1
|
Asevedo EA, Ramos Santiago L, Kim HJ, Syahputra RA, Park MN, Ribeiro RIMA, Kim B. Unlocking the therapeutic mechanism of Caesalpinia sappan: a comprehensive review of its antioxidant and anti-cancer properties, ethnopharmacology, and phytochemistry. Front Pharmacol 2025; 15:1514573. [PMID: 39840104 PMCID: PMC11747472 DOI: 10.3389/fphar.2024.1514573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Herbal medicine are an invaluable reservoir of bioactive compounds, offering immense potential for novel drug development to address a wide range of diseases. Among these, Caesalpinia sappan has gained recognition for its historical medicinal applications and substantial therapeutic potential. This review explores the ethnopharmacological significance, phytochemical composition, and pharmacological properties of C. sappan, with a particular focus on its anticancer activities. Traditionally, C. sappan has been utilized for treating respiratory, gastrointestinal, and inflammatory conditions, demonstrating its broad therapeutic scope. The plant's rich array of bioactive compounds-flavonoids, triterpenoids, phenolic acids, and glycosides-forms the basis of its potent antioxidant, anti-inflammatory, and pharmacological effects. Modern pharmacological research has further substantiated its versatility, revealing anticancer, anti-diabetic, anti-infective, and hepatoprotective properties. However, significant challenges remain, including the need to unravel the precise molecular mechanisms underlying its anticancer effects, refine extraction and isolation methods for bioactive compounds, and validate its safety and efficacy through well-designed clinical trials. Particularly noteworthy is C. sappan's potential in combination therapies, where it may synergistically target multiple cancer pathways, enhance therapeutic outcomes, and mitigate adverse effects. This review synthesizes the findings from the past decade, providing a comprehensive evaluation of C. sappan's pharmacological promise while identifying critical areas for future research. By addressing these gaps, C. sappan could serve as a cornerstone for innovative therapeutic strategies, offering hope for improved management of cancer and other complex diseases.
Collapse
Affiliation(s)
- Estéfani Alves Asevedo
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Livia Ramos Santiago
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Duran-Izquierdo M, Taboada-Alquerque M, Sierra-Marquez L, Alvarez-Ortega N, Stashenko E, Olivero-Verbel J. Hydroalcoholic extract of Haematoxylum brasiletto protects Caenorhabditis elegans from cadmium-induced toxicity. BMC Complement Med Ther 2022; 22:184. [PMID: 35818043 PMCID: PMC9272861 DOI: 10.1186/s12906-022-03654-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background H. brasiletto is used in popular culture due to its therapeutic properties, including antioxidant, anti-inflammatory and antiproliferative properties, although little is known about its role as a protector against metal toxicity. This study aimed to investigate the chemical composition and efficacy of the hydroalcoholic extract from H. brasiletto (HAE-Hbrasiletto) collected in northern Colombia to defend against cadmium (Cd)-induced toxicity. Methods Phytochemical characterization was performed using HPLC-ESI-QTOF. Caenorhabditis elegans was employed to assess the shielding effect of HAE-Hbrasiletto against Cd toxicity in vivo, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was utilized to measure radical scavenging activity. Results The main secondary metabolites identified by HPLC-ESI-QTOF in the extracts were hematoxylins (brazilein and hematein) and protosappanins (protosappanin A, B and C, 10-O-methylprotosappanin B, and protosappanin A dimethyl acetal). The HAE-Hbrasiletto elicited low lethality in N2 worms and significantly reduced the Cd-induced death of the nematodes. It also improved Cd-induced motility inhibition, as well as body length and reproduction reduction provoked by the heavy metal. The extract displayed a good capacity to halt Cd-induced DAF-16 translocation. As this last process was associated with lethality (r = 0.962, p < 0.01), the antioxidant properties of the extract may contribute to ameliorating tissue damage induced by oxidative stress from Cd exposure. Conclusion HAE-Hbrasiletto has remarkable properties to protect against Cd-induced toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03654-6. Most secondary metabolites tentatively identified in H. brasiletto are homoisoflavones. Hidroalcoholic extract of H. brasiletto protects C. elegans from Cd toxicity The extract diminished Cd-induced damage to reproduction, growth, and locomotion. Cd-induced oxidative stress and translocation of DAF-16 are blocked by the extract.
Collapse
|
3
|
Jung F, Liu J, Yang S, Tseng H, Chou SP, Lin J, Jow G. FJU-C28 inhibits the endotoxin-induced pro-inflammatory cytokines expression via suppressing JNK, p38 MAPK and NF-κB signaling pathways. Pharmacol Res Perspect 2021; 9:e00876. [PMID: 34669271 PMCID: PMC8527890 DOI: 10.1002/prp2.876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Despite marked improvements in supportive care, the mortality rate of acute respiratory distress syndrome due to the excessive inflammatory response caused by direct or indirect lung injury induced by viral or bacterial infection is still high. In this study, we explored the anti-inflammatory effect of FJU-C28, a new 2-pyridone-based synthetic compound, on lipopolysaccharide (LPS)-induced inflammation in vitro and in vivo models. FJU-C28 suppressed the LPS-induced mRNA and protein expression of iNOS, COX2 and proinflammatory cytokines. The cytokine protein array results showed that LPS stimulation enhanced the secretion of IL-10, IL-6, GCSF, Eotaxin, TNFα, IL-17, IL-1β, Leptin, sTNF RII, and RANTES. Conversely, the LPS-induced secretion of RANTES, TIMP1, IL-6, and IL-10 was dramatically suppressed by FJU-C28. FJU-C28 suppressed the LPS-induced expression of RANTES, but its parental compound FJU-C4 was unable to diminish RANTES in cell culture media or cell lysates. FJU-C28 blocked the secretion of IL-6 and RANTES in LPS-activated macrophages by regulating the activation of JNK, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). FJU-C28 prevented the LPS-induced decreases in lung function including vital capacity (VC), lung compliance (C chord), forced expiratory volume at 100 ms (FEV100), and forced vital capacity (FVC) in mice with LPS-induced systemic inflammatory responses. FJU-C28 also reduced neutrophil infiltration in the interstitium, lung damage and circulating levels of IL-6 and RANTES in mice with systemic inflammation. In conclusion, these findings suggest that FJU-C28 possesses anti-inflammatory activities to prevent endotoxin-induced lung function decrease and lung damages by down-regulating proinflammatory cytokines including IL-6 and RANTES via suppressing the JNK, p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Fang Jung
- Department of Respiratory TherapyFu‐Jen Catholic UniversityNew Taipei CityTaiwan
- Deparment of ChemistryFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| | - Jung‐Sen Liu
- Department of Respiratory TherapyFu‐Jen Catholic UniversityNew Taipei CityTaiwan
- Department of SurgeryCathay General HospitalTaipeiTaiwan
| | - Shih‐Hsing Yang
- Department of Respiratory TherapyFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| | - Hui‐Yun Tseng
- Department of Respiratory TherapyFu‐Jen Catholic UniversityNew Taipei CityTaiwan
- Deparment of ChemistryFu‐Jen Catholic UniversityNew Taipei CityTaiwan
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| | | | - Jau‐Chen Lin
- Department of Respiratory TherapyFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| | - Guey‐Mei Jow
- School of MedicineFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| |
Collapse
|
4
|
Wang J, Ke Y, Shu T. Crocin has pharmacological effects against the pathological behavior of colon cancer cells by interacting with the STAT3 signaling pathway. Exp Ther Med 2019; 19:1297-1303. [PMID: 32010302 PMCID: PMC6966197 DOI: 10.3892/etm.2019.8329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate changes in proliferation, apoptosis, inflammation and chemokine release of colon cancer cells after treatment with crocin, as well as to investigate the signaling pathway that is regulated by crocin. The inhibition rates of different doses of crocin on the proliferation of HCT116 cells were measured by MTT assay. The IC50 was calculated from the inhibition rates at 48 h. Proliferation curves of HCT116 cells were plotted after treatment with 271.18 µM (high-dose group) or 135.6 µM (low-dose group) crocin. Flow cytometry and Hoechst 33342/propidium iodide double staining were used for detecting apoptosis. ELISA was used to measure the levels of macrophage inflammatory protein 2, interleukin (IL)-8, monocyte chemoattractant protein 1, tumor necrosis factor-α, IL-6 and IL-1β in the supernatant from cultured HCT116 cells following both high- and low-dose crocin treatment. Phosphorylated (P)-STAT3/STAT3 in HCT116 cells were measured by western blotting. Crocin inhibited the proliferation of HCT116 cells in a dose-dependent manner and the high-dose treatment with crocin resulted in a lower rate of proliferation. Additionally, crocin increased the apoptosis of HCT116 cells and the high-dose treatment with crocin led to a higher level of apoptosis. Notably, crocin decreased the secretion of chemokines and inflammatory factors from HCT116 cells and the high-dose treatment with crocin caused the greatest reduction in secretion of the factors. Crocin reduced the ratio of P-STAT3/STAT3, and thereby reduced the release of cytokines. The present study demonstrated that crocin may have pharmacological effects against the pathological behavior of colon cancer cells, and its mechanism of action may be related to the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jun Wang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yupei Ke
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tao Shu
- Department of Anorectal Surgery, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
5
|
Zhang F, Tang B, Zhang Z, Xu D, Ma G. DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway. Inflammation 2019; 42:672-681. [PMID: 30506106 DOI: 10.1007/s10753-018-0924-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Macrophages play a fundamental role in human chronic diseases such as rheumatoid arthritis, atherosclerosis, and cancer. In the present study, we demonstrated that dual-specificity phosphatase 6 (DUSP6) was upregulated by lipopolysaccharide (LPS) treatment of macrophages. (E/Z)-BCI hydrochloride (BCI) functions as a small molecule inhibitor of DUSP6, and BCI treatment inhibited DUSP6 expression in LPS-activated macrophages. BCI treatment inhibited LPS-triggered inflammatory cytokine production, including IL-1β and IL-6, but not TNF-α, and also affected macrophage polarization to an M1 phenotype. In addition, BCI treatment decreased reactive oxygen species (ROS) production and significantly elevated the levels of Nrf2. Interestingly, pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory responses was independent of extracellular signal-regulated kinase (ERK) signaling. Furthermore, BCI treatment inhibited phosphorylation of P65 and nuclear P65 expression in LPS-activated macrophages. These results demonstrated that pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory mediators and ROS production in macrophage cells via activating the Nrf2 signaling axis and inhibiting the NF-κB pathway. These anti-inflammatory effects indicated that BCI may be considered as a therapeutic agent for blocking inflammatory disorders.
Collapse
Affiliation(s)
- Fan Zhang
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University, Lishui, China
| | - Zijiao Zhang
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Di Xu
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
6
|
Dauricine negatively regulates lipopolysaccharide- or cecal ligation and puncture-induced inflammatory response via NF-κB inactivation. Arch Biochem Biophys 2019; 666:99-106. [DOI: 10.1016/j.abb.2019.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
|
7
|
Gu R, Wang Y, Wu S, Wang Y, Li P, Xu L, Zhou Y, Chen Z, Kennelly EJ, Long C. Three new compounds with nitric oxide inhibitory activity from Tirpitzia sinensis, an ethnomedicinal plant from Southwest China. BMC Chem 2019; 13:47. [PMID: 31384795 PMCID: PMC6661779 DOI: 10.1186/s13065-019-0568-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/22/2019] [Indexed: 01/01/2023] Open
Abstract
The medicinal plant Tirpitzia sinensis has been used by the Zhuang ethnic people in mountainous areas of Southwest China to stop bleeding, invigorate blood circulation, and treat inflammation and wounds. In order to further explore its traditional medicinal uses, the phytochemical constituents of this species were examined. Three new compounds, the lignan tirpitzin (1), the flavonoid tirpitzoside (2), and the furan-glycoside tirpitziol (3), along with five known compounds were isolated from the aerial part of T. sinensis for the first time. The structures of these compounds were elucidated by 1D and 2D NMR, LC/MS, IR spectrometric methods and compared with published data. The results of an in silico pharmacophore-based analysis showed potential targets of the new compounds, including ERBB2, IRAK4, LCK, JAK2, MAPK14, and MMP-12. These targets suggested that 1-3 may be involved with wound-healing and/or inflammation, leading to an in vitro assay of nitric oxide (NO) inhibition assays with lipopolysaccharide-induced BV-2 cells. All three new compounds displayed moderate NO inhibitory activity with the IC50 values of 14.97 ± 0.87, 26.63 ± 1.32, and 17.09 ± 2.3 μM, respectively.
Collapse
Affiliation(s)
- Ronghui Gu
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China
| | - Yuehu Wang
- 2Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201 People's Republic of China
| | - Shibiao Wu
- 3Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468 USA
| | - Yeling Wang
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China
| | - Ping Li
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China
| | - Li Xu
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China
| | - Yue Zhou
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China
| | - Ze'e Chen
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China
| | - Edward J Kennelly
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China.,3Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468 USA.,4Ph.D. Programs in Biology, The Graduate Center, City University of New York, 365 Fifth Ave., New York, 10016 USA
| | - Chunlin Long
- 1College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China.,2Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming, 650201 People's Republic of China.,5Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, 27 Zhongguancun South Ave., Haidian, Beijing, 100081 People's Republic of China
| |
Collapse
|
8
|
Meng Z, Si CY, Teng S, Yu XH, Li HY. Tanshinone IIA inhibits lipopolysaccharide‑induced inflammatory responses through the TLR4/TAK1/NF‑κB signaling pathway in vascular smooth muscle cells. Int J Mol Med 2019; 43:1847-1858. [PMID: 30816448 DOI: 10.3892/ijmm.2019.4100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
To aim of the present study was to determine whether Tanshinone IIA (Tan IIA) inhibits lipopolysaccharide (LPS)‑induced inflammation in vascular smooth muscle cells (VSMCs) from rats and elucidate the underlying molecular mechanism. VSMCs were primarily cultured and then treated with LPS (1 µg/l) and Tan IIA (25, 50 and 100 µmol/l) for 24 h. Monocyte chemoattractant protein (MCP)‑1, interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α levels were detected by ELISA and reverse transcription‑quantitative polymerase chain reaction. Nitric oxide (NO) production was measured using the Griess reaction. The expression of Toll‑like receptor 4 (TLR4), nuclear factor (NF)‑κB (p65), and inducible NO synthase (iNOS), and the phosphorylation of transforming growth factor‑β‑activated kinase 1 (TAK1) were detected by western blot analysis. Tan IIA inhibited the LPS‑induced expression of MCP‑1, IL‑6, and TNF‑α in a concentration‑dependent manner and inhibited iNOS‑mediated NO production. In addition, Tan IIA suppressed the expression of TLR4, the phosphorylation of TAK1, and the nuclear translocation of NF‑κB (p65). The anti‑TLR4 antibody and TAK1 inhibitor 5Z‑7‑oxozeaenol partially attenuated the LPS‑induced expression of proinflammatory cytokines. In conclusion, Tan IIA inhibits LPS‑induced inflammatory responses in VSMCs in vitro through the partial suppression of the TLR4/TAK1/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chun-Ying Si
- Department of Cardiology, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan 450003, P.R. China
| | - Shuai Teng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin-Hui Yu
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 210023, P.R. China
| | - Hai-Yu Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
9
|
Chowdhury MA, Choi M, Ko W, Lee H, Kim SC, Oh H, Woo ER, Kim YC, Lee DS. Standardized microwave extract of Sappan Lignum exerts anti‑inflammatory effects through inhibition of NF‑κB activation via regulation of heme oxygenase‑1 expression. Mol Med Rep 2019; 19:1809-1816. [PMID: 30628677 DOI: 10.3892/mmr.2019.9811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022] Open
Abstract
The extract of Sappan Lignum, the heartwood of Caesalpinia sappan L., has been used in medicine to improve blood circulation. Recently, the application of microwave extraction methods has been a major focus of research into the extraction of components from natural sources. In this experiment, we compared the anti‑inflammatory effects of Sappan Lignum prepared by heat‑70% EtOH extraction (CSE‑H‑70E) and microwave‑70% EtOH extraction (CSE‑MW‑70E). High‑performance liquid chromatography analysis was used to identify the compounds in these extracts. The heat‑70% EtOH and microwave‑70% EtOH extracts of Sappan Lignum had different chromatograms. CSE‑MW‑70E significantly inhibited the protein expression of iNOS and COX‑2, PGE2, TNF‑α, and reduced NO and IL‑1β production in macrophages exposed to LPS, whereas, only high concentrations of CSE‑H‑70E (20 µg/ml) resulted in any effects. Furthermore, CSE‑MW‑70E upregulated heme oxygenase‑1 (HO‑1) expression. In addition, the use of tin protoporphyrin, an inhibitor of HO‑1, confirmed the inhibitory effects of CSE‑MW‑70E on pro‑inflammatory mediators. These results suggested that the CSE‑MW‑70E‑mediated upregulation of HO‑1 played an important role in the anti‑inflammatory effects of macrophages. Therefore, these findings showed that microwave extraction can be utilized to improve the extraction efficiency and biological activity of Sappan Lignum.
Collapse
Affiliation(s)
| | - Moonbum Choi
- College of Pharmacy, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Sam Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
10
|
Lee H, Lee DS, Chang KJ, Kim SH, Cheong SH. Glucose-Taurine Reduced Exerts Neuroinflammatory Responses by Inhibition of NF-κB Activation in LPS-Induced BV2 Microglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:857-867. [PMID: 31468452 DOI: 10.1007/978-981-13-8023-5_72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We want to find the anti-neuroinflammatory action of the taurine derivative Glucose-Taurine Reduced (G-T-R). The anti-neuroinflammatory action by G-T-R were investigated in lipopolysaccharide (LPS)-induced BV2 microglia. G-T-R inhibited the production of nitric oxide and prostaglandin E2, and down-regulated the protein expression of inducible NO synthase and cyclooxygenase-2. In addition, G-T-R reduced the cytokines secretion such as tumor necrosis factor (TNF-α), interleukin (IL) -1β and IL-6, in BV2 microglia treated with LPS. In addition, G-T-R dose-dependently decreased the activation of nuclear factor-kappa B. These findings confirmed the anti-neuroinflammatory activity of G-T-R, which may exert protective effects against neuroinflammatory-related diseases.
Collapse
Affiliation(s)
- Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kyung Ja Chang
- Department of Food and Nutrition, Inha University, Incheon, Republic of Korea
| | - Sung Hoon Kim
- Department of Chemistry, Konkuk University, Seoul, Republic of Korea
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
11
|
Zhao B, Guo H, Liu Y, Luo X, Yang S, Wang Y, Leng X, Mo C, Zou Q. K313, a novel benzoxazole derivative, exhibits anti‐inflammatory properties via inhibiting GSK3β activity in LPS‐induced RAW264.7 macrophages. J Cell Biochem 2018; 119:5382-5390. [DOI: 10.1002/jcb.26685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Bo‐Bo Zhao
- School of Basic Medical SciencesChengdu Medical CollegeChengduSichuanChina
| | - Hui‐Jie Guo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Yang Liu
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Xing‐Yan Luo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Shu‐Xia Yang
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Yan‐Tang Wang
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Xiao Leng
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Chun‐Fen Mo
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| | - Qiang Zou
- School of Basic Medical SciencesChengdu Medical CollegeChengduSichuanChina
- Center of Science and ResearchChengdu Medical CollegeChengduSichuanChina
| |
Collapse
|
12
|
Yang Q, Zhang D, Li Y, Li Y, Li Y. Paclitaxel alleviated liver injury of septic mice by alleviating inflammatory response via microRNA-27a/TAB3/NF-κB signaling pathway. Biomed Pharmacother 2017; 97:1424-1433. [PMID: 29156532 DOI: 10.1016/j.biopha.2017.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Excessive inflammatory response and apoptosis play an important role in the sepsis-induced liver injury. Paclitaxel, a diterpene alkaloid of Taxus brevifolia, is widely used as an anti-tumor drug and shows protective effects on acute lung and kidney injury. However, whether it has a protective effect against sepsis-induced liver injury has not been reported. The objective of this study was to investigate the protective effects of paclitaxel in septic liver injury in mice and associated molecular mechanisms. Our results showed that paclitaxel treatment improved LPS-induced liver injury, as evidenced by the reduced aminotransferase activity, histological scores and apoptosis in the liver tissues. This was accompanied by the alleviating of inflammation and oxidative stress, such as decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-6) interleukin-1β (IL-1β) and malondialdehyde (MDA) and increased levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in serum and liver tissues. Subsequent microarray and qRT-PCR analysis further showed that miR-27a was significantly decreased in mice with sepsis, which was recovered by paclitaxel pretreatment. Antagomir-miR-27a suppressed the therapeutic effects of paclitaxel in mice liver injury model via promoting inflammatory response. Of note, TAB3, which participated in the activation of the NF-κB signaling pathway, was identified as a direct target of miR-27 by luciferase reporter gene assays. Then, we revealed a reverse relationship between miR-27a expression levels and TAB3 mRNA levels in liver tissues from septic mice. Furthermore, paclitaxel treatment significantly decreased the expression of NF-κB p65, but increased inhibitor of nuclear factor-κB-α (IκBα) protein levels in septic mice, suggesting the inactivation of NF-κB signaling pathway. Notably, the inhibitory effects of paclitaxel on NF-κB signaling pathway were reversed by antagomir-miR-27a. Our data indicated that paclitaxel significantly attenuated septic induced liver injury through reducing inflammatory response via miR-27a/TAB3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Dongshan Zhang
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, China
| | - Ya Li
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Yongquan Li
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Yinpeng Li
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China.
| |
Collapse
|
13
|
Myricitrin Modulates NADPH Oxidase-Dependent ROS Production to Inhibit Endotoxin-Mediated Inflammation by Blocking the JAK/STAT1 and NOX2/p47 phox Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9738745. [PMID: 28751937 PMCID: PMC5496130 DOI: 10.1155/2017/9738745] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
Myricitrin, a naturally occurring polyphenol hydroxy flavonoid, has been reported to possess anti-inflammatory properties. However, the precise molecular mechanism of myricitrin's effects on LPS-induced inflammation is unclear. In the present study, myricitrin significantly alleviated acute lung injury in mice. Myricitrin also markedly suppressed the production of NO, TNF-α, IL-6, and MCP-1 in RAW264.7 macrophage cells. The inhibition of NO was concomitant with a decrease in the protein and mRNA levels of iNOS. The phosphorylation of JAKs and STAT-1 was abrogated by myricitrin. Furthermore, myricitrin inhibited the nuclear transfer and DNA binding activity of STAT1. The JAK-specific inhibitor ruxolitinib simulated the anti-inflammatory effect of myricitrin. However, myricitrin had no impact on the MAPK signalling pathway. Myricitrin attenuated the generation of intracellular ROS by inhibiting the assembly of components of the gp91phox and p47phox. Suppression of ROS generation using NAC or apocynin or by silencing gp91phox and p47phox all demonstrated that decreasing the level of ROS inhibited the LPS-induced inflammatory response. Collectively, these results confirmed that myricitrin exhibited anti-inflammatory activity by blocking the activation of JAKs and the downstream transcription factor STAT1, which may result from the downregulation of NOX2-dependent ROS production mediated by myricitrin.
Collapse
|
14
|
Effect of Kangshuanyihao Formula on the Inflammatory Reaction and SIRT1/TLR4/NF- κB Signaling Pathway in Endothelial Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9019765. [PMID: 28539968 PMCID: PMC5429935 DOI: 10.1155/2017/9019765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/20/2022]
Abstract
Endothelial injury plays an important role in atherosclerosis (AS). Kangshuanyihao formula uses therapeutic principles from Chinese medicine to supplement Qi, thereby promoting blood circulation, and remove blood stasis. The mechanism by which the formula inhibits endothelial injury was examined in a rat model of 1,25-dihydroxyvitamin D3 (VD3) intraperitoneal injection and high-fat-induced endothelial injury. Rats were randomly divided into the model, high-dose, middle-dose, low-dose, positive drug (rosuvastatin), and combination (positive drug + middle-dose) groups; 10 Sprague-Dawley rats served as the blank group. The aortic endothelium was stained with hematoxylin and eosin and the levels of blood lipids and inflammation markers (mRNA and protein) were measured. Endothelial injury, lipid levels, and inflammation were increased in the model. Kangshuanyihao formula reduced endothelial injury, improved lipid levels, and downregulated inflammation, as shown by significant reduction of the protein levels of SIRT1, TLR4, and NF-κB and mRNA levels of SIRT1, TLR4, NF-κB, IL-1β, IL-6, and IL-12. Thus, we conclude that Kangshuanyihao formula can inhibit the inflammatory reaction in the rat model of high-fat-induced endothelial injury after intraperitoneal injection of VD3. This mechanism may be attributed to regulating the SIRT1/TLR4/NF-κB signaling pathway.
Collapse
|
15
|
Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection. Mol Immunol 2017; 87:284-292. [PMID: 28531812 DOI: 10.1016/j.molimm.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/26/2017] [Accepted: 05/13/2017] [Indexed: 12/11/2022]
Abstract
It has been reported that RSV infection can enhance IL-33 production in lung macrophages. However, little is known about specific signaling pathways for activation of macrophages during RSV infection. In the present study, by using real-time RT-PCR as well as western blot assay, it became clear that RSV infection can enhance not only the expression of mRNAs for MAPK molecules (including p38, JNK1/2, and ERK1/2), but also the levels of MAPK proteins in lung macrophages as well as RAW264.7 cells. Furthermore, infection with RSV resulted in an increased level of phosphorylated MAPK proteins in RAW264.7 cells, suggesting that MAPK signaling pathway may participate in the process of RSV-induced IL-33 secretion by macrophages. In fact, the elevated production of IL-33 in RAW264.7 was attenuated significantly by pretreatment of the cells with special MAPK inhibitor before RSV infection, further confirming the function of MAPKs pathway in RSV-induced IL-33 production in macrophages. In contrast, the expression of NF-κB mRNA as well as the production of NF-κB protein in lung macrophages and RAW264.7 cells was not enhanced markedly after RSV infection. Moreover, RSV infection failed to induce the phosphorylation of NF-κB in RAW264.7 cells, suggesting that NF-κB signaling pathway may be not involved in RSV-induced IL-33 production in macrophages. Conclusion, these results indicate that RSV-induced production of IL-33 in macrophages is dependent on the activation of MAPK signaling pathway.
Collapse
|
16
|
Hwang JH, Kim KJ, Lee BY. Crude Ecklonia cava Flake Extracts Attenuate Inflammation through the Regulation of TLR4 Signaling Pathway in LPS-Induced RAW264.7 Cells. Molecules 2017; 22:E777. [PMID: 28489052 PMCID: PMC6154687 DOI: 10.3390/molecules22050777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
We investigated the beneficial effects of the crude Ecklonia cava flake (CEF), which is a residual product after polyphenol extraction from Ecklonia cava, on inflammation in LPS-stimulated RAW264.7 cells. A group of five different CEF extracts was obtained by a preparation process using water, hydrochloric acid or temperature. We observed that large-size (>19 kDa) CEF extract, which was extracted with water at 95 °C (CEF-W, 95 °C), suppressed the production of inflammatory cytokines by inhibiting its mRNA expression in LPS-induced RAW264.7 cells. TLR4 signaling involvements were negatively regulated by CEF-W, 95 °C. CEF-W, 95 °C repressed the translocation of NF-κB from cytoplasm into nucleus in LPS-induced RAW264.7 cells. CEF-W, 95 °C attenuated the phosphorylation of TBK1 and IRF3 by inhibiting the phosphorylation of ERK. Taken together, we demonstrated that large-size CEF-W, 95 °C may act as a negative regulator of inflammation through the suppression of TLR4 signaling constituents in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Ji-Hyun Hwang
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| |
Collapse
|
17
|
Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis. Biomed Pharmacother 2017; 90:598-607. [PMID: 28407580 DOI: 10.1016/j.biopha.2017.03.095] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis.
Collapse
|
18
|
Sun H, Cai W, Wang X, Liu Y, Hou B, Zhu X, Qiu L. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. Altern Ther Health Med 2017; 17:120. [PMID: 28219355 PMCID: PMC5319035 DOI: 10.1186/s12906-017-1635-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/14/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Activation of macrophage is involved in many inflammation diseases. Lipopolysaccharide (LPS) is a powerful inflammatory signal contributing to monocytes/macrophages activation associated with increased proinflammatory cytokines expressions. We recently identified that vaccarin was expected to protect endothelial cells from injury. Hypaphorine was abundantly found in vaccaria semen. However, the potential roles and underlying mechanisms of vaccaria hypaphorine on macrophage inflammation have been poorly defined. METHODS This study was designed to determine the effects of vaccaria hypaphorine on LPS-mediated inflammation in RAW 264.7 cells. RESULTS In this study, we demonstrated that vaccaria hypaphorine dramatically ameliorated LPS-induced nitric oxide (NO) release and productions of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, monocyte chemoattractant protein 1 (MCP-1) and prostaglandin E2 (PGE2) in RAW 264.7 cells. LPS-stimulated expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were down-regulated by vaccaria hypaphorine. Furthermore, vaccaria hypaphorine retarded LPS-induced phosphorylation of ERK, nuclear factor kappa beta (NFκB), NFκB inhibitor IκBα, and IKKβ. Immunofluorescence staining revealed that vaccaria hypaphorine eliminated the nuclear translocation of NFκB in LPS-treated RAW 264.7 cells. CONCLUSION It was seen that vaccaria hypaphorine counteracted inflammation via inhibition of ERK or/and NFκB signaling pathways. Collectively, we concluded that vaccaria hypaphorine can be served as an anti-inflammatory candidate.
Collapse
|
19
|
Chellappan DR, Purushothaman AK, Brindha P. Gastroprotective potential of hydro-alcoholic extract of Pattanga (Caesalpinia sappan Linn.). JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:294-305. [PMID: 27484929 DOI: 10.1016/j.jep.2016.07.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Pattanga is botanically equated as Caesalpinia sappan Linn. (Family: Caesalpiniaceae) and is used in Ayurveda system of medicine since ages. According to Ayurveda, useful part is Heartwood, which is bitter, astringent and acrid and is useful in vitiated conditions of vata and pitta, burning sensation, wounds, ulcers, leprosy, skin diseases, menorrhagia, leucorrhea, and diabetes. It is used as a major ingredient in Ayurvedic formulations and preparations like Patrangasava, Chandanadya Thalia, and Karpuradyarka. AIM OF THE STUDY The present study is planned to evaluate the gastroprotective activity of the selected Ayurvedic drug using three different in vivo gastric ulcer models, so as to provide scientific evidence for the Ayurvedic claims. MATERIALS AND METHODS For this study, Wistar albino rats fasted overnight were selected. The hydroalcoholic extract of Caesalpinia sappan heartwood at the dose level 250 and 500mg/kg body weight was selected and administered orally before necrotizing agents. Antioxidant and antiulcer parameters were evaluated and the stomach samples were subjected for histopathological studies. In addition, PGE2 estimation and protein expressions of COX-1, COX-2 and iNOS were analyzed by Western blot. The plant extract was subjected to LCMS/MS analysis. In addition, Cytoprotective effect in isolated gastric mucosal cells, TUNEL Assay, Acid neutralizing capacity assay, H+/K+ ATPase inhibitory assay were performed. RESULTS The ulcer protection was found to be 92%, 86% and 64% against ethanol, NSAID and pylorus ligation induced ulcer respectively. The hydro-alcoholic extract of C. sappan heartwood exhibited cytoprotective effect with 76.82% reduction against indomethacin-induced cytotoxicity at the concentration of 25µg/ml. C. sappan showed 63.91% inhibition in H+/K+ ATPase inhibitory assay at the concentration 500µg/ml. CONCLUSIONS Our results depict that Caesalpinia sappan heartwood possesses gastroprotective activity, possibly mediated through cytoprotection and antioxidant mechanisms. The data obtained in the present study provides scientific support for the traditional use of Caesalpinia sappan in the management of peptic ulcer.
Collapse
Affiliation(s)
- David Raj Chellappan
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, India
| | - Arun K Purushothaman
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, India
| | - Pemiah Brindha
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, India.
| |
Collapse
|