogenesis have focused on successful apoplastic growth, factors important during asymptomatic colonization in the early stages of disease development are not well understood. In this study, we show that tssM gene of the type VI secretion system cluster i3* (T6SS-i3*) plays a significant role during initial asymptomatic epiphytic colonization at different stages during the life cycle of the pathogen. Mutation in a core gene, tssM of T6SS-i3*, imparted higher aggressiveness to the pathogen, as indicated by higher overall disease severity, higher in planta growth, and shorter latent infection period compared with the wild-type upon dip inoculation of 4- to 5-week-old tomato plants. Contribution of tssM toward aggressiveness was evident during vertical transmission from seed to seedling, with wild-type showing reduced disease severity as well as lower in planta populations on seedlings compared with the mutant. Presence of functional TssM offered higher epiphytic fitness as well as higher dissemination potential to the pathogen when tested in an experimental setup mimicking transplant house high-humidity conditions. We showed higher osmotolerance being one mechanism by which TssM offers higher epiphytic fitness. Taken together, these data reveal that functional TssM plays a larger role in offering ecological advantage to the pathogen. TssM prolongs the association of hemibiotrophic pathogen with the host, minimizing overall disease severity yet facilitating successful dissemination.
Collapse
Affiliation(s)
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
3
|
Cui Z, Huntley RB, Schultes NP, Kakar KU, Yang CH, Zeng Q. Expression of the Type III Secretion System Genes in Epiphytic Erwinia amylovora Cells on Apple Stigmas Benefits Endophytic Infection at the Hypanthium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1119-1127. [PMID: 34698527 DOI: 10.1094/mpmi-06-21-0152-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Erwinia amylovora causes fire blight on rosaceous plants. One of the major entry points of E. amylovora into hosts is flowers, where E. amylovora proliferates epiphytically on stigmatic and hypanthium surfaces and, subsequently, causes endophytic infection at the hypanthium. The type III secretion system (T3SS) is an important virulence factor in E. amylovora. Although the role of T3SS during endophytic infection is well characterized, its expression during epiphytic colonization and role in the subsequent infection is less understood. Here, we investigated T3SS gene expression in epiphytic E. amylovora on stigma and hypanthium of apple flowers under different relative humidities (RH). On stigma surfaces, T3SS was expressed in a high percentage of E. amylovora cells, and its expression promoted epiphytic growth. On hypanthium surfaces, however, T3SS was expressed in fewer E. amylovora cells than on the stigma, and displayed no correlation with epiphytic growth, even though T3SS expression is essential for infection. E. amylovora cells grown on stigmatic surfaces and then flushed down to the hypanthium displayed a higher level of T3SS expression than cells grown on the hypanthium surface alone. Furthermore, E. amylovora cells precultured on stigma had a higher potential to infect flowers than E. amylovora cells precultured in a T3SS-repressive medium. This suggests that T3SS induction during the stigmatic epiphytic colonization may be beneficial for subsequent infection. Finally, epiphytic expression of T3SS was influenced by RH. Higher percentage of stigmatic E. amylovora cells expressed T3SS under high RH than under low RH.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Regan B Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Neil P Schultes
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Kaleem U Kakar
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300, Pakistan
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| |
Collapse
|
4
|
Masum MMI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B. Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action Against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe. Front Microbiol 2019; 10:820. [PMID: 31110495 PMCID: PMC6501729 DOI: 10.3389/fmicb.2019.00820] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/01/2019] [Indexed: 12/05/2022] Open
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) using plants has become a promising substitute to the conventional chemical synthesis method. In this study, we report low-cost, green synthesis of AgNPs using fresh fruit extract of Phyllanthus emblica. The biosynthesized AgNPs was confirmed and characterized by analysis of spectroscopy profile of the UV-visible and Energy dispersive spectrophotometer, Fourier transform infrared, X-ray diffraction pattern, and electron microscopy images examination. UV-visible spectra showed a surface resonance peak of 430 nm corresponding to the formation of AgNPs, and FTIR spectra confirmed the involvement of biological molecules in AgNPs synthesis. In spherical AgNPs, the particle size ranged from 19.8 to 92.8 nm and the average diameter was 39 nm. Synthesized nanoparticles at 20 μg/ml showed remarkable antimicrobial activity in vitro against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe, while 62.41% reduction in OD600 value was observed compared to the control. Moreover, the inhibitory efficiency of AgNPs increased with the increase of incubation time. Furthermore, AgNPs not only disturbed biofilm formation and swarming ability but also increased the secretion of effector Hcp in strain RS-2, resulting from damage to the cell membrane, which was substantiated by TEM images and live/dead cell staining result. Overall, this study suggested that AgNPs can be an attractive and eco-friendly candidate to control rice bacterial disease.
Collapse
Affiliation(s)
- Md. Mahidul Islam Masum
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Khattak Arif Ali
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wen Qiu
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Ogunyemi SO, Fang Y, Qiu W, Li B, Chen J, Yang M, Hong X, Luo J, Wang Y, Sun G. Role of type IV secretion system genes in virulence of rice bacterial brown stripe pathogen Acidovorax oryzae strain RS-2. Microb Pathog 2018; 126:343-350. [PMID: 30468852 DOI: 10.1016/j.micpath.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Type IV secretion system (T4SS) is a specialized nanomachine that is utilized for the pathogenicity of gram-negative bacteria. However, the role of T4SS genes in virulence of rice bacterial brown stripe pathogen Acidovorax oryzae (Ao) strain RS-2 is not clear, which contains T4SS gene cluster based on genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type strain RS-2 and nine T4SS mutants, which were constructed in this study. Results indicated that mutation of pilT, pilM, pilQ, or pilZ3 genes not only significantly reduced bacterial virulence, but also caused a reduction of 20.4-62.0% in biofilm formation and 37.7-47.7% reduction in motility, but had no effect on exopolysaccharide (EPS) production or extracellular enzymatic activities when compared to the wild type. The four T4SS genes had a differential effect on bacterial growth after 24 h post-incubation. The complemented strains of the four T4SS mutants restored similar virulence symptom as the wild type. In addition, no change was observed in bacterial virulence by mutation of the other five T4SS genes. Totally, these results demonstrated that T4SS played vital roles in bacterial virulence, motility and biofilm formation in plant pathogen Ao strain RS-2.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China; Department of Crop Protection, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
| | - Yushi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Wen Qiu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Jie Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Min Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Xianxian Hong
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Yangli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, 310021, Hangzhou, China.
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, 310021, Hangzhou, China
| |
Collapse
|
6
|
IcmF and DotU are required for the virulence of Acidovorax oryzae strain RS-1. Arch Microbiol 2018; 200:897-910. [DOI: 10.1007/s00203-018-1497-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
|
7
|
Masum MMI, Yang Y, Li B, Olaitan OS, Chen J, Zhang Y, Fang Y, Qiu W, Wang Y, Sun G. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2. Int J Mol Sci 2017; 18:ijms18102024. [PMID: 28934168 PMCID: PMC5666706 DOI: 10.3390/ijms18102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.
Collapse
Affiliation(s)
- Md Mahidul Islam Masum
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Yingzi Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Ogunyemi Solabomi Olaitan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Jie Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yang Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yushi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Wen Qiu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Dong Q, Luo J, Qiu W, Cai L, Anjum SI, Li B, Hou M, Xie G, Sun G. Inhibitory Effect of Camptothecin against Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae RS-2. Molecules 2016; 21:molecules21080978. [PMID: 27472315 PMCID: PMC6274382 DOI: 10.3390/molecules21080978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/28/2022] Open
Abstract
Camptothecin (CPT) has anticancer, antiviral, and antifungal properties. However, there is a dearth of information about antibacterial activity of CPT. Therefore, in this study, we investigated the inhibitory effect of CPT on Acidovorax avenae subsp. avenae strain RS-2, the pathogen of rice bacterial brown stripe, by measuring cell growth, DNA damage, cell membrane integrity, the expression of secretion systems, and topoisomerase-related genes, as well as the secretion of effector protein Hcp. Results indicated that CPT solutions at 0.05, 0.25, and 0.50 mg/mL inhibited the growth of strain RS-2 in vitro, while the inhibitory efficiency increased with an increase in CPT concentration, pH, and incubation time. Furthermore, CPT treatment affected bacterial growth and replication by causing membrane damage, which was evidenced by transmission electron microscopic observation and live/dead cell staining. In addition, quantitative real-time PCR analysis indicated that CPT treatment caused differential expression of eight secretion system-related genes and one topoisomerase-related gene, while the up-regulated expression of hcp could be justified by the increased secretion of Hcp based on the ELISA test. Overall, this study indicated that CPT has the potential to control the bacterial brown stripe pathogen of rice.
Collapse
Affiliation(s)
- Qiaolin Dong
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ju Luo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Wen Qiu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Li Cai
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Syed Ishtiaq Anjum
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China.
- Department of Zoology Kohat University of Science and Technology Kohat, Khyber Pakhtunkhwa 26000, Pakistan.
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Mingsheng Hou
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guanlin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
9
|
Li B, Ge M, Zhang Y, Wang L, Ibrahim M, Wang Y, Sun G, Chen G. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ß-lactam antibiotics. Sci Rep 2016; 6:22241. [PMID: 26915352 PMCID: PMC4768089 DOI: 10.1038/srep22241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ß-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to Amp does not influence bacterial growth and biofilm formation, but alters the virulence, colonization capacity, composition of extracellular polymeric substances and secretion of Type VI secretion system (T6SS) effector Hcp. This attenuation in virulence is linked to unique or differential expression of known virulence-associated genes based on genome-wide transcriptomic analysis. The reliability of expression data generated by RNA-Seq was verified with quantitative real-time PCR of 21 selected T6SS genes, where significant down-regulation in expression of hcp gene, corresponding to the reduction in secretion of Hcp, was observed under exposure to Amp. Hcp is highlighted as a potential target for Amp, with similar changes observed in virulence-associated phenotypes between exposure to Amp and mutation of hcp gene. In addition, Hcp secretion is reduced in knockout mutants of 4 differentially expressed T6SS genes.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Mengyu Ge
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Li Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Department of Biosciences, COMSATS Institute of Information technology Sahiwal Campus, Sahiwal, Pakistan
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|