1
|
Guha S, Nguyen AM, Young A, Mondell E, Farber DB. Decreased CREB phosphorylation impairs embryonic retinal neurogenesis in the Oa1-/- mouse model of Ocular albinism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594013. [PMID: 38798688 PMCID: PMC11118284 DOI: 10.1101/2024.05.14.594013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mutations in the human Ocular albinism type-1 gene OA1 are associated with abnormal retinal pigment epithelium (RPE) melanogenesis and poor binocular vision resulting from misrouting of ipsilateral retinal ganglion cell (iRGC) axons to the brain. We studied the latter using wild-type (WT) and Oa1-/- mouse eyes. At embryonic stages, the WT RPE-specific Oa1 protein signals through cAMP/Epac1-Erk2-CREB. Following CREB phosphorylation, a pCREB gradient extends from the RPE to the differentiating retinal amacrine and RGCs. In contrast to WT, the Oa1-/- RPE and ventral ciliary-margin-zone, a niche for iRGCs, express less pCREB while their retinas have a disrupted pCREB gradient, indicating Oa1's involvement in pCREB maintenance. Oa1-/- retinas also show hyperproliferation, enlarged nuclei, reduced differentiation, and fewer newborn amacrine and RGCs than WT retinas. Our results demonstrate that Oa1's absence leads to reduced binocular vision through a hyperproliferation-associated block in differentiation that impairs neurogenesis. This may affect iRGC axon's routing to the brain.
Collapse
Affiliation(s)
- Sonia Guha
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Andrew M. Nguyen
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Alejandra Young
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Ethan Mondell
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Debora B. Farber
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Gao Y, Liu L, Zhang Z, Qin C, Yang B, Ke Y. TYRP1 Protects Against the Apoptosis and Oxidative Stress of Retinal Ganglion Cells by Binding to PMEL. Ocul Immunol Inflamm 2023; 31:1024-1034. [PMID: 35708352 DOI: 10.1080/09273948.2022.2081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This research aimed to dissect the function of TYRP1 and PMEL in glaucomatous animal and cell models. METHODS A chronic ocular hypertension (COH) rat model was induced in the right eyes of rats through the electrocoagulation of superficial iris veins. In addition, an oxygen-glucose deprivation (OGD)-retinal ganglion cell (RGC) model was constructed through OGD. TYRP1 and PMEL expression was altered in the animal and cell models to explore their effects. RESULTS TYRP1 and PMEL expression was poor in glaucoma patients, COH rats, and OGD-RGCs. Mechanistically, TYRP1 interacted with PMEL to upregulate PMEL in OGD-RGCs. TYRP1 overexpression enhanced viability and diminished apoptosis and oxidative stress of OGD-RGCs, which was abolished by PMEL knockdown. TYRP1 upregulation reduced intraocular pressure, RGC apoptosis, and oxidative stress in COH rats, which was reversed by PMEL knockdown. CONCLUSIONS TYRP1 elevates PMEL expression to reduce RGC apoptosis and oxidative stress in vivo and in vitro.
Collapse
Affiliation(s)
- Yanlin Gao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Lei Liu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Nankai University Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Chunxiu Qin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, P.R. China
| | - Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, P.R. China
| |
Collapse
|
3
|
Identification of a novel GPR143 mutation in a large Chinese family with isolated foveal hypoplasia. BMC Ophthalmol 2021; 21:156. [PMID: 33785018 PMCID: PMC8011130 DOI: 10.1186/s12886-021-01905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pathogenic variants of G-protein coupled receptor 143 (GPR143) gene often leads to ocular albinism type I (OA1) characterized by nystagmus, iris and fundus hypopigmentation, and foveal hypoplasia. In this study, we identified a novel hemizygous nonsense mutation in GPR143 that caused an atypical manifestation of OA1. Case presentation We reported a large Chinese family in which all affected individuals are afflicted with poor visual acuity and foveal hypoplasia without signs of nystagmus. Fundus examination of patients showed an absent foveal reflex and mild hypopigmentation. The fourth grade of foveal hypoplasia and the reduced area of blocked fluorescence at foveal region was detected in OCT. OCTA imaging showed the absence of foveal avascular zone. In addition, the amplitude of multifocal ERG was reduced in the central ring. Gene sequencing results revealed a novel hemizygous mutation (c.939G > A) in GPR143 gene, which triggered p.W313X. However, no iris depigmentation and nystagmus were observed among both patients and carriers. Conclusions In this study, we reported a novel nonsense mutation of GPR143 in a large family with poor visual acuity and isolated foveal hypoplasia without nystagmus, which further expanded the genetic mutation spectrum of GPR143.
Collapse
|
4
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Hendrikx S, Coso S, Prat-Luri B, Wetterwald L, Sabine A, Franco CA, Nassiri S, Zangger N, Gerhardt H, Delorenzi M, Petrova TV. Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Rep 2019; 26:1227-1241.e6. [DOI: 10.1016/j.celrep.2019.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023] Open
|
6
|
Chen T, Zhao B, Liu Y, Wang R, Yang Y, Yang L, Dong C. MITF-M regulates melanogenesis in mouse melanocytes. J Dermatol Sci 2018; 90:253-262. [PMID: 29496358 DOI: 10.1016/j.jdermsci.2018.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although the impact of the microphthalamia-associated transcription factor (Mitf) signaling pathway on melanocytes progression has been extensively studied, the specific molecular mechanisms behind MITF-M-enhanced melanin production in melanocytes still need to be clarified. METHODS In this study, we analyzed the levels of Mitf-M in skin tissues of different coat mice in order to further reveal the relationship between Mitf-M and skin pigmentation. To address the function of Mitf-M on melanogenesis, we have used an overexpression system and combined morphological and biochemical methods to investigate its localization in different coat color mice and pigmentation-related genes' expression in mouse melanocytes. RESULTS The qRT-PCR assay and Western blotting analysis revealed that Mitf-M mRNA and protein were synthesized in all tested mice skin samples, with the highest expression level in brown skin, a moderate expression level in grey skin and the lowest expression level in black skin. Simultaneously, immunofluorescence staining revealed that MITF-M was mainly expressed in the hair follicle matrix and inner and outer root sheath in the skin tissues with different coat colors. Furthermore, overexpression of MITF-M led to increased melanin content and variable pigmentation-related gene expression. CONCLUSION These results directly demonstrate that MITF-M not only influences melanogenesis, but also determines the progression of melanosomal protein in mouse melanocytes.
Collapse
Affiliation(s)
- Tianzhi Chen
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingling Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiwei Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yujing Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Linpei Yang
- Shenzhou Vocational and Technical Education Center, Shenzhou 053800, China
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
7
|
Xue L, Li Y, Zhao B, Chen T, Dong Y, Fan R, Li J, Wang H, He X. TRP‑2 mediates coat color pigmentation in sheep skin. Mol Med Rep 2018; 17:5869-5877. [PMID: 29436631 PMCID: PMC5866032 DOI: 10.3892/mmr.2018.8563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/14/2017] [Indexed: 01/18/2023] Open
Abstract
Tyrosinase‑related protein 2 (TRP‑2) is one of the most important members of the tyrosinase family, and is a key enzyme involved in melanin biosynthesis. In the present study, a skin transcriptome profile, immunohistochemistry, western blotting and reverse transcription‑quantitative polymerase chain reaction were used to investigate TRP‑2 expression in sheep with different coat colors, namely, black, white and black‑white. TRP‑2 was overexpressed in melanocytes in order to study the effect of TRP‑2 on melanin production. Results revealed differing TRP‑2 levels in sheep of different coat colors and in various parts of the coat with different colors in the same sheep. TRP‑2 expression levels in dark‑colored areas were significantly increased compared with light‑colored areas in piebald sheep. TRP‑2 overexpression may regulate melanogenesis and significantly increase melanogenesis associated transcription factor expression in vitro. Therefore, TRP‑2 may affect melanin production in sheep, and different expression levels determine coat color. The results may provide novel approaches for developing therapeutic strategies for skin diseases associated with pigmentation disorders.
Collapse
Affiliation(s)
- Linli Xue
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Yanan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Bingling Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Tianzhi Chen
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Jingwei Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Haidong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Xiaoyan He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| |
Collapse
|