1
|
Özkul MA, Akgül T, Bozaslan MŞ, Toksoy SC, Dikmen G. DNA binding study of antifungal drug Ketoconazole by molecular docking and spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 341:126351. [PMID: 40378688 DOI: 10.1016/j.saa.2025.126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/13/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
The process of developing new drug molecules is long-term, costly, and especially the process of moving to clinical trials takes a long time. Consequently, conducting experimental and theoretical binding studies of drugs or drug candidates with biological materials, such as DNA and RNA, are crucial to reduce costs and minimize time requirements. As the DNA a fundamental biological molecule constitutes a major target for numerous pharmaceuticals, binding studies of various molecules with DNA is a broad field of research. DNA binding properties of antifungal drugs are of great importance in understanding their biological activities and elucidating their mechanisms of action. DNA binding studies also provide critical information to optimize the effects of antifungal drugs on target cells and to increase the selective toxicity of drugs. Ketoconazole (KTZ) is an azole-containing antifungal drug, and azole-containing drugs have many pharmacological properties. In this study, the interaction between the KTZ molecule and calf-thymus DNA (ct-DNA) was examined using various spectroscopic methods. The binding constant between ct-DNA and KTZ molecule was calculated using results obtained from different spectroscopic methods. UV-vis and fluorescence studies indicated a binding constant was calculated as 5.8 × 104 M-1 and 6.21 × 104 M-1 for the interaction between KTZ and ct-DNA, respectively. ct-DNA quenched the fluorescence of KTZ with a quenching constant approximately equal to 13 × 1012 M-1.s-1. Fluorescence displacement experiments using ethidium bromide (EB) and Hoechst 33,258 revealed interaction between KTZ and ct-DNA occurred through minor groove binding mode. This conclusion was further supported by viscosity measurements, DNA melting studies, and KI quenching experiments. In light of experimental results, KTZ molecule quenches the fluorescence of DNA with a static mechanism due to the negative values of thermodynamic parameters such as ΔHo and ΔSo. In addition, the interaction of the KTZ molecule with ct-DNA was investigated theoretically by Molecular Docking. It interacts with the minor groove of DNA through a combination of van der Waals forces and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Mustafa Alp Özkul
- Central Research Laboratory Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Institute of Science, Department of Polymer Science and Technology, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Tunahan Akgül
- Institute of Science, Department of Nanoscience and Nanotechnology, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Central Research Laboratory Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Mehmet Şerif Bozaslan
- Institute of Science, Department of Nanoscience and Nanotechnology, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Central Research Laboratory Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Suleyman Can Toksoy
- Central Research Laboratory Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Gökhan Dikmen
- Central Research Laboratory Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey.
| |
Collapse
|
2
|
Zaremba A, Zaremba P, Zahorodnia S. In silico development of HASDI-G2 as a novel agent for selective recognition of the DNA sequence. Sci Rep 2025; 15:8577. [PMID: 40075113 PMCID: PMC11904238 DOI: 10.1038/s41598-025-89967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic information, which is mostly encoded in the form of DNA sequence, is the basis of life. Its deviations are often the cause of the most deadly diseases such as cancer. Accordingly, the development of methods to control the transcription of certain DNA parts is an important direction of modern pharmacological and biological research. Within the scope of this work, we are investigating the second generation of a polyintercalating agent that we developed earlier, potentially capable of recognizing 16-bp DNA sequences. In order to confirm its ability for advanced selective DNA recognition a series of simulation experiments was conducted. We differentially investigated the stability of HASDI-G2 complexes with mutated targeting sequences and their native variants. Firstly, we confirmed the ability of HASDI-G2 to clearly discriminate the target sequence (EBNA1) from a random site in the human genome (KCNH2). That repeated the experiment of the polyintercalator's previous version and additionally showed better results of the next-generation structure. Next, we examined HASDI-G2 under conditions where the target sequence differed from the random one increasingly slightly. And we found that even a one-nucleotide mismatch leads to a similar complex destabilization as a mismatch of 3 or 4 nucleotides. Such complexes showed significant conformational rearrangements, accompanied by a sharp decrease in the hydrogen bonds quantity, a drop in the binding free energy, and local melting of the DNA duplex. Moreover, the latter applied not only to sites of direct incompatibility, but also to parts where HASDI-G2 fully corresponded to the sequence of intercalation.
Collapse
Affiliation(s)
- Andrii Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine.
| | - Polina Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| | - Svіtlana Zahorodnia
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| |
Collapse
|
3
|
He L, She L, Wang L, Mi C, Ma K, Yu M, Long X, Zhang C. The electric regulation mechanism of drug molecules intercalating with DNA. Arch Biochem Biophys 2024; 762:110203. [PMID: 39489204 DOI: 10.1016/j.abb.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The insertion of small drug molecules into DNA can change its electrical properties, thereby controlling the probability of its electrical transmission. This characteristic has enabled its widespread application in molecular electronics. However, the current understanding of the intercalation properties and electronic transmission mechanisms is still not deep enough, which severely restricts its practical application. In this paper, the density functional theory and the non-equilibrium Green's function formula are combined to bind three different small drug molecules to the same sequence of DNA through intercalation, in order to discuss the impact of intercalation and molecular structure on the electrical properties of DNA. After inserting two MAR70 molecules, the conductivity decreased from 2.38×10-5 G0 to 3.37×10-7 G0 . Upon the insertion of Nogalamycin, the conductivity dropped to 2.01×10-5 G0, only slightly lower than that of bare B-DNA. However, when cyanomorpholinodoxorubicin was inserted, the conductivity was 2.65×10-6 G0. In our study, we observed some common characteristics. After intercalating with drug molecules, new energy levels were induced, altering the positions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels, resulting in a narrowed bandgap and consequently reduced conductivity of the complex. Furthermore, the conductivity was also related to the number of inserted drug molecules, fewer inserted molecules led to a decrease in conductivity. The results of this study indicate that embedding drug molecules can reduce or regulate the conductivity of DNA, providing new insights for its application in the field of nanoelectronics.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China.
| | - Liang She
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Liyan Wang
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Cheng Mi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Kang Ma
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Mi Yu
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| |
Collapse
|
4
|
Jiang D, Du H, Zhao H, Deng Y, Wu Z, Wang J, Zeng Y, Zhang H, Wang X, Wang E, Hou T, Hsieh CY. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes. Phys Chem Chem Phys 2024; 26:10323-10335. [PMID: 38501198 DOI: 10.1039/d3cp04366e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ribonucleic acid (RNA)-ligand interactions play a pivotal role in a wide spectrum of biological processes, ranging from protein biosynthesis to cellular reproduction. This recognition has prompted the broader acceptance of RNA as a viable candidate for drug targets. Delving into the atomic-scale understanding of RNA-ligand interactions holds paramount importance in unraveling intricate molecular mechanisms and further contributing to RNA-based drug discovery. Computational approaches, particularly molecular docking, offer an efficient way of predicting the interactions between RNA and small molecules. However, the accuracy and reliability of these predictions heavily depend on the performance of scoring functions (SFs). In contrast to the majority of SFs used in RNA-ligand docking, the end-point binding free energy calculation methods, such as molecular mechanics/generalized Born surface area (MM/GBSA) and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA), stand as theoretically more rigorous approaches. Yet, the evaluation of their effectiveness in predicting both binding affinities and binding poses within RNA-ligand systems remains unexplored. This study first reported the performance of MM/PBSA and MM/GBSA with diverse solvation models, interior dielectric constants (εin) and force fields in the context of binding affinity prediction for 29 RNA-ligand complexes. MM/GBSA is based on short (5 ns) molecular dynamics (MD) simulations in an explicit solvent with the YIL force field; the GBGBn2 model with higher interior dielectric constant (εin = 12, 16 or 20) yields the best correlation (Rp = -0.513), which outperforms the best correlation (Rp = -0.317, rDock) offered by various docking programs. Then, the efficacy of MM/GBSA in identifying the near-native binding poses from the decoys was assessed based on 56 RNA-ligand complexes. However, it is evident that MM/GBSA has limitations in accurately predicting binding poses for RNA-ligand systems, particularly compared with notably proficient docking programs like rDock and PLANTS. The best top-1 success rate achieved by MM/GBSA rescoring is 39.3%, which falls below the best results given by docking programs (50%, PLNATS). This study represents the first evaluation of MM/PBSA and MM/GBSA for RNA-ligand systems and is expected to provide valuable insights into their successful application to RNA targets.
Collapse
Affiliation(s)
- Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Huifeng Zhao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Yafeng Deng
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Yundian Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Haotian Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiaorui Wang
- China State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Ercheng Wang
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China.
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Tan LH, Kwoh CK, Mu Y. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method. Brief Bioinform 2024; 25:bbae166. [PMID: 38695120 PMCID: PMC11063749 DOI: 10.1093/bib/bbae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Small molecule drugs can be used to target nucleic acids (NA) to regulate biological processes. Computational modeling methods, such as molecular docking or scoring functions, are commonly employed to facilitate drug design. However, the accuracy of the scoring function in predicting the closest-to-native docking pose is often suboptimal. To overcome this problem, a machine learning model, RmsdXNA, was developed to predict the root-mean-square-deviation (RMSD) of ligand docking poses in NA complexes. The versatility of RmsdXNA has been demonstrated by its successful application to various complexes involving different types of NA receptors and ligands, including metal complexes and short peptides. The predicted RMSD by RmsdXNA was strongly correlated with the actual RMSD of the docked poses. RmsdXNA also outperformed the rDock scoring function in ranking and identifying closest-to-native docking poses across different structural groups and on the testing dataset. Using experimental validated results conducted on polyadenylated nuclear element for nuclear expression triplex, RmsdXNA demonstrated better screening power for the RNA-small molecule complex compared to rDock. Molecular dynamics simulations were subsequently employed to validate the binding of top-scoring ligand candidates selected by RmsdXNA and rDock on MALAT1. The results showed that RmsdXNA has a higher success rate in identifying promising ligands that can bind well to the receptor. The development of an accurate docking score for a NA-ligand complex can aid in drug discovery and development advancements. The code to use RmsdXNA is available at the GitHub repository https://github.com/laiheng001/RmsdXNA.
Collapse
Affiliation(s)
- Lai Heng Tan
- Interdisciplinary Graduate School, Nanyang Technological University, 61 Nanyang Drive, 637335 Singapore, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| |
Collapse
|
6
|
Andreeva DV, Vedekhina TS, Gostev AS, Dezhenkova LG, Volodina YL, Markova AA, Nguyen MT, Ivanova OM, Dolgusheva VА, Varizhuk AM, Tikhomirov AS, Shchekotikhin AE. Thiadiazole-, selenadiazole- and triazole-fused anthraquinones as G-quadruplex targeting anticancer compounds. Eur J Med Chem 2024; 268:116222. [PMID: 38387333 DOI: 10.1016/j.ejmech.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.
Collapse
Affiliation(s)
- Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Tatiana S Vedekhina
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 119571, Moscow, Russia
| | - Alexander S Gostev
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Miusskaya square, 9, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Minh Tuan Nguyen
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Olga M Ivanova
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia
| | - Vladislava А Dolgusheva
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | | | | |
Collapse
|
7
|
Jiang D, Zhao H, Du H, Deng Y, Wu Z, Wang J, Zeng Y, Zhang H, Wang X, Wu J, Hsieh CY, Hou T. How Good Are Current Docking Programs at Nucleic Acid-Ligand Docking? A Comprehensive Evaluation. J Chem Theory Comput 2023; 19:5633-5647. [PMID: 37480347 DOI: 10.1021/acs.jctc.3c00507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
Collapse
Affiliation(s)
- Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Huifeng Zhao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yafeng Deng
- Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yundian Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haotian Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaorui Wang
- China State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Jian Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
8
|
Rocca R, Polerà N, Juli G, Grillone K, Maruca A, Di Martino MT, Artese A, Amato J, Pagano B, Randazzo A, Tagliaferri P, Tassone P, Alcaro S. Hit identification of novel small molecules interfering with MALAT1 triplex by a structure-based virtual screening. Arch Pharm (Weinheim) 2023; 356:e2300134. [PMID: 37309243 DOI: 10.1002/ardp.202300134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
Nowadays, RNA is an attractive target for the design of new small molecules with different pharmacological activities. Among several RNA molecules, long noncoding RNAs (lncRNAs) are extensively reported to be involved in cancer pathogenesis. In particular, the overexpression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in the development of multiple myeloma (MM). Starting from the crystallographic structure of the triple-helical stability element at the 3'-end of MALAT1, we performed a structure-based virtual screening of a large commercial database, previously filtered according to the drug-like properties. After a thermodynamic analysis, we selected five compounds for the in vitro assays. Compound M5, characterized by a diazaindene scaffold, emerged as the most promising molecule enabling the destabilization of the MALAT1 triplex structure and antiproliferative activity on in vitro models of MM. M5 is proposed as a lead compound to be further optimized for improving its affinity toward MALAT1.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Annalisa Maruca
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Anna Artese
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Pietrosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Stefano Alcaro
- Net4science srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro, Italy
| |
Collapse
|
9
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023; 24:11784. [PMID: 37511543 PMCID: PMC10381018 DOI: 10.3390/ijms241411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Water is a key actor of various processes of nature and, therefore, molecular engineering has to take the structural and energetic consequences of hydration into account. While the present review focuses on the target-ligand interactions in drug design, with a focus on biomolecules, these methods and applications can be easily adapted to other fields of the molecular engineering of molecular complexes, including solid hydrates. The review starts with the problems and solutions of the determination of water structures. The experimental approaches and theoretical calculations are summarized, including conceptual classifications. The implementations and applications of water models are featured for the calculation of the binding thermodynamics and computational ligand docking. It is concluded that theoretical approaches not only reproduce or complete experimental water structures, but also provide key information on the contribution of individual water molecules and are indispensable tools in molecular engineering.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Viktor Szél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| |
Collapse
|
10
|
Xie Z, Zhang S, Wu Y, Liang J, Yao W, Qu R, Tong X, Zhang G, Yang H. Interaction of isoquinoline alkaloids with pyrimidine motif triplex DNA by mass spectrometry and spectroscopies reveals diverse mechanisms. Heliyon 2023; 9:e14954. [PMID: 37082631 PMCID: PMC10112036 DOI: 10.1016/j.heliyon.2023.e14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Isoquinoline alkaloids represent an important class of molecules due to their broad range of pharmacology and clinical utility. Prospective development and use of these alkaloids as effective anticancer agents have elicited great interest. In this study, in order to reveal structure-activity relationship, we present the characterization of bioactive isoquinoline alkaloid-DNA triplex interactions, with particular emphasis on the sequence selectivity and preference of binding to the two types of DNA triplexes, by electrospray ionization mass spectrometry (ESI-MS) and various spectroscopic techniques. The six alkaloids, including coptisine, columbamine, epiberberine, berberrubine, jateorhizine, and fangchinoline, were selected to explore their interactions with the TC and TTT triplex DNA structures. Berberrubine, fangchinoline, coptisine, columbamine, and epiberberine have preference for TC rich DNA sequences compared to TTT rich DNA triplex based on affinity values in MS. The experimental results from different fragmentation modes in tandem MS, subtractive and hyperchromic effects in UV absorption spectra, fluorescence quenching and enhancement in fluorescence spectra, and strong conformational changes in circular dichroism (CD) hinted that the interaction between isoquinoline alkaloid-TC/TTT DNA had diverse mechanisms including at least two different binding modes: the electrostatic binding and the intercalation binding. Interestingly, columbamine, berberrubine, and fangchinoline can stabilize TTT triplex as inferred from optical thermal melting profiles, while it was not the case in TC triplex. These results provide new insights into binding of isoquinoline alkaloids to pyrimidine motif triplex DNA.
Collapse
Affiliation(s)
- Zhaoyang Xie
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Sunuo Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Wu
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jinling Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenbin Yao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ruoning Qu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaole Tong
- Jilin Jian Yisheng Pharmaceutical Co., Ltd., Jian, 134200, China
| | - Guang Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Corresponding author.
| | - Hongmei Yang
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
- Corresponding author.
| |
Collapse
|
11
|
Ma J, Huang G, Mo C, Li J, Yan L, Zhang Q. Insights into the intercalative binding of benzo[b]fluoranthene with herring sperm DNA in vitro and its application. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
He L, Xie Z, Long X, Zhang C, Qi F, Zhang N. Electrical modulation properties of DNA drug molecules. Hum Mol Genet 2023; 32:357-366. [PMID: 35771227 DOI: 10.1093/hmg/ddac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/24/2023] Open
Abstract
DNA drug molecules are not only widely used in gene therapy, but also play an important role in controlling the electrical properties of molecular electronics. Covalent binding, groove binding and intercalation are all important forms of drug-DNA interaction. But its applications are limited due to a lack of understanding of the electron transport mechanisms after different drug-DNA interaction modes. Here, we used a combination of density functional theory calculations and nonequilibrium Green's function formulation with decoherence to study the effect of drug molecules on the charge transport property of DNA under three different binding modes. Conductance of DNA is found to decrease from 2.35E-5 G0 to 1.95E-6 G0 upon doxorubicin intercalation due to modifications of the density of states in the near-highest occupied molecular orbital region, δG = 1105.13%. Additionally, the conductance of DNA after cis-[Pt(NH3)2(py)Cl]+ covalent binding increases from 1.02E-6 G0 to 5.25E-5 G0, δG = 5047.06%. However, in the case of pentamidine groove binding, because there is no direct change in DNA molecular structure during drug binding, the conductance changes before and after drug binding is much smaller than in the two above cases, δG = 90.43%. Our theoretical calculations suggest that the conductance of DNA can be regulated by different drug molecules or switching the interaction modes between small molecules and DNA. This regulation opens new possibilities for their potential applications in controllable modulation of the electron transport property of DNA.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhiyang Xie
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Qi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Nan Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
13
|
Schlosser J, Ihmels H. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Curr Org Synth 2023; 20:96-113. [PMID: 35170411 DOI: 10.2174/1570179419666220216091422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Apurinic and apyrimidinic sites, also referred to as abasic or AP sites, are residues of duplex DNA in which one DNA base is removed from a Watson-Crick base pair. They are formed during the enzymatic repair of DNA and offer binding sites for a variety of guest molecules. Specifically, the AP site may bind an appropriate ligand as a substitute for the missing nucleic base, thus stabilizing the abasic site-containing DNA (AP-DNA). Notably, ligands that bind selectively to abasic sites may be employed for analytical and therapeutical purposes. As a result, there is a search for structural features that establish a strong and selective association of a given ligand with the abasic position in DNA. Against this background, this review provides an overview of the different classes of ligands for abasic site-containing DNA (AP-DNA). This review covers covalently binding substrates, namely amine and oxyamine derivatives, as well as ligands that bind to AP-DNA by noncovalent association, as represented by small heterocyclic aromatic compounds, metal-organic complexes, macrocyclic cyclophanes, and intercalator-nucleobase conjugates. As the systematic development of fluorescent probes for AP-DNA has been somewhat neglected so far, this review article contains a survey of the available reports on the fluorimetric response of the ligand upon binding to the AP-DNA. Based on these data, this compilation shall present a perspective for future developments of fluorescent probes for AP-DNA.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
14
|
Satange R, Rode AB, Hou MH. Revisiting recent unusual drug-DNA complex structures: Implications for cancer and neurological disease diagnostics and therapeutics. Bioorg Med Chem 2022; 76:117094. [PMID: 36410206 DOI: 10.1016/j.bmc.2022.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
15
|
Sung J, Alghoul Z, Long D, Yang C, Merlin D. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials 2022; 288:121707. [PMID: 35953326 DOI: 10.1016/j.biomaterials.2022.121707] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 12/29/2022]
Abstract
Oral mRNA delivery is a promising yet understudied approach for treating inflammatory bowel disease (IBD). Inspired by the colon-targeting ability of ginger-derived nanoparticles (GDNPs), we reversely engineered lipid nanoparticles that comprise the three major lipids identified in GDNPs. When mixed at the ratio found in GDNPs, the selected lipids (phosphatidic acid, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol; 5:2:3) self-assembled into new lipid nanoparticles (nLNPs) in phosphate-buffered saline. We encapsulated IL-22-mRNA within the nLNPs, as enhanced IL-22 expression in the colon is known to have potent anti-inflammatory efficacy against ulcerative colitis (UC). The IL-22 mRNA-loaded nLNPs (IL-22/nLNPs) were found to be about 200 nm in diameter and have a zeta potential of -18 mV. Oral delivery of IL-22/nLNPs elevated the protein expression level of IL-22 in the colonic mucosa of mice. In a mouse model of acute colitis, mice fed with IL-22/nLNPs experienced an accelerated healing process, as indicated by the recovery of more body weight and colon length as well as reduction of the histological index, colonic MPO activity, fecal lipocalin concentration, and mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β). Our results suggest that our reversely engineered nLNPs is an excellent mRNA delivery platform for treating ulcerative colitis.
Collapse
Affiliation(s)
- Junsik Sung
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Zahra Alghoul
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA; Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Dingpei Long
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, 30302, USA.
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, 30302, USA
| |
Collapse
|
16
|
Zhang Q, Duan S, Huang Y, Tian J, Hu J. Dual-band fluorescence detection of double-stranded DNA with QDs-Mn 2+-pefloxacin. Colloids Surf B Biointerfaces 2022; 217:112649. [PMID: 35753193 DOI: 10.1016/j.colsurfb.2022.112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
By integrating the fluorescence of quantum dots (QDs) and Mn2+-pefloxacin mesylate (Mn2+-pefloxacin), a new type of dual-band fluorescence biosensor for high-efficiency and sensitive determination of double-stranded DNA (dsDNA) is developed. The biosensor is based on the fluorescence "OFF-ON" mode of both QDs and QDs-Mn2+-pefloxacin. The Mn2+-pefloxacin complex can quench the QDs fluorescence via photoinduced electron transfer (PET), and its fluorescence is also quenched. Due to the specificity and strong binding affinity of dsDNA for the Mn2+-pefloxacin complex, it can break the low fluorescent QDs-Mn2+-pefloxacin and restore the fluorescence of QDs and Mn2+-pefloxacin complex in their respective bands. Therefore, the dual-band fluorescence quantitative detection of dsDNA by QDs-Mn2+-pefloxacin can be achieved, while bovine serum albumin, single-stranded DNA, and bio-related ions do not yield similar results. Furthermore, the possible reaction mechanisms are systematically discussed. The detection limits (3δ/K) of herring sperm (hs) DNA in the fluorescence recovery bands of QDs and Mn2+-pefloxacin complex are 0.0142 and 0.0465 μg/mL, respectively. The developed biosensor was used for dsDNA detection in synthetic samples, and desirable results are obtained.
Collapse
Affiliation(s)
- Qiang Zhang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Shengbao Duan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Jihua Laboratory, Foshan, PR China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Industrial Technology Research Institute of Zhejiang University, Suzhou, Jiangsu 215163, PR China.
| |
Collapse
|
17
|
Yılmaz ZT, Odabaşoğlu HY, Şenel P, Yüzbaşıoğlu EÇ, Erdoğan T, Özdemir AD, Gölcü A, Odabaşoğlu M, Büyükgüngör O. Identification of a 3-(5-methyl-2-thiazolylamino)phthalide as a new minor groove agent. J Biomol Struct Dyn 2022; 41:4048-4064. [PMID: 35416121 DOI: 10.1080/07391102.2022.2061595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new 3-(5-methyl-2-thiazolylamino)phthalide molecule, 3-((5-methylthiazol-2-yl)amino)isobenzofuran-1(3H)-one, was synthesized and characterized experimentally by FT-IR, NMR, UV-Vis, and single-crystal X-ray analysis and theoretically by quantum chemical calculations. The single-crystal X-ray studies revealed that the compound crystallizes in the monoclinic space group P-21/c with unit-cell parameters a = 8.0550(6) Å, b = 6.1386(3) Å, c = 23.3228(18) Å, β = 97.724(6)° and Z = 4. Optimized geometries and the vibrational frequencies were studied at the density functional theory (DFT) level by using the hybrid functional B3LYP with a 6-311 G (d,p) basis set. The title compound was evaluated for its anti-quorum sensing (anti-QS) activity on Chromobacterium violaceum 12472 and additionally for its antibacterial activity against Staphylococcus aureus 29213, Staphylococcus epidermidis 12228, Pseudomonas aeruginosa 27853, Escherichia coli 25922, and Proteus mirabilis 14153. The lowest MIC value was 0.24 μg/mL for S. aureus 29213 and the highest MIC value was 30.75 μg/mL for E. coli 25922. While anti-bacterial activity was observed in those other than the S. epidermidis and P. Mirabilis, anti-QS activity wasn't detected. Investigations on dsDNA binding affinity indicate that the title compound binds to dsDNA via the groove binding mode. Molecular docking calculations and molecular dynamics simulations results showed also that the title compound prefers binding to the minor groove of dsDNA and remains stable in the minor groove throughout the molecular dynamics simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Pelin Şenel
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Elif Çepni Yüzbaşıoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Taner Erdoğan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Ayşe Daut Özdemir
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Ayşegül Gölcü
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Mustafa Odabaşoğlu
- Department of Chemistry and Chemical Processing Technologies, Denizli Vocational School of Technical Sciences, Pamukkale University, Denizli, Turkey.,Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | | |
Collapse
|
18
|
Photoactive homomolecular bis(n)-Lophine dyads: Multicomponent synthesis, photophysical properties, theoretical investigation, docking and interaction studies with biomacromolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Parveen S, Jafri S, Yasir Khan H, Tabassum S, Arjmand F. Elucidating the interaction of enantiomeric Cu(II) complexes with DNA, RNA and HSA: A comparative study. Polyhedron 2021; 210:115501. [DOI: 10.1016/j.poly.2021.115501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Feng Y, Yan Y, He J, Tao H, Wu Q, Huang SY. Docking and scoring for nucleic acid-ligand interactions: Principles and current status. Drug Discov Today 2021; 27:838-847. [PMID: 34718205 DOI: 10.1016/j.drudis.2021.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acid (NA)-ligand interactions have crucial roles in many cellular processes and, thus, are increasingly attracting therapeutic interest in drug discovery. Molecular docking is a valuable tool for studying molecular interactions. However, because NAs differ significantly from proteins in both their physical and chemical properties, traditional docking algorithms and scoring functions for protein-ligand interactions might not be applicable to NA-ligand docking. Therefore, various sampling strategies and scoring functions for NA-ligand interactions have been developed. Here, we review the basic principles and current status of docking algorithms and scoring functions for DNA/RNA-ligand interactions. We also discuss challenges and limitations of current docking and scoring approaches.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jiahua He
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
21
|
El-Shobaky A, Elshafey R, Radi AE. Spectroscopic and electrochemical approaches for the analysis of interaction between textile dye 231 and salmon sperm DNA. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA is one of the most critical targets for many artificial agents listed as carcinogens. Most of them irreversibly bind to the DNA and induce genome mutation; therefore, it is vital to study the nature of binding of these molecules to anticipate their toxicity. The interaction between the textile dye reactive red 231 and salmon sperm double-stranded DNA (ss-dsDNA) was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and ultraviolet-visible spectroscopy (UV–vis spectroscopy). Changes in the anodic current signals of the dye were observed in the presence and absence of ss-dsDNA at a glassy carbon electrode (GCE) using CV. The diffusion coefficient (D) was found to be 2.2 × 10–7 and 9.5 × 10–8 cm2 s−1 from the CV data for the free dye and dye-DNA complex, respectively. Electrochemical and UV–vis spectroscopy indicated 1:1 complex formation of the dye with DNA. The binding constant (kb) between the dye and DNA was calculated to be 5.4 × 105 M–1 and 4.9 × 105 M–1 at pH 4.0 using CV and UV–vis spectroscopy, respectively. Overall, these results suggest that the dye binds to DNA through the combined effect of intercalation and electrostatic interactions. DNA damage was also detected through changes in the voltammetric behaviour of the dye.
Collapse
Affiliation(s)
- Amira El-Shobaky
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Reda Elshafey
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Abd-Elgawad Radi
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
22
|
Feng Y, Zhang K, Wu Q, Huang SY. NLDock: a Fast Nucleic Acid-Ligand Docking Algorithm for Modeling RNA/DNA-Ligand Complexes. J Chem Inf Model 2021; 61:4771-4782. [PMID: 34468128 DOI: 10.1021/acs.jcim.1c00341] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid-ligand interactions play an important role in numerous cellular processes such as gene function expression and regulation. Therefore, nucleic acids such as RNAs have become more and more important drug targets, where the structural determination of nucleic acid-ligand complexes is pivotal for understanding their functions and thus developing therapeutic interventions. Molecular docking has been a useful computational tool in predicting the complex structure between molecules. However, although a number of docking algorithms have been developed for protein-ligand interactions, only a few docking programs were presented for nucleic acid-ligand interactions. Here, we have developed a fast nucleic acid-ligand docking algorithm, named NLDock, by implementing our intrinsic scoring function ITScoreNL for nucleic acid-ligand interactions into a modified version of the MDock program. NLDock was extensively evaluated on four test sets and compared with five other state-of-the-art docking algorithms including AutoDock, DOCK 6, rDock, GOLD, and Glide. It was shown that our NLDock algorithm obtained a significantly better performance than the other docking programs in binding mode predictions and achieved the success rates of 73%, 36%, and 32% on the largest test set of 77 complexes for local rigid-, local flexible-, and global flexible-ligand docking, respectively. In addition, our NLDock approach is also computationally efficient and consumed an average of as short as 0.97 and 2.08 min for a local flexible-ligand docking job and a global flexible-ligand docking job, respectively. These results suggest the good performance of our NLDock in both docking accuracy and computational efficiency.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
23
|
Norouzi-Barough L, Bayat A. Validation strategies for identifying drug targets in dermal fibrotic disorders. Drug Discov Today 2021; 26:2474-2485. [PMID: 34229083 DOI: 10.1016/j.drudis.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Fibrotic skin disorders, such as keloid disease (KD), are common clinically challenging disorders with unknown etiopathogenesis and ill-defined treatment strategies that affect millions of people worldwide. Thus, there is an urgent need to discover novel therapeutics. The validation of potential drug targets is an obligatory step in discovering and developing new therapeutic agents for the successful treatment of dermal fibrotic conditions, such as KD. The integration of multi-omics data with traditional and modern technological approaches, such as RNA interference (RNAi) and genome-editing tools, would provide unique opportunities to identify and validate novel targets in KD during early drug development. Thus, in this review, we summarize the current and emerging drug discovery process with a focus on validation strategies of potential drug targets identified in dermal fibrosis.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Bayat
- Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Medical Research Council-Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
24
|
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:273-343. [PMID: 34147204 DOI: 10.1016/bs.pmch.2021.01.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular docking has become an important component of the drug discovery process. Since first being developed in the 1980s, advancements in the power of computer hardware and the increasing number of and ease of access to small molecule and protein structures have contributed to the development of improved methods, making docking more popular in both industrial and academic settings. Over the years, the modalities by which docking is used to assist the different tasks of drug discovery have changed. Although initially developed and used as a standalone method, docking is now mostly employed in combination with other computational approaches within integrated workflows. Despite its invaluable contribution to the drug discovery process, molecular docking is still far from perfect. In this chapter we will provide an introduction to molecular docking and to the different docking procedures with a focus on several considerations and protocols, including protonation states, active site waters and consensus, that can greatly improve the docking results.
Collapse
Affiliation(s)
| | - Ilenia Giangreco
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| | - Jason C Cole
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| |
Collapse
|
25
|
Ferger M, Ban Ž, Krošl I, Tomić S, Dietrich L, Lorenzen S, Rauch F, Sieh D, Friedrich A, Griesbeck S, Kenđel A, Miljanić S, Piantanida I, Marder TB. Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry 2021; 27:5142-5159. [PMID: 33411942 PMCID: PMC8048639 DOI: 10.1002/chem.202005141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Indexed: 11/24/2022]
Abstract
We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Željka Ban
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Ivona Krošl
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Sanja Tomić
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Lena Dietrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Ivo Piantanida
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
26
|
Bortolozzi R, Ihmels H, Schulte R, Stremmel C, Viola G. Synthesis, DNA-binding and antiproliferative properties of diarylquinolizinium derivatives. Org Biomol Chem 2021; 19:878-890. [PMID: 33410854 DOI: 10.1039/d0ob02298e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of ten 2,7- and 2,8-diarylquinolizinium derivatives was synthesized and their DNA-binding and cytotoxic properties were investigated. Except for one nitro-substituted derivative all tested diarylquinolizinium ions bind to DNA with sufficient affinity (2 × 104 M-1-2 × 105 M-1). It was shown with photometric, fluorimetric and polarimetric titrations as well as with flow-LD analysis that the ligands bind mainly by intercalation to duplex DNA, however, depending on the ligand-DNA ratio, groove binding and backbone association were also observed with some derivatives. The biological activity was further investigated with tests of cytotoxicity and antiproliferative properties towards non-tumor cells and selected cancer cells, along with cell cycle analysis and an annexin-V assay. Notably, substrates that carry donor-functionalities in the 4-position of the phenyl substituents revealed a strong, and in some cases selective, antiproliferative activity as quantified by the growth inhibition, GI50, at very low micromolar and even submicromolar level both in leukemia and solid tumors.
Collapse
Affiliation(s)
- Roberta Bortolozzi
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Robin Schulte
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Christopher Stremmel
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Giampietro Viola
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| |
Collapse
|
27
|
Shahabadi N, Farhadi R. Multispectroscopic and molecular docking studies on DNA binding of guaifenesin drug. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:317-335. [PMID: 33463400 DOI: 10.1080/15257770.2021.1872793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The interaction mechanism of guaifenesin drug; (RS)-3-(2-methoxyphenoxy)propane-1,2-diol; and calf thymus DNA was characterized by multiple spectroscopic and molecular docking approaches. The changes in drug electronic absorption with increasing DNA concentration and also the observed significant quenching of guaifenesin emission in the presence of DNA proved the complex formation between guaifenesin and DNA during the interactions. Both the binding constant and thermodynamic parameters for the interaction have been calculated in 283, 298, and 310 K at pH 7.4. The results Δ H 0 = 17.87 kJ/mol and Δ S 0 = 143.31 J/mol.K confirmed the role of hydrophobic force in the guaifenesin-DNA interaction. Circular dichroism study showed that guaifenesin causes decrease in the negative band of CT-DNA and at the same time the positive band increases which indicated the transition of DNA conformation from B to A. KI quenching experiment specifies that guaifenesin binds to DNA via nonintercalative mode. The competitive studies based on known Hoechst 33258 and methylene blue probes proved the groove binding mode in guaifenesin-DNA adduct. Further, full agreement of molecular docking simulation with the experimental results of binding constant and interaction mode, support high accuracy of the results.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Faculty of Chemistry, Department of Inorganic Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Farhadi
- Faculty of Chemistry, Department of Inorganic Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
28
|
Nakamori M, Mochizuki H. Targeting Expanded Repeats by Small Molecules in Repeat Expansion Disorders. Mov Disord 2020; 36:298-305. [DOI: 10.1002/mds.28397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
29
|
Yu H, Li J, Huang G, Yan L, Ma J. Binding Characteristics of Dibenzo[a,h]Anthracene with DNA In Vitro: Investigated by Spectroscopic and Magnetic Bead Methods. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1855218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hui Yu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Ji Ma
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
30
|
Biolayer interferometry provides a robust method for detecting DNA binding small molecules in microbial extracts. Anal Bioanal Chem 2020; 413:1159-1171. [PMID: 33236226 DOI: 10.1007/s00216-020-03079-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
DNA replication is an exceptional point of therapeutic intervention for many cancer types and several small molecules targeting DNA have been developed into clinically used antitumor agents. Many of these molecules are naturally occurring metabolites from plants and microorganisms, such as the widely used chemotherapeutic doxorubicin. While natural product sources contain a vast number of DNA binding small molecules, isolating and identifying these molecules is challenging. Typical screening campaigns utilize time-consuming bioactivity-guided fractionation approaches, which use sequential rounds of cell-based assays to guide the isolation of active compounds. In this study, we explore the use of biolayer interferometry (BLI) as a tool for rapidly screening natural product sources for DNA targeting small molecules. We first verified that BLI robustly detected DNA binding using designed GC- and AT-rich DNA oligonucleotides with known DNA intercalating, groove binding, and covalent binding agents including actinomycin D (1), doxorubicin (2), ethidium bromide (3), propidium iodide (4), Hoechst 33342 (5), and netropsin (6). Although binding varied with the properties of the oligonucleotides, measured binding affinities agreed with previously reported values. We next utilized BLI to screen over 100 bacterial extracts from our microbial library for DNA binding activity and found three highly active extracts. Binding-guided isolation was used to isolate the active principle component from each extract, which were identified as echinomycin (8), actinomycin V (9), and chartreusin (10). This biosensor-based DNA binding screen is a novel, low-cost, easy to use, and sensitive approach for medium-throughput screening of complex chemical libraries. Graphical abstract.
Collapse
|
31
|
Berdnikova DV, Heider J, Ihmels H, Sewald N, Pithan PM. Photoinduced Release of DNA‐Binding Ligands from the [4+4] Dimers of Benzo[ b]quinolizinium and Anthracene Derivatives. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daria V. Berdnikova
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Josef Heider
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic ChemistryBielefeld University PO Box 100121 33501 Bielefeld Germany
| | - Phil M. Pithan
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| |
Collapse
|
32
|
Tessaro F, Scapozza L. How 'Protein-Docking' Translates into the New Emerging Field of Docking Small Molecules to Nucleic Acids? Molecules 2020; 25:E2749. [PMID: 32545835 PMCID: PMC7355999 DOI: 10.3390/molecules25122749] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
In this review, we retraced the '40-year evolution' of molecular docking algorithms. Over the course of the years, their development allowed to progress from the so-called 'rigid-docking' searching methods to the more sophisticated 'semi-flexible' and 'flexible docking' algorithms. Together with the advancement of computing architecture and power, molecular docking's applications also exponentially increased, from a single-ligand binding calculation to large screening and polypharmacology profiles. Recently targeting nucleic acids with small molecules has emerged as a valuable therapeutic strategy especially for cancer treatment, along with bacterial and viral infections. For example, therapeutic intervention at the mRNA level allows to overcome the problematic of undruggable proteins without modifying the genome. Despite the promising therapeutic potential of nucleic acids, molecular docking programs have been optimized mostly for proteins. Here, we have analyzed literature data on nucleic acid to benchmark some of the widely used docking programs. Finally, the comparison between proteins and nucleic acid targets docking highlighted similarity and differences, which are intrinsically related to their chemical and structural nature.
Collapse
Affiliation(s)
- Francesca Tessaro
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
33
|
Wen CJ, Gong JY, Zheng KW, He YD, Zhang JY, Hao YH, Tan Z. Targeting nucleic acids with a G-triplex-to-G-quadruplex transformation and stabilization using a peptide-PNA G-tract conjugate. Chem Commun (Camb) 2020; 56:6567-6570. [PMID: 32396929 DOI: 10.1039/d0cc02102d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-functional peptide-PNA (peptide nucleic acid) conjugate consisting of a PNA G3-tract and an RHAU23 peptide is devised to target nucleic acids bearing three tandem guanine tracts (G-tracts). The PNA G3-tract joins the three G-tracts to form a stable bimolecular G-quadruplex (G4) and the resulting G4 is then bound by the RHAU23 moiety to form an extra stable G4-peptide complex. Owing to this synergistic dual structural enforcement, the conjugate accomplished extremely high selectivity and nM to sub-nM affinities towards its targets that are up to 1000 times greater than the small molecule G4 ligands. As a result, the conjugate impacts the tracking activity of motor proteins on DNA with superior selectivity and potency that are rarely seen in other G4-targeting approaches.
Collapse
Affiliation(s)
- Cui-Jiao Wen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Li J, Wang J, Fan J, Huang G, Yan L. Binding characteristics of aflatoxin B 1 with free DNA in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118054. [PMID: 32006841 DOI: 10.1016/j.saa.2020.118054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
In this paper, the binding characteristics of aflatoxin B1 (AFB1) with the herring sperm deoxyribonucleic acid (DNA) in vitro were investigated through different analytical methods. The ultraviolet-visible spectroscopy (UV-vis), fluorescence, and circular dichroism (CD) spectra results showed that a new AFB1-DNA complex was formed. All the results suggested that AFB1 interacted with free DNA in vitro in an intercalating binding mode. The results of the DNA melting experiments also showed that the melting temperature of DNA increased by about 12.1 °C due to the addition of AFB1, which was supposed to be closely related to the intercalation of AFB1 into DNA. The agar gel electrophoresis experiments further confirmed that the binding mode of AFB1 and free DNA in vitro was indeed intercalation. In addition, the fluorescence quenching induced by adding AFB1 to the ethidium bromide-DNA (EB-DNA) mixture indicated the presence of competitive non-covalent intercalating binding interaction with a competitive binding constant of 5.58 L/mol between AFB1, EB, and DNA. The thermodynamic data demonstrated that the main driving forces of the binding reaction were van der Waals forces and hydrogen bond. The resonance light scattering (RLS) assay results showed that the DNA binding saturation values of AFB1, EB, psoralen (PSO), and angelicin (ANG) were 2.14, 15.59, 0.74, and 0.74, respectively. These results indicated that the DNA binding capacity of AFB1 was weaker than that of EB, but stronger than those of PSO and ANG.
Collapse
Affiliation(s)
- Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China.
| | - Jingting Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| | - Junfu Fan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| |
Collapse
|
35
|
Ray RM, Morris KV. Long Non-coding RNAs Mechanisms of Action in HIV-1 Modulation and the Identification of Novel Therapeutic Targets. Noncoding RNA 2020; 6:ncrna6010012. [PMID: 32183241 PMCID: PMC7151623 DOI: 10.3390/ncrna6010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
This review aims to highlight the role of long non-coding RNAs in mediating human immunodeficiency virus (HIV-1) viral replication, latency, disease susceptibility and progression. In particular, we focus on identifying possible lncRNA targets and their purported mechanisms of action for future drug design or gene therapeutics.
Collapse
|
36
|
Kölsch S, Ihmels H, Mattay J, Sewald N, Patrick BO. Reversible photoswitching of the DNA-binding properties of styrylquinolizinium derivatives through photochromic [2 + 2] cycloaddition and cycloreversion. Beilstein J Org Chem 2020; 16:111-124. [PMID: 32082430 PMCID: PMC7006495 DOI: 10.3762/bjoc.16.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
It was demonstrated that styrylquinolizinium derivatives may be applied as photoswitchable DNA ligands. At lower ligand:DNA ratios (≤1.5), these compounds bind to duplex DNA by intercalation, with binding constants ranging from K b = 4.1 × 104 M to 2.6 × 105 M (four examples), as shown by photometric and fluorimetric titrations as well as by CD and LD spectroscopic analyses. Upon irradiation at 450 nm, the methoxy-substituted styrylquinolizinium derivatives form the corresponding syn head-to-tail cyclobutanes in a selective [2 + 2] photocycloaddition, as revealed by X-ray diffraction analysis of the reaction products. These photodimers bind to DNA only weakly by outside-edge association, but they release the intercalating monomers upon irradiation at 315 nm in the presence of DNA. As a result, it is possible to switch between these two ligands and likewise between two different binding modes by irradiation with different excitation wavelengths.
Collapse
Affiliation(s)
- Sarah Kölsch
- Department of Chemistry and Biology, Organic Chemistry II, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, Organic Chemistry II, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Jochen Mattay
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, PO Box 100121, D-33501 Bielefeld, Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, PO Box 100121, D-33501 Bielefeld, Germany
| | - Brian O Patrick
- Department of Chemistry, Structural Chemistry Facility, The University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| |
Collapse
|
37
|
Charak S, Shandilya M, Mehrotra R. RNA targeting by an anthracycline drug: spectroscopic and in silico evaluation of epirubicin interaction with tRNA. J Biomol Struct Dyn 2019; 38:1761-1771. [PMID: 31084352 DOI: 10.1080/07391102.2019.1617786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Anthracyclines are putative anticancer agents used to treat a wide range of cancers. Among these anthracyclines, epirubicin is derived from the doxorubicin by the subtle difference in the orientation of C4-hydroxyl group at sugar molecule. Epirubicin has great significance as it has propitious anticancer potential with lesser cardiotoxicity and faster elimination from the body. The present study is done to understand the molecular aspect of epirubicin binding to tRNA. We have used various spectroscopic techniques like Fourier transform infrared spectroscopy (FTIR), absorption spectroscopy and circular dichroism to illustrate the binding sites, the extent of binding and conformational changes associated with tRNA after interacting with epirubicin. From infrared studies, we infer that epirubicin interacts with guanine and uracil bases of tRNA. Results obtained from infrared and CD studies suggest that epirubicin complexation with tRNA does not result in any conformational change in tRNA structure. Binding constant (2.1 × 103 M-1) calculated from the absorbance data illustrates that epirubicin has a weak interaction with tRNA molecule. These spectroscopic results like the binding site of epirubicin and binding energy of epirubicin-tRNA complex were also verified by the molecular docking. Results of the present study provide information that aids in the development of efficient RNA targeted drugs from the existing drugs by certain chemical modification in their structure resulting in lesser side effects and better efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonika Charak
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Manish Shandilya
- Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
38
|
Wei W, Luo J, Waldispühl J, Moitessier N. Predicting Positions of Bridging Water Molecules in Nucleic Acid-Ligand Complexes. J Chem Inf Model 2019; 59:2941-2951. [PMID: 30998377 DOI: 10.1021/acs.jcim.9b00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past two decades, interests in DNA and RNA as drug targets have been growing rapidly. Following the trends observed with protein drug targets, computational approaches for drug design have been developed for this new class of molecules. Our efforts toward the development of a universal docking program, Fitted, led us to focus on nucleic acids. Throughout the development of this docking program, efforts were directed toward displaceable water molecules which must be accurately located for optimal docking-based drug discovery. However, although there is a plethora of methods to place water molecules in and around protein structures, there is, to the best of our knowledge, no such fully automated method for nucleic acids, which are significantly more polar and solvated than proteins. We report herein a new method, Splash'Em (Solvation Potential Laid around Statistical Hydration on Entire Macromolecules) developed to place water molecules within the binding cavity of nucleic acids. This fast method was shown to have high agreement with water positions in crystal structures and will therefore provide essential information to medicinal chemists.
Collapse
|
39
|
Umek T, Sollander K, Bergquist H, Wengel J, Lundin KE, Smith CIE, Zain R. Oligonucleotide Binding to Non-B-DNA in MYC. Molecules 2019; 24:E1000. [PMID: 30871121 PMCID: PMC6429085 DOI: 10.3390/molecules24051000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
MYC, originally named c-myc, is an oncogene deregulated in many different forms of cancer. Translocation of the MYC gene to an immunoglobulin gene leads to an overexpression and the development of Burkitt's lymphoma (BL). Sporadic BL constitutes one subgroup where one of the translocation sites is located at the 5'-vicinity of the two major MYC promoters P₁ and P₂. A non-B-DNA forming sequence within this region has been reported with the ability to form an intramolecular triplex (H-DNA) or a G-quadruplex. We have examined triplex formation at this site first by using a 17 bp triplex-forming oligonucleotide (TFO) and a double strand DNA (dsDNA) target corresponding to the MYC sequence. An antiparallel purine-motif triplex was detected using electrophoretic mobility shift assay. Furthermore, we probed for H-DNA formation using the BQQ-OP based triplex-specific cleavage assay, which indicated the formation of the structure in the supercoiled plasmid containing the corresponding region of the MYC promoter. Targeting non-B-DNA structures has therapeutic potential; therefore, we investigated their influence on strand-invasion of anti-gene oligonucleotides (ON)s. We show that in vitro, non-B-DNA formation at the vicinity of the ON target site facilitates dsDNA strand-invasion of the anti-gene ONs.
Collapse
Affiliation(s)
- Tea Umek
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - Karin Sollander
- Department of Molecular Biology and Functional Genomics, Stockholm University, 171 65 Stockholm, Sweden.
| | - Helen Bergquist
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - Jesper Wengel
- Biomolecular Nanoscale Engineerng Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, M5230 Odense, Denmark.
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
40
|
Liaud N, Horlbeck MA, Gilbert LA, Gjoni K, Weissman JS, Cate JHD. Cellular response to small molecules that selectively stall protein synthesis by the ribosome. PLoS Genet 2019; 15:e1008057. [PMID: 30875366 PMCID: PMC6436758 DOI: 10.1371/journal.pgen.1008057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/27/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022] Open
Abstract
Identifying small molecules that inhibit protein synthesis by selectively stalling the ribosome constitutes a new strategy for therapeutic development. Compounds that inhibit the translation of PCSK9, a major regulator of low-density lipoprotein cholesterol, have been identified that reduce LDL cholesterol in preclinical models and that affect the translation of only a few off-target proteins. Although some of these compounds hold potential for future therapeutic development, it is not known how they impact the physiology of cells or ribosome quality control pathways. Here we used a genome-wide CRISPRi screen to identify proteins and pathways that modulate cell growth in the presence of high doses of a selective PCSK9 translational inhibitor, PF-06378503 (PF8503). The two most potent genetic modifiers of cell fitness in the presence of PF8503, the ubiquitin binding protein ASCC2 and helicase ASCC3, bind to the ribosome and protect cells from toxic effects of high concentrations of the compound. Surprisingly, translation quality control proteins Pelota (PELO) and HBS1L sensitize cells to PF8503 treatment. In genetic interaction experiments, ASCC3 acts together with ASCC2, and functions downstream of HBS1L. Taken together, these results identify new connections between ribosome quality control pathways, and provide new insights into the selectivity of compounds that stall human translation that will aid the development of next-generation selective translation stalling compounds to treat disease.
Collapse
Affiliation(s)
- Nadège Liaud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States of America
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA, United States of America
| | - Luke A. Gilbert
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ketrin Gjoni
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States of America
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- QB3 Institute, University of California, Berkeley, Berkeley, California, United States of America
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
41
|
Jia H, Tsai TW, Xu S. Probing drug-DNA interactions using super-resolution force spectroscopy. APPLIED PHYSICS LETTERS 2018; 113:193702. [PMID: 30473584 PMCID: PMC6219894 DOI: 10.1063/1.5045787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
Atomic magnetometry and ultrasound, as individual techniques, have been used extensively in various physical, chemical, and biomedical fields. Their combined application, however, has been rare. We report that super-resolution force spectroscopy, which is based on the integration of the two techniques, can find unique biophysical applications in studying drug-DNA interactions. The precisely controlled ultrasound generates acoustic radiation force on the biological systems labeled with magnetic microparticles. A decrease in the magnetic signal, measured by an automated atomic magnetometer, indicates that the acoustic radiation force equals the binding force of the biological system. With 0.5 pN force resolution, we were able to precisely resolve three small molecules binding with two DNA sequences and quantitatively reveal the effect of a single hydrogen bond. Our results indicate that the increases in DNA binding force caused by drug binding correlate with the enthalpy instead of free energy, thus providing an alternative physical parameter for optimizing chemotherapeutic drugs.
Collapse
Affiliation(s)
| | | | - Shoujun Xu
- Author to whom correspondence should be addressed:
| |
Collapse
|
42
|
Yu Z, Hsieh WC, Asamitsu S, Hashiya K, Bando T, Ly DH, Sugiyama H. Orthogonal γPNA Dimerization Domains Empower DNA Binders with Cooperativity and Versatility Mimicking that of Transcription Factor Pairs. Chemistry 2018; 24:14183-14188. [PMID: 30003621 PMCID: PMC9724550 DOI: 10.1002/chem.201801961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Synthetic molecules capable of DNA binding and mimicking cooperation of transcription factor (TF) pairs have long been considered a promising tool for manipulating gene expression. Our previously reported Pip-HoGu system, a programmable DNA binder pyrrole-imidazole polyamides (PIPs) conjugated to host-guest moiety, defined a general framework for mimicking cooperative TF pair-DNA interactions. Here, we supplanted the cooperation modules with left-handed (LH) γPNA modules: i.e., PIPs conjugated with nucleic acid-based cooperation system (Pip-NaCo). LH γPNA was chosen because of its bioorthogonality, sequence-specific interaction, and high binding affinity toward the partner strand. From the results of the Pip-NaCo system, cooperativity is highly comparable to the natural TF pair-DNA system, with a minimum energetics of cooperation of -3.27 kcal mol-1 . Moreover, through changing the linker conjugation site, binding mode, and the length of γPNAs sequence, the cooperative energetics of Pip-NaCo can be tuned independently and rationally. The current Pip-NaCo platform might also have the potential for precise manipulation of biological processes through the construction of triple to multiple heterobinding systems.
Collapse
Affiliation(s)
- Zutao Yu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Wei-Che Hsieh
- Institute for Biomolecular Design and Discovery (IBD), Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Danith H Ly
- Institute for Biomolecular Design and Discovery (IBD), Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
43
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
44
|
Khajeh MA, Dehghan G, Dastmalchi S, Shaghaghi M, Iranshahi M. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:384-392. [PMID: 29195192 DOI: 10.1016/j.saa.2017.11.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/23/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27×104M-1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH<0 and ΔS<0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.
Collapse
Affiliation(s)
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Siavoush Dastmalchi
- Biotechnology Research Center, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Shaghaghi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb Pathog 2017; 114:80-89. [PMID: 29174699 DOI: 10.1016/j.micpath.2017.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is a devastating threat to human health whose treatment without the emergence of drug resistant Mycobacterium tuberculosis (M. tuberculosis) is the million-dollar question at present. The pathogenesis of M. tuberculosis has been extensively studied which represents unique defence strategies by infecting macrophages. Several anti-tubercular drugs with varied mode of action and administration from diversified sources have been used for the treatment of TB that later contributed to the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). However, few of potent anti-tubercular drugs are scheduled for clinical trials status in 2017-2018. Peptides of varied origins such as human immune cells and non-immune cells, bacteria, fungi, and venoms have been widely investigated as anti-tubercular agents for the replacement of existing anti-tubercular drugs in future. In the present review, we spotlighted not only on the mechanisms of action and mode of administration of currently available anti-tubercular drugs but also the recent comprehensive report of World Health Organization (WHO) on TB epidemic, diagnosis, prevention, and treatment. The major excerpt of the study also inspects the direct contribution of different computational tools during drug designing strategies against M. tuberculosis in order to grasp the interplay between anti-tubercular peptides and targeted bacterial protein. The potentiality of some of these anti-tubercular peptides as therapeutic agents unlocks a new portal for achieving the goal of end TB strategy.
Collapse
|
46
|
Hany Badr M, Abd El Razik HA. 1,4-Disubstituted-5-hydroxy-3-methylpyrazoles and some derived ring systems as cytotoxic and DNA binding agents. Synthesis, in vitro biological evaluation and in silico ADME study. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2071-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Das S, Purkayastha P. Selective Binding of Thioflavin T in Sequence-Exchanged Single Strand DNA Oligomers and Further Interaction with Phospholipid Membranes. ChemistrySelect 2017. [DOI: 10.1002/slct.201700194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shrabanti Das
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata; Mohanpur 741246, WB India
| | - Pradipta Purkayastha
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata; Mohanpur 741246, WB India
| |
Collapse
|
48
|
Paul P, Mati SS, Bhattacharya SC, Kumar GS. Exploring the interaction of phenothiazinium dyes methylene blue, new methylene blue, azure A and azure B with tRNAPhe: spectroscopic, thermodynamic, voltammetric and molecular modeling approach. Phys Chem Chem Phys 2017; 19:6636-6653. [DOI: 10.1039/c6cp07888e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA targeting by small molecules.
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | | | | | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
49
|
Molecular docking for drug discovery and development: a widely used approach but far from perfect. Future Med Chem 2016; 8:1707-10. [PMID: 27578269 DOI: 10.4155/fmc-2016-0143] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|