1
|
Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co 3O 4, and TiO 2) nanoparticles using plant extracts for developing antimicrobial properties. NANOSCALE ADVANCES 2025; 7:2446-2473. [PMID: 40207090 PMCID: PMC11976448 DOI: 10.1039/d5na00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Green synthesis (GS) is a vital method for producing metal nanoparticles with antimicrobial properties. Unlike traditional methods, green synthesis utilizes natural substances, such as plant extracts, microorganisms, etc., to create nanoparticles. This eco-friendly approach results in non-toxic and biocompatible nanoparticles with superior antimicrobial activity. This paper reviews the prospects of green synthesis of metal nanoparticles of silver (Ag), copper (Cu), gold (Au) and metal oxide nanoparticles of zinc (ZnO), magnesium (MgO), cobalt (Co3O4), and titanium (TiO2) using plant extracts from tissues of leaves, barks, roots, etc., antibacterial mechanisms of metal and metal oxide nanoparticles, and obstacles and factors that need to be considered to overcome the limitations of the green synthesis process. The clean surfaces and minimal chemical residues of these nanoparticles contribute to their effectiveness. Certain metals exhibit enhanced antibacterial properties only in GS methods due to the presence of bioactive compounds from natural reducing agents such as Au and MgO. GS improves TiO2 antibacterial properties under visible light, while it would be impossible without UV activation. These nanoparticles have important antimicrobial properties for treating microbial infections and combating antibiotic resistance against bacteria, fungi, and viruses by disrupting microbial membranes, generating ROS, and interfering with DNA and protein synthesis. Nanoscale size and large surface area make them critical for developing advanced antimicrobial treatments. They are effective antibacterial agents for treating infections, suitable in water purification systems, and fostering innovation by creating green, economically viable antibacterial materials. Therefore, green synthesis of metal and metal oxide nanoparticles for antibacterial agents supports several United Nations Sustainable Development Goals (SDGs), including health improvement, sustainability, and innovation.
Collapse
Affiliation(s)
- Israt Jahan Lithi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Kazi Imtiaz Ahmed Nakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - A M Sarwaruddin Chowdhury
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
2
|
Rajpal VR, Nongthongbam B, Bhatia M, Singh A, Raina SN, Minkina T, Rajput VD, Zahra N, Husen A. The nano-paradox: addressing nanotoxicity for sustainable agriculture, circular economy and SDGs. J Nanobiotechnology 2025; 23:314. [PMID: 40275357 PMCID: PMC12023416 DOI: 10.1186/s12951-025-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Engineered nanomaterials (ENMs) have aroused extensive interest in agricultural, industrial, and medical applications. The integration of ENMs into the agricultural systems aligns with the principles of United Nations' sustainable development goals (SDGs), circular economy (CE) and bio-economy (BE) principles. This approach offers excellent opportunities to enhance productivity and address global climate change challenges. The revelation of the adverse effects of nanomaterials (NMs) on various organisms and ecosystems, however, has fueled the debate on 'Nano-paradox' leading to emergence of a new research domain 'Nanotoxicology'. ENMs have shown different interactions with biological and environmental systems as compared to their bulk counterparts. They bioaccumulate in organisms, soils, and other environmental matrices, move through food chains and reach higher trophic levels including humans ultimately resulting in oxidative stress and cellular damage. Understanding nano-bio interactions, the mechanism of gene- and cytotoxicity, and associated potential hazards, is therefore, essential to mitigate their toxicological outputs. This review comprehensively examines the cyto- and genotoxicity mechanisms of ENMs in biological systems, covering aspects such as their entry, uptake, cellular responses, dynamic interactions in biological environments their long-term effects and environmental risk assessment (ERA). It also discusses toxicological assessment methods, regulatory policies, strategies for toxicity management/mitigation and future research directions in nanotechnology, all within the context of SDGs, CE, promoting resource efficiency and sustainability. Navigating the nano-paradox involves balancing the benefits of nanomaterials with concerns about nanotoxicity. Prioritizing thorough research on above facets can ensure sustainability and safety, enabling responsible harnessing of nanotechnology's transformative potential in various applications including mitigating global climate change and enhancing agricultural productivity.
Collapse
Affiliation(s)
| | | | - Manika Bhatia
- TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, Delhi, 110070, India
| | - Apekshita Singh
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Soom Nath Raina
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
- Postgraduate Office, Amin Campus, The University of Faisalabad, Faisalabad, 38000, Pakistan
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
3
|
Zhou Y, Camisasca A, Dominguez-Gil S, Bartkowski M, Rochfort KD, Piletti M, White A, Krizsan D, O'Connor R, Quinn SJ, Iacopino D, Eustace AJ, Giordani S. Synthesis of carbon dots from spent coffee grounds: transforming waste into potential biomedical tools. NANOSCALE 2025; 17:9947-9962. [PMID: 40067158 DOI: 10.1039/d4nr05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Carbon dots (CDs) are small-sized, spherical nanoparticles presenting amorphous carbon cores with nanocrystalline regions of a graphitic structure. They show unique properties such as high aqueous solubility, robust chemical inertness, and non-toxicity and can be manufactured at a relatively low cost. They are also well known for outstanding fluorescence tunability and resistance to photobleaching. Together, these properties boost their potential to act as drug delivery systems (DDSs). This work presents a low-cost synthesis of CDs by upcycling spent coffee grounds (SCGs) and transforming them into value-added products. This synthetic route eliminates the use of highly toxic heavy metals, high energy-consuming reactions and long reaction times, which can improve biocompatibility while benefiting the environment. A series of physico-chemical characterisation techniques demonstrated that these SCG-derived CDs are small-sized nanoparticles with tunable fluorescence. In vitro studies with 120 h of incubation of SCG-derived CDs demonstrated their specific antiproliferative effect on the breast cancer CAL-51 cell line, accompanied by increased reactive oxygen species (ROS) production. Importantly, no impact was observed on healthy breast, kidney, and liver cells. Confocal laser scanning microscopy confirmed the intracellular accumulation of SCG-derived CDs. Furthermore, the drug efflux pumps P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP) did not impact CD accumulation in the cancer cells.
Collapse
Affiliation(s)
- Yingru Zhou
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Adalberto Camisasca
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Sofia Dominguez-Gil
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Michał Bartkowski
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Keith D Rochfort
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Martina Piletti
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Anita White
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Dorottya Krizsan
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Robert O'Connor
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Daniela Iacopino
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Alex J Eustace
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Science, Dublin City University, Glasnevin, Dublin, Ireland.
- Life Sciences Institute, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
4
|
Sharma S, Negi S, Kumar P, Irfan M. Cellular strategies for surviving the alpine extremes: methylerythritol phosphate pathway-driven isoprenoid biosynthesis and stress resilience. PROTOPLASMA 2025:10.1007/s00709-025-02062-0. [PMID: 40180685 DOI: 10.1007/s00709-025-02062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
High altitude conditions pose a significant challenge to all earth's inhabitants including flora. Low atmospheric pressure (thin air), intense ultraviolet (UV) light, and ultra-low temperatures combine to cause oxidative stress in plants. In these abiotic stress conditions, plants exhibit various ecophysiological, morphological, and biochemical adaptations to cope with stress. Morphologically, plants may develop smaller, thicker leaves with protective trichomes or waxy cuticles against intense UV radiation, and minimize water loss in the thin, dry air. However biochemically, plants increase the production of UV-absorbing compounds like flavonoids and phenolic acids along with antioxidant enzymes for neutralizing reactive oxygen species (ROS). To protect against these stress conditions plants start producing specialized metabolites, i.e., isoprenoids, phenolic acids, flavonoids, sterols, carotenoids, etc. The production of these specialized metabolites occurs through MEP (methylerythritol phosphate) and MVA (mevalonic acid) pathways. Although, this article aims to review the scientific complexities of high-altitude plants by providing an in-depth explanation of the MEP pathway, including its regulation, sources and causes of oxidative stress in plants, functions and roles of isoprenoids in stress tolerance, and the adaptation strategies that support alpine plant survival and acclimation. The MEP pathway's products, several carotenoids, viz., phytoene, lycopene, β-carotene, etc., and terpenoids, viz., geraniol, citral, phytol, etc., act as potent scavengers of ROS, providing defense against oxidative damage. Also, phytohormones, viz., abscisic acid, salicylic acid, and jasmonic acid play crucial roles in modulating plant responses to oxidative stress. To date, little scientific literature is available specifically on high-altitude plants with respect to MEP pathway and oxidative stress management. Understanding the interaction between the MEP pathway and oxidative stress in high-altitude plants can provide insight into the implications for improving crop resilience and producing bioactive chemicals with potential human health benefits.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biotechnology, Dr. Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Jangid H, Kumar G. Ecotoxicity of fungal-synthesized silver nanoparticles: mechanisms, impacts, and sustainable mitigation strategies. 3 Biotech 2025; 15:101. [PMID: 40160431 PMCID: PMC11953517 DOI: 10.1007/s13205-025-04266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
The review investigates the ecotoxicological implications of fungal-synthesized silver nanoparticles (AgNPs), focusing on their behavior, transformations, and impacts across aquatic and terrestrial ecosystems. Advanced techniques, such as Single-Particle ICP-MS and Nanoparticle Tracking Analysis, reveal the persistence and biotransformation of AgNPs, including silver ion (Ag⁺) release and reactive oxygen species (ROS) generation. The review highlights species-specific bio-accumulation pathways in algae, soil microbes, invertebrates, and vertebrates, along with the limited biomagnification potential within trophic levels. Long-term exposure to AgNPs leads to reduced soil fertility, altered microbial communities, and inhibited plant growth, raising significant ecological concerns. Sustainable mitigation strategies, including bioremediation and advanced filtration systems, are proposed to reduce the environmental risks of AgNPs. This comprehensive analysis provides a framework for future ecological studies and regulatory measures, balancing the technological benefits of fungal-synthesized AgNPs with their environmental safety.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
6
|
Qi Z, Tan W, Guo Z, Jiang A. Preparation and Characterization of Polyphenol-Functionalized Chitooligosaccharide Pyridinium Salts with Antioxidant Activity. Mar Drugs 2025; 23:150. [PMID: 40278271 PMCID: PMC12028530 DOI: 10.3390/md23040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
As a kind of eco-friendly material with wide application prospects, chitooligosaccharide (COS) has attracted increasing attention because of its unique bioactivities. In this study, novel polyphenol-functionalized COS pyridinium salts were designed and synthesized. The structural characteristics of the desired derivatives were confirmed by FT-IR and 1H NMR spectroscopy. Their antioxidant activities were evaluated in vitro by DPPH radical scavenging assay, superoxide anion radical scavenging assay, and reducing power assay. The solubility assay in common solvents and cytotoxicity assay against L929 cells using the MTT method in vitro were also performed. The antioxidant assay results showed that the compounds functionalized by polyphenol displayed improved antioxidant activities, which were enhanced with the increase of sample concentration and the number of phenolic hydroxyl groups. The solubility assay indicated that the prepared derivatives had good water solubility. Besides, the modified products were non-toxic to the cells tested. In short, the polyphenol-functionalized COS pyridinium salts with enhanced antioxidant activity and good biocompatibility could be employed as newly safe antioxidant in the fields of biomedicine and food.
Collapse
Affiliation(s)
- Zhen Qi
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Wenqiang Tan
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Zhanyong Guo
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai 264005, China;
| |
Collapse
|
7
|
Vaishnav A, Lal J, Mehta NK, Mohanty S, Yadav KK, Priyadarshini MB, Debbarma P, Singh NS, Pati BK, Singh SK. Unlocking the potential of fishery waste: exploring diverse applications of fish protein hydrolysates in food and nonfood sectors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36244-3. [PMID: 40119992 DOI: 10.1007/s11356-025-36244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Fish and their byproducts play a pivotal role as protein sources. With the global population increasing, urbanization on the rise and increased affluence, efficient utilization of available protein resources is becoming increasingly critical. Additionally, the need for sustainable protein sources is gaining recognition. By 2050, the world's protein demand is expected to double, driven not only by population growth but also by heightened awareness of protein's role in maintaining health. The fishery industry has experienced continuous growth over the last decade. However, this growth comes with a significant challenge: inadequate waste management. The fisheries industry discards 35% to 70% of their production as waste, including fillet remains, skin, fins, bones, heads, viscera and scales. Despite the importance of these byproducts as protein sources, their effective utilization remains a hurdle. Various strategies have been proposed to address this issue. Among them, the production of protein hydrolysates stands out as an efficient method for value addition. Protein hydrolysis breaks down proteins into smaller peptides with diverse functional and bioactive properties. Therefore, fish protein hydrolysates have applications in both the food and nonfood sectors. Utilizing fishery byproducts and waste represents a sustainable approach toward waste valorization and resource optimization in the fishery industry. This approach offers promising opportunities for innovation and economic growth across multiple sectors. This comprehensive review explores fish protein hydrolysates derived from fishery byproducts and wastes, focusing on their applications in both the food and nonfood sectors.
Collapse
Affiliation(s)
- Anand Vaishnav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India.
| | - Saswat Mohanty
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Krishan Kumar Yadav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Mocherla Bhargavi Priyadarshini
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Payel Debbarma
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Nongthongbam Sureshchandra Singh
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Bikash Kumar Pati
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Soibam Khogen Singh
- Krishi Vigyan Kendra, ICAR - North Eastern Hill Region, Ukhrul, Manipur, India
| |
Collapse
|
8
|
Răcuciu M, Precup CN, Cocîrlea MD, Oancea S. Assessment of Potential Toxicity of Hyaluronic Acid-Coated Magnetic Nanoparticles on Maize ( Zea mays) at Early Development Stages. Molecules 2025; 30:1316. [PMID: 40142091 PMCID: PMC11944596 DOI: 10.3390/molecules30061316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The effectiveness of iron oxide nanoparticles in enhancing crop plant development depends on their stabilization. In this study, the effect of hyaluronic acid (HA), used both as a stabilizer for iron oxide nanoparticles (HA-MNP) and independently, was evaluated in maize seedlings. Different concentrations of HA-MNP (0.625-7.5 mg/L) were tested alongside a 0.01% HA solution. Growth parameters, antioxidant enzyme activities (peroxidase and polyphenol oxidase), photosynthetic pigments (chlorophyll and carotenoids), phenolic content, and genotoxicity were analyzed. While HA alone led to slight decreases in seedling length, pigment content, and polyphenol levels compared to the control, it increased peroxidase activity and mitotic index. Lower concentrations of HA-MNP (below 2.5 mg/L) enhanced seedling growth, likely due to improved iron uptake, whereas higher concentrations reduced pigment and phenolic content. All HA-MNP concentrations induced genotoxic effects, which was proven by an increased mitotic index and chromosomal aberrations, indicating both positive and defensive plant responses to oxidative stress. These findings suggest a complex interaction between HA, HA-MNP, and maize seedlings, where HA concentrations play a significant role in modulating growth and stress response, while higher concentrations may induce toxicity.
Collapse
Affiliation(s)
- Mihaela Răcuciu
- Environmental Sciences and Physics Department, Faculty of Sciences, Lucian Blaga University of Sibiu, 5-7 Dr. I. Ratiu Street, 550012 Sibiu, Romania;
| | - Cristina-Nicoleta Precup
- Environmental Sciences and Physics Department, Faculty of Sciences, Lucian Blaga University of Sibiu, 5-7 Dr. I. Ratiu Street, 550012 Sibiu, Romania;
| | - Maria Denisa Cocîrlea
- Agricultural Sciences and Food Engineering Department, Lucian Blaga University of Sibiu, 7-9 Dr. I. Ratiu Street, 550024 Sibiu, Romania;
| | - Simona Oancea
- Agricultural Sciences and Food Engineering Department, Lucian Blaga University of Sibiu, 7-9 Dr. I. Ratiu Street, 550024 Sibiu, Romania;
| |
Collapse
|
9
|
Hodkovicova N, Machacek M, Cahova J, Consolacion J, Siwicki A, Pejsak Z, Svoboda M. The use of silver nanoparticles in pigs - An invited review. VET MED-CZECH 2025; 70:77-92. [PMID: 40248331 PMCID: PMC12001875 DOI: 10.17221/101/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
Silver nanoparticles (AgNPs) have attracted significant interest in veterinary medicine due to their unique properties, including enhanced stability, greater antimicrobial efficacy, and reduced toxicity compared to traditional silver salts. Their applications span various areas of veterinary practice, such as dermatology, wound management, infection prevention, drug delivery, and disinfection. This review explores their use in pigs, highlighting their role as feed additives to prevent diarrhoea, as antibacterial agents in semen extenders, and veterinary dermatology. AgNPs possess broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria, positioning them as a promising alternative to antibiotics in addressing antibiotic resistance. Additionally, AgNPs have shown antiviral potential, though the exact mechanism of action remains unclear. The review examines the antibacterial and antiviral properties of AgNPs, their utility in facility sanitation, and their potential toxicity to pigs. While AgNPs offer significant benefits in veterinary applications, concerns about their toxicity persist. Efforts to reduce this toxicity, such as surface modifications or combining AgNPs with other substances, are under investigation. Further research is essential to fully understand the potential applications and safety of AgNPs in pig medicine.
Collapse
Affiliation(s)
- Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Miroslav Machacek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Cahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jerico Consolacion
- Department of Agricultural Sciences, College of Agriculture, Forestry, and Environmental Sciences, Mindanao State University at Naawan, Naawan, Philippines
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Zygmunt Pejsak
- Faculty of Veterinary Medicine, Agriculture University, Krakow, Poland
| | - Martin Svoboda
- Ruminant and Swine Clinic, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
10
|
Ali S, Mirza R, Shah KU, Javed A, Dilawar N. "Harnessing green synthesized zinc oxide nanoparticles for dual action in wound management: Antibiotic delivery and healing Promotion". Microb Pathog 2025; 200:107314. [PMID: 39848301 DOI: 10.1016/j.micpath.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Wound infections are characterized by the invasion of microorganisms into bodily tissues, leading to inflammation and potentially affecting any type of wound, including surgical incisions and chronic ulcers. If left untreated, they can delay recovery and cause tissue damage. Healthcare providers face challenges in treating these infections, which necessitate efficient treatment plans involving microbiological testing and clinical evaluation. The effectiveness of conventional treatments like antibiotics is limited by resistance. Various forms of nanotechnology have been developed, each exhibiting unique properties that address particular issues with conventional therapies. Among all the Nanocarriers, zinc oxide nanoparticles (ZnO NPs), offer promising treatments for persistent wound infections. ZnO NPs possess strong antibacterial, antioxidant, anti-inflammatory, and anti-diabetic properties, making them suitable for wound care applications. These nanoparticles can be produced economically and environmentally using green synthesis techniques that minimize toxicity and are biocompatible. While chemical and physical techniques offer precise control over nanoparticle characteristics, they often involve hazardous substances and energy-intensive procedures. The antibacterial qualities, low toxicity, and biological compatibility of green-synthesized ZnO NPs make them a promising treatment for wound infections. Their use in scaffolds, drug delivery systems, and wound dressings provides a viable approach to combat antibiotic resistance and enhance wound treatment outcomes. Furthermore research is necessary to fully realize the benefits of ZnO NPs in clinical practice.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aqeedat Javed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Naz Dilawar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
11
|
Xue Y, Yang F, He Y, Wang F, Xia D, Liu Y. Multifunctional Hydrogel with Photothermal ROS Scavenging and Antibacterial Activity Accelerates Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2402236. [PMID: 39780538 DOI: 10.1002/adhm.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Indexed: 01/11/2025]
Abstract
Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO2 NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties. Here, this work designs a near-infrared (NIR) light-responsive gelatin methacryloyl (GelMA)/CeO2/polydopamine (PDA) hydrogel with antibacterial and antioxidant effects. The hydrogel exhibits a stable, efficient, and controllable photothermal conversion capacity under NIR stimulation. The hydrogel can be used to construct a local microenvironment conducive to chronic diabetic wound healing. Significant antibacterial effects of the NIR-responsive GelMA/CeO2/PDA hydrogel on both Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) are demonstrated by counting colony-forming units (CFUs) and in bacterial live/dead staining experiments. The strong antioxidant activity of hydrogels is demonstrated by measuring the level of reactive oxygen species (ROS). The effect of the NIR-responsive GelMA/CeO2/PDA hydrogel in terms of promoting diabetic wound healing is validated in full-thickness cutaneous wounds of diabetic rat models. Additionally, this work describes the mechanism by which the NIR-responsive GelMA/CeO2/PDA hydrogel promotes diabetic wound healing; the hydrogel inhibits the interleukin (IL)-17 signaling pathway. This NIR-responsive, multifunctional hydrogel dressing provides a targeted approach to diabetic wound healing.
Collapse
Affiliation(s)
- Yijia Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yunjiao He
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
12
|
Kadir ML, Dageri A, Aslan TN. Nanopesticides for managing primary and secondary stored product pests: Current status and future directions. Heliyon 2025; 11:e42341. [PMID: 40034316 PMCID: PMC11872584 DOI: 10.1016/j.heliyon.2025.e42341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
The preservation of agricultural commodities during storage is critical for ensuring food security and minimizing post-harvest losses. Both primary storage pests such as Callosobruchus maculatus, Callosobruchus chinensis, Sitophilus weevils, Rhyzopertha dominica, and Trogoderma granarium, and secondary storage pests like Tribolium castaneum cause significant damage to stored products, resulting in substantial economic losses. Traditional pest control methods, including chemical insecticides, face limitations due to environmental concerns and pest resistance. Consequently, nanoparticle-based insecticides are being extensively suggested as a promising alternative. This review analyzes the available literature on the efficacy of nanoparticles (NPs) against primary and some secondary storage pests. Green synthesis methods using plant extracts and other biological sources are highlighted for the production of environmentally friendly NPs. Studies demonstrate that NPs of alumina, carbon, silica, silver, copper, zinc oxide, nickel oxide, titanium dioxide, nano zeolite, as well as chitosan and polymers exhibit significant insecticidal activity against a variety of pests, in some cases surpassing mortality rates caused by traditional insecticides at recommended dosages. Structural, biochemical and molecular studies reveal that NPs induce oxidative stress, disrupt cellular homeostasis, and cause structural damage in pests. Histopathological evaluations indicate specific organ-related toxicity, emphasizing the need for comprehensive biosafety assessments. Additionally, the integration of NPs with conventional insecticides shows enhanced pest control efficiency, although challenges remain in standardizing synthesis methods and evaluating long-term environmental impacts. This review highlights the potential of NPs in sustainable pest management and underlines the importance of ongoing research to optimize specific formulations for specific groups of pests and ensure safety.
Collapse
Affiliation(s)
- Mohammed Lengichow Kadir
- Department of Biology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Asli Dageri
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| |
Collapse
|
13
|
Santana da Costa T, Delgado GG, Braga CB, Tasic L. Insights into the fungal secretomes and their roles in the formation and stabilization of the biogenic silver nanoparticles. RSC Adv 2025; 15:6938-6951. [PMID: 40041383 PMCID: PMC11877120 DOI: 10.1039/d4ra07962k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
The biosynthesis of silver nanoparticles (AgNPs) using biological systems has emerged as a promising alternative to traditional chemical methods, providing eco-friendly solutions in nanotechnology. This study investigates the secretomes of two strains of Fusarium oxysporum (VR039 and 07SD) to synthesize AgNPs (AgNP@Fo VR039 and AgNP@Fo 07SD), characterized by similar sizes of 35.4 ± 12.4 nm and 28.6 ± 9.5 nm, respectively. We conducted proteomic analysis via mass spectrometry on both secretomes and nanoparticles, identifying proteins involved in the biosynthesis, stabilization, and antimicrobial activity of the nanoparticles. Our results indicate notable similarities in the proteomes of both nanoparticles and their respective secretomes, correlating with similar antimicrobial efficacy against Staphylococcus aureus and Escherichia coli, as demonstrated through bacterial growth inhibition assays. The presence of redox proteins, such as glyceraldehyde reductase and FAD-oxidoreductase, suggests a potential mechanism for the generation of reactive oxygen species (ROS) and oxidative stress in bacterial cells, further validated by fluorescence microscopy to differentiate viable from non-viable cells. Unlike previous studies that have focused separately on metal ion reduction or nanoparticle stabilization, our findings reveal a coordinated biosynthetic process where the same proteins mediate both functions. This overlap between the secretome and nanoparticle proteome provides new insights into fungal-mediated nanoparticle synthesis, highlighting the multifunctionality of fungal proteins in bionanotechnology. By demonstrating how secreted enzymes directly contribute to nanoparticle formation, this study paves the way for more efficient, scalable, and environmentally sustainable approaches to biogenic nanoparticle production.
Collapse
Affiliation(s)
- Thyerre Santana da Costa
- Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, UNICAMP Campinas SP 13083-970 Brazil
| | - Gonzalo García Delgado
- Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, UNICAMP Campinas SP 13083-970 Brazil
| | - Carolyne Brustolin Braga
- Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, UNICAMP Campinas SP 13083-970 Brazil
| | - Ljubica Tasic
- Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, UNICAMP Campinas SP 13083-970 Brazil
| |
Collapse
|
14
|
Jafar NNA, Abd Hamid J, M A Altalbawy F, Sharma P, Kumar A, Shomurotova S, Jihad Albadr R, Atiyah Altameemi KK, Mahdi Saleh H, Alajeeli F, Mohammed Ahmed A, Ahmad I, Dawood II. Gadolinium (Gd)-based nanostructures as dual-armoured materials for microbial therapy and cancer theranostics. J Microencapsul 2025:1-27. [PMID: 39992246 DOI: 10.1080/02652048.2025.2469259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Gadolinium (Gd) nanoparticles hold significant promise in medical theranostics due to their unique properties. This review outlines the synthesis, characterisation, and applications of Gd nanostructures in combating microbial threats and advancing cancer theragnostic strategies. Synthesis methods such as co-precipitation, microemulsion, and laser ablation are discussed, alongside TEM, SEM, and magnetic characterisation. The antimicrobial efficacy of Gd nanostructures, their potential in combination therapy, and promising anticancer mechanisms are explored. Biocompatibility, toxicity, and regulatory considerations are also evaluated. Challenges, future perspectives, and emerging trends in Gd nanostructure research are highlighted, emphasising their transformative potential in medical applications.
Collapse
Affiliation(s)
- Nadhir N A Jafar
- AL-Zahraa University for Women, College of Health and Medical Technology, Kerbala, Iraq
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pawan Sharma
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | | | | | - Hawraa Mahdi Saleh
- Department of Dentistry, Al-Manara College For Medical Sciences, Maysan, Iraq
| | - Fakhri Alajeeli
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, Iraq
| | - Ahmed Mohammed Ahmed
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| | - Irfan Ahmad
- Central Labs, King Khalid University, AlQura'a, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Imad Ibrahim Dawood
- Department of Medical Laboratories Technology, Mazaya University College, Nasiriyah, Iraq
| |
Collapse
|
15
|
Harine A, Ranjani S, Hemalatha S. Antifungal efficacy of Citrusfusion mediated silver nanoparticles in Candida species. BMC Biotechnol 2025; 25:18. [PMID: 39979871 PMCID: PMC11841014 DOI: 10.1186/s12896-025-00952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Candida species are commensal fungi that can become opportunistic pathogens under specific host and environmental conditions. The emergence of multidrug-resistant Candida strains poses a significant challenge. Nanotechnology represents a cutting-edge field offering precise and targeted delivery systems for combating fungal infections, leveraging the unique properties of plant-derived bioactive compounds. This investigation employed a biogenic approach utilizing polyherbal leaf extracts from Citrus limon and Citrus medica, known for their abundant Citral content. RESULTS Citrus sp. extracts were used to synthesize Citrusfusion silver nanoparticles (CitAgNPs) through a green synthesis method. Characterization of CitAgNPs was carried out using advanced analytical methods ensuring the quality, uniformity, size, and charge. The synthesized CitAgNPs exhibited non toxic effect when tested on Vigna radiata and Danio rerio, highlighting their potential for sustainability and safe therapeutic use. Antifungal assays demonstrated the potent efficacy of CitAgNPs in various Candida strains, with low MIC and MFC. CitAgNPs exhibited remarkable biofilm inhibition capabilities and elucidated specific mechanisms of action in Candida species, surpassing the performance of fluconazole. CONCLUSION This study underscores the immense potential of nanotechnology-driven approaches harnessing Citrus leaf extract for synthesizing highly effective antifungal nanoparticles. The fusion of biogenic nanoparticles with Citrus bioactive compounds presents a sustainable strategy for addressing the escalating challenge of azole-resistant Candida infections. The research outcomes suggest that CitAgNPs have promising applications in inhibiting Candida biofilms, offering potential solutions for infections caused by diaper rashes and onychomycosis, providing safe and effective alternatives to antifungal therapies.
Collapse
Affiliation(s)
- A Harine
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - S Ranjani
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - S Hemalatha
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
16
|
Freeman R, Bollong MJ. HPPE Activates NRF2 Signaling by Liberating Heavy Metal Stores. Chembiochem 2025; 26:e202400529. [PMID: 39240245 PMCID: PMC11948088 DOI: 10.1002/cbic.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
The Cap'n'collar transcription factor BACH1 represses the transcription of gene products involved in oxidative stress protection. Accordingly, agents capable of inhibiting the activity of BACH1 would be of keen interest in treating several autoimmune and age-related diseases. Here, we report that a previously annotated BACH1 inhibitor, HPPE, does not inhibit BACH1 but instead activates a NRF2 driven transcription program that is dependent on the canonical cysteine sensors of NRF2 inhibitory protein KEAP1. Mechanistically, HPPE acts as an ionophore, liberating cellular Zn2+ stores and inducing non-lethal levels of reactive oxygen species, resulting in KEAP1 inactivation. These data provide a surprising mechanism by which HPPE acts in cells and suggest that inducing small amounts of cellular stress may be a viable mechanism for activating NRF2 therapeutically.
Collapse
Affiliation(s)
- Rebecca Freeman
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | | |
Collapse
|
17
|
Maklakova M, Villarreal-Gómez LJ, Nefedova E, Shkil N, Luna Vázquez-Gómez R, Pestryakov A, Bogdanchikova N. Potential Antibiotic Resurgence: Consecutive Silver Nanoparticle Applications Gradually Increase Bacterial Susceptibility to Antibiotics. ACS OMEGA 2025; 10:4624-4635. [PMID: 39959090 PMCID: PMC11822480 DOI: 10.1021/acsomega.4c09240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/18/2025]
Abstract
The increasing prevalence of resistant bacteria has emerged as a critical public health concern due to their ability to resist multiple antibiotics. This study aimed to investigate whether repeated treatments with silver nanoparticles (AgNPs) could gradually decrease bacterial resistance to antibiotics. The methodology involved three consecutive applications of AgNPs on six bacterial strains, followed by assessing their susceptibility to 38 different antibiotics. To our knowledge, the following three phenomena were observed for the first time. (1) During three consecutive AgNP applications, it was revealed that all the studied bacteria gradually became more susceptible to 38 antibiotics; by the end of the treatments, susceptibility had doubled for five bacteria and tripled for Klebsiella pneumoniae compared to the susceptibility before the first AgNP application. (2) Three consecutive AgNP treatments led to 27-47% restoration of bacterial susceptibility to antibiotics, which had already completely lost their activity before the initial AgNP application. (3) Unlike previous studies, we discovered a novel effect: the repeated AgNP applications increased the susceptibility of Salmonella enteritidis and Staphylococcus aureus to AgNPs themselves. Obtained results suggest that AgNP treatments may offer a new promising strategy to combat antibiotic resistance.
Collapse
Affiliation(s)
- Maria Maklakova
- Facultad
de Pedagogía e Innovación Educativa, Universidad Autónoma de Baja California, Mexicali, Baja California 21360, Mexico
| | - Luis Jesús Villarreal-Gómez
- Facultad
de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California 22260, Mexico
| | - Ekaterina Nefedova
- Siberian
Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy
of Sciences, Novosibirsk 630501, Russian
Federation
| | - Nikolay Shkil
- Siberian
Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy
of Sciences, Novosibirsk 630501, Russian
Federation
| | - Roberto Luna Vázquez-Gómez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, Ensenada, Baja California 22890, Mexico
| | - Alexey Pestryakov
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Nina Bogdanchikova
- Centro de
Nanociencias y Nanotecnología, Universidad
Nacional Autónoma de México, Ensenada, Baja California 22800, Mexico
| |
Collapse
|
18
|
Selvaraj S, P V S, Nagappan S, Kundu S, Singaram V, Pattanayak DK, Chandrasekaran N. Gelation of Polyisocyanurate Xerogel Composites Induced by Silver Nanoparticles and Their Electrospun Fibers with Biocompatible and Antibacterial Properties for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2224-2236. [PMID: 39837783 DOI: 10.1021/acs.langmuir.4c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
We report the in situ synthesis of silver-containing polyisocyanurate (Ag-PI) gels via the self-polymerization of isocyanate-containing organic molecules (Desmodur N75) catalyzed by silver nitrate (AgNO3) in N,N'-dimethylformamide, which acts as both the solvent and reducing agent. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the formation of polyisocyanurate and metallic silver nanoparticles. Gelation occurred in 30 min at 30 °C for Ag-PI, compared to 24 h for the uncatalyzed system, demonstrating AgNO3's catalytic role. Ag-PI gels exhibited superior compressive strength (up to ∼30 MPa with 74.3% bearing nature) compared to bare polyurea (∼6 MPa). Electrospun fibers (500-750 nm) and xerogels demonstrated excellent antibacterial activity against "Staphylococcus aureus" and "Escherichia coli" and were nontoxic to MG 63 cells, making them promising for tissue engineering applications.
Collapse
Affiliation(s)
- Seethalakshmi Selvaraj
- Electroplating Metal Finishing Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003 TamilNadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreya P V
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, TamilNadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, TamilNadu, India
| | - Subrata Kundu
- Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, TamilNadu, India
| | - Vengatesan Singaram
- Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, TamilNadu, India
| | - Deepak K Pattanayak
- Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, TamilNadu, India
| | - Naveen Chandrasekaran
- Electroplating Metal Finishing Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003 TamilNadu, India
| |
Collapse
|
19
|
Pareek N, Kalita N, Pandey R, Samanta A. Methionine-Derived Fluorescent Probes Targeting Mitochondria: A Tool for Real-Time Oxidative Stress Monitoring in Live Cells. Chembiochem 2025; 26:e202400893. [PMID: 39797544 DOI: 10.1002/cbic.202400893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Reactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection. Out of these two fluorescent probes, PSSM shows a strong turn-on emission via a photoinduced electron transfer (PeT) mechanism, excellent mitochondrial localization, and rapid response to HOCl with high selectivity among reactive oxygen species by achieving a detection limit of 2.41 μM. It successfully detects both exogenous and endogenous HOCl in live cells, enabling the study of HOCl's role at the organelle level. Structural analysis of PSSM via thioether oxidation confirmed by HPLC, NMR and HRMS further supports its specificity. Confocal imaging and flow cytometry studies further highlights its utility in investigating oxidative stress, positioning this fluorophore as a valuable tool for monitoring HOCl imbalances in biological systems.
Collapse
Affiliation(s)
- Niharika Pareek
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Nripankar Kalita
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Roopam Pandey
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| |
Collapse
|
20
|
Krauß J, Georgieva R, Karabaliev M, Hackmann M, Rerkshanandana P, Chaiwaree S, Kalus U, Pruß A, Xiong Y, Bäumler H. Investigation on the Interaction of Dendritic Core Multi-Shell Nanoparticles with Human Red Blood Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:187. [PMID: 39940163 PMCID: PMC11820349 DOI: 10.3390/nano15030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
The use of nanoparticles is becoming increasingly apparent in a growing number of medical fields. To exploit the full potential of these particles, it is essential to examine their behavior in the blood and their possible interactions with blood cells. Dendritic core multi-shell DendroSol™ nanoparticles (DS-NPs) are able to penetrate into viable layers of human skin, but nothing is known about their interaction with blood cells. In the present study, we analyze the effect of DS-NPs on red blood cells (RBCs) using confocal laser scanning microscopy (CLSM), flow cytometry, sedimentation rate analysis, spectrophotometry, and hemolysis assays. DS-NPs labeled with Nile red (NR) were added to RBC suspensions and their accumulation in the area of the RBC membranes was demonstrated by CLSM as well as by flow cytometry. In the presence of DS-NPs, the RBCs show an increased sedimentation rate, which also confirms the binding of the NPs to the cells. Interestingly, in the presence of DS-NPs, the RBCs are stabilized against hypotonic hemolysis as well as against the hemolytic action of Triton X-100. This proven anti-hemolytic effect could be utilized to enhance the circulation time of RBCs loaded with drugs for prolonged sustained release and drug delivery with enhanced bioavailability.
Collapse
Affiliation(s)
- Jakob Krauß
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
- Department of Medical Physics, Biophysics & Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Miroslav Karabaliev
- Department of Medical Physics, Biophysics & Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Moritz Hackmann
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
| | - Pichayut Rerkshanandana
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
| | - Saranya Chaiwaree
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
- Department of Pharmaceutical Technology and Biotechnology, Faculty of Pharmacy, Payap University Chiang Mai, Chiang Mai 50000, Thailand
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
| | - Yu Xiong
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.K.); (R.G.); (M.H.); (P.R.); (S.C.); (U.K.); (A.P.); (Y.X.)
- Department of Pharmaceutical Technology and Biotechnology, Faculty of Pharmacy, Payap University Chiang Mai, Chiang Mai 50000, Thailand
| |
Collapse
|
21
|
Thapliyal D, Verros GD, Arya RK. Nanoparticle-Doped Antibacterial and Antifungal Coatings. Polymers (Basel) 2025; 17:247. [PMID: 39861318 PMCID: PMC11768809 DOI: 10.3390/polym17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings.
Collapse
Affiliation(s)
- Devyani Thapliyal
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| | - George D. Verros
- Department of Chemistry, Aristotle University of Thessaloniki, Plagiari Thes., P.O. Box 454, 57500 Epanomi, Greece;
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| |
Collapse
|
22
|
Thangamuniyandi P, Umapathy D, Nagarajan L, Velanganni Arockiam AJ. Blue-LED assisted Photodegradation kinetics of rhodamine-6G dye, enhanced anticancer activity and cleavage of plasmids using Au-ZnO nanocomposite. Heliyon 2025; 11:e41061. [PMID: 39801960 PMCID: PMC11721231 DOI: 10.1016/j.heliyon.2024.e41061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the in situ generated reactive oxygen species (ROS, e.g. ·OH and O2 -·) authoritatively enhances its biological and catalytic activity. Herein, a hexagonal rod-shaped ZnO nanoparticles (NP) precursor was prepared using the sol-gel method, which in the presence of varying concentrations of gold (0.005M, 0.01M, and 0.015M) via a greener citrate reduction method afforded a nanocrystalline Au-ZnO nanocomposite. Using which, the visible-light driven photo-degradation kinetics investigation of rhodamine-6G (R6G) dye under blue LED irradiation were carried out. The use of 20 mg 0.015-Au-ZnO completes the degradation of R6G (97.0 %, k = 6.5 X 10-3s-1 at pH 7) within 55 min while 50 mg of 0.015-Au-ZnO catalyst improves the rate of R6G degradation (15 min 97.8 %, k = 14.8 × 10-3 s-1) and it is reusable up to three cycles. The LC-MS spectra of the remains of R6G (after 15 min) identified various low molecular ions (up m/z = 65). Further, the blue-LED assisted anti-cancer studies (MTT assay) using 0.015-Au-ZnO towards human lung cancer cells (A549), breast cancer cells (SKBr3) show high anti-proliferation rate and low cytotoxicity against healthy human embryonic kidney cells (HEK-293) with an IC50 value of 65, 53 and 124 μg/mL respectively. Also, the AO-EB dual staining and DCFH-DA analysis of SKBr3 and A549 cells revealed ROS-mediated cell death via apoptosis. Moreover, plasmid cleavage studies against supercoiled pBR322 DNA result in single-stranded linear DNA without traversing the nicked circular form, suggesting the possible DNA targeting activity of Au-ZnO nanozyme. Thus, the synthesized Au-ZnO nanocomposite shows excellent photocatalytic and biological activity.
Collapse
Affiliation(s)
- Pilavadi Thangamuniyandi
- School of Chemistry, Structural and Photochemistry Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Devan Umapathy
- School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Loganathan Nagarajan
- School of Chemistry, Structural and Photochemistry Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
- UGC Faculty Recharge Programme, UGC, New Delhi, India
| | - Antony Joseph Velanganni Arockiam
- School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
23
|
Wei F, Yang W, Wang H, Song S, Ji Y, Chen Z, Zhuang Y, Dai J, Shen H. Reactive oxygen species-scavenging biomaterials for neural regenerative medicine. Biomater Sci 2025; 13:343-363. [PMID: 39620279 DOI: 10.1039/d4bm01221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Reactive oxygen species (ROS) are natural by-products of oxygen metabolism. As signaling molecules, ROS can regulate various physiological processes in the body. However excessive ROS may be a major cause of inflammatory diseases. In the field of neurological diseases, ROS cause neuronal apoptosis and neurodegeneration, which severely impede neuroregeneration. Currently, ROS-scavenging biomaterials are considered as a promising therapeutic strategy for neurological injuries due to their ability to scavenge excessive ROS at defects and modulate the oxidative stress microenvironment. This review provides an overview of the generation and sources of ROS, briefly describes the dangers of generating excessive ROS in nervous system diseases, and highlights the importance of scavenging excessive ROS for neuroregeneration. We have classified ROS-scavenging biomaterials into three categories based on the different mechanisms of ROS clearance. The applications of ROS-responsive biomaterials for neurological diseases, such as spinal cord injury, brain injury, and peripheral nerve injury, are also discussed. Our review contributes to the development of ROS-scavenging biomaterials in the field of neural regeneration.
Collapse
Affiliation(s)
- Feng Wei
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Wen Yang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| | - Huiru Wang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuxuan Ji
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Zhong Chen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing 100101, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
24
|
Murugesan S, Balasubramanian S, Perumal E. Copper oxide nanoparticles induced reactive oxygen species generation: A systematic review and meta-analysis. Chem Biol Interact 2025; 405:111311. [PMID: 39551423 DOI: 10.1016/j.cbi.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely employed in various industrial and biomedical applications owing to their enhanced physicochemical characteristics. However, concerns regarding their adverse effects on biological systems upon entering the environment remain unexplored. The generation of reactive oxygen species (ROS) is one of the primary mechanisms in CuO NPs induced toxicity. This meta-analysis was conducted to assess the associative link between CuO NPs exposure and ROS generation. A literature survey was performed in PubMed, Web of Science, Scopus, and Google Scholar, following PRISMA guidelines. After comprehensive initial and primary screening, 28 in vitro studies were selected for meta-analysis. Overall, our results show a substantial increase of ROS in the experimental group when compared to control (SMD = 3.3; 95 % CI: 2.82-3.77, p = 0.00001), with substantial heterogeneity (82 %). Subgroup analysis revealed that larger-sized NPs, higher dosages, and longer exposure duration were associated with ROS generation. Meta-regression analysis identified size, and dosage as significant factors influencing ROS levels. Sensitivity analysis revealed an outlier study and the funnel plot results suggested potential publication bias. Overall, our results provide valuable insights of CuO NPs induced ROS generation, and the relation of variables such as size, dose, and duration in nanotoxicity assessments.
Collapse
Affiliation(s)
- Srimathi Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
25
|
Nosrati H, Heydari M. Titanium dioxide nanoparticles: a promising candidate for wound healing applications. BURNS & TRAUMA 2025; 13:tkae069. [PMID: 39759542 PMCID: PMC11697110 DOI: 10.1093/burnst/tkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Indexed: 01/07/2025]
Abstract
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO2 NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties. Furthermore, these nanoparticles can be modified to enhance their therapeutic benefits. Scaffolds and dressings containing TiO2 NPs have demonstrated promising outcomes in accelerating wound healing and enhancing tissue regeneration. This review paper covers the wound healing process, the biological properties of TiO2 NPs that make them suitable for promoting wound healing, methods for synthesizing TiO2 NPs, the use of scaffolds and dressings containing TiO2 NPs in wound healing, the application of modified TiO2 NPs in wound healing, and the potential toxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Morteza Heydari
- Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
26
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
27
|
Zhu J, Lyu Z, Qian Y, Cui H, Feng Y, Li M, Lyu L, Zhao H, Jiao C, Xiong X. Construction and Application of Fluorescent Probes with Imine Protective Groups for Hypochlorite Detection. J Fluoresc 2025; 35:55-62. [PMID: 37976020 DOI: 10.1007/s10895-023-03495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Several fluorescent probes have been designed to detect ClO- in biological systems based on the isomerization mechanism of C = N bonds. Particularly, fluorescein has emerged as an important fluorophore for detecting ClO- because of its unique properties. Previously, we introduced the fluorescein analog F-1 with an active aldehyde group. In this study, two ClO- fluorescent sensors (F-2 and F-3) with imine groups were designed and synthesized using diaminomaleonitrile and 2-hydrazylbenzothiazole as amines. The electron cloud distribution of F-2 and F-3 in ground and excited states was explored via Gaussian calculations, reasonably explaining their photophysical properties. The fluorescence detection of ClO- in solution using the two probes (F-2 and F-3) was realized based on the mechanism of imine deprotection with ClO-. NaClO concentration titration demonstrated that the colorimetric detection of ClO- with the naked eye could be achieved using both F-2 and F-3. However, after adding ClO-, the fluorescence intensity of probe F-2 increased, whereas that of probe F-3 first decreased and then increased. Probes F-2 and F-3 exhibited good selectivity, anti-interference capability, and sensitivity, with the detection limits of 169.95 and 37.30 µM, respectively. Owing to their low cell toxicity, probes F-2 and F-3 can be applied to detect ClO- in vivo. The design approach adopted in this study will further advance the future development of ClO- chemical probes through the removal of C = N bond isomerization.
Collapse
Affiliation(s)
- Junyang Zhu
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Zhaoye Lyu
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Yulan Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Hailong Cui
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Yutao Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Miao Li
- School of Biological Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Lihua Lyu
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Hongjuan Zhao
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, China.
| | - Xiaoqing Xiong
- School of Textile and Material Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, China.
| |
Collapse
|
28
|
Gomes-da-Silva NC, Correa LB, Gonzalez MM, Franca ARS, Alencar LMR, Rosas EC, Ricci-Junior E, Aguiar TKB, Souza PFN, Santos-Oliveira R. Nanoceria Anti-inflammatory and Antimicrobial Nanodrug: Cellular and Molecular Mechanism of Action. Curr Med Chem 2025; 32:1017-1032. [PMID: 38265391 DOI: 10.2174/0109298673285605231229112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Nanoceria is a well-known nanomaterial with various properties, including antioxidant, proangiogenic, and therapeutic effects. Despite its potential, there are still aspects that require further exploration, particularly its anti-inflammatory and antimicrobial activities. METHODS The global demand for novel anti-inflammatory and antimicrobial drugs underscores the significance of understanding nanoceria in both contexts. In this study, we evaluated the effect of nanoceria on macrophage polarization to better understand its anti-inflammatory effects. Additionally, we investigated the mechanism of action of nanoceria against Cryptococcus neoformans (ATCC 32045), Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), and Candida albicans. RESULTS The results demonstrated that nanoceria can polarize macrophages toward an anti-inflammatory profile, revealing the cellular mechanisms involved in the anti-inflammatory response. Concerning the antimicrobial effect, it was observed that nanoceria have a more pronounced impact on Candida parapsilosis, leading to the formation of pronounced pores on the surface of this species. CONCLUSION Finally, biochemical analysis revealed transitory alterations, mainly in liver enzymes. The data support the use of nanoceria as a potential anti-inflammatory and antimicrobial drug and elucidate some of the mechanisms involved, shedding light on the properties of this nanodrug.
Collapse
Affiliation(s)
- Natalia Cristina Gomes-da-Silva
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
| | - Luana Barbosa Correa
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - M MartInez Gonzalez
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
| | - Alefe Roger Silva Franca
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, 65065690, MA, Brazil
| | - Luciana M R Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, 65065690, MA, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21941900, RJ, Brazil
| | | | - Pedro Filho Noronha Souza
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, 60430-275, CE, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro, 23070200, RJ, Brazil
| |
Collapse
|
29
|
Vikal A, Maurya R, Patel P, Kurmi BD. Nano Revolution: Harnessing Nanoparticles to Combat Antibiotic-resistant Bacterial Infections. Curr Pharm Des 2025; 31:498-506. [PMID: 39484761 DOI: 10.2174/0113816128337749241021084050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
Nanoparticles, defined as particles ranging from 1 to 100 nanometers in size, are revolutionizing the approach to combating bacterial infections amid a backdrop of escalating antibiotic resistance. Bacterial infections remain a formidable global health challenge, causing millions of deaths annually and encompassing a spectrum from common illnesses like Strep throat to severe diseases such as tuberculosis and pneumonia. The misuse of antibiotics has precipitated the rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and carbapenem-resistant Enterobacteriaceae (CRE), underscoring the critical need for innovative therapeutic strategies. Nanotechnology offers a promising avenue in this crisis. Nanoparticles possess unique physical and chemical properties that distinguish them from traditional antibiotics. Their high surface area to volume ratio, ability to be functionalized with various molecules, and distinctive optical, electronic, and magnetic characteristics enable them to exert potent antibacterial effects. Mechanisms include physical disruption of bacterial membranes, generation of reactive oxygen species (ROS), and release of metal ions that disrupt bacterial metabolism. Moreover, nanoparticles penetrate biofilms and bacterial cell walls more effectively than conventional antibiotics and can be precisely targeted to minimize off-target effects. Crucially, nanoparticles mitigate the development of bacterial resistance by leveraging multiple simultaneous mechanisms of action, which make it challenging for bacteria to adapt through single genetic mutations. As research advances, nanotechnology holds immense promise in transforming antibacterial treatments, offering effective solutions that address current infections and combat antibiotic resistance globally. This review provides a comprehensive overview of nanoparticle applications in antibacterial therapies, highlighting their mechanisms, advantages over antibiotics, and future directions in healthcare innovation.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| |
Collapse
|
30
|
Ahmad G, Farhan Shams D, Anjum Khattak S, Khan W, Nadhman A. Decontamination of hexavalent chromium in aqueous systems through reduction with silver doped zinc oxide nanoparticles. MATERIALS LETTERS 2025; 379:137647. [DOI: 10.1016/j.matlet.2024.137647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
31
|
Priya, Gaur PK, Kumar S. Nanocarrier-Mediated Dermal Drug Delivery System of Antimicrobial Agents for Targeting Skin and Soft Tissue Infections. Assay Drug Dev Technol 2025; 23:2-28. [PMID: 39587945 DOI: 10.1089/adt.2024.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Antimicrobial resistance in disease-causing microbes is seen as a severe problem that affects the entire world, makes therapy less effective, and raises mortality rates. Dermal antimicrobial therapy becomes a desirable choice in the management of infectious disorders since the rising resistance to systemic antimicrobial treatment frequently necessitates the use of more toxic drugs. Nanoparticulate systems such as nanobactericides, which have built-in antibacterial activity, and nanocarriers, which function as drug delivery systems for conventional antimicrobials, are just two examples of the treatment methods made feasible by nanotechnology. Silver nanoparticles, zinc oxide nanoparticles, and titanium dioxide nanoparticles are examples of inorganic nanoparticles that are efficient on sensitive and multidrug-resistant bacterial strains both as nanobactericides and nanocarriers. To stop the growth of microorganisms that are resistant to standard antimicrobials, various antimicrobials for dermal application are widely used. This review covers the most prevalent microbes responsible for skin and soft tissue infections, techniques to deliver dermal antimicrobials, topical antimicrobial safety concerns, current issues, challenges, and potential future developments. A thorough and methodical search of databases, such as Google Scholar, PubMed, Science Direct, and others, using specified keyword combinations, such as "antimicrobials," "dermal," "nanocarriers," and numerous others, was used to gather relevant literature for this work.
Collapse
Affiliation(s)
- Priya
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| | - Praveen Kumar Gaur
- Department of Pharmaceutics, Metro College of Health Sciences & Research, Greater Noida, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| |
Collapse
|
32
|
Alhaddad R, Abualsoud BM, Al-Deeb I, Nsairat H. Green synthesized Zingiber officinale-ZnO nanoparticles: anticancer efficacy against 3D breast cancer model. Future Sci OA 2024; 10:2419806. [PMID: 39539163 PMCID: PMC11572278 DOI: 10.1080/20565623.2024.2419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: ZnO NPs were prepared via green synthesis utilizing Zingiber Officinale.Methodology: Physical characterization and biological activity were performed against 2D, and 3D spheroids MCF-7 cell lines.Results: The NPs exhibited 188.9, 175.7 and 171.2 nm size with charge of -8.2, -11.7 and -9.7 mV for the 2%, 3% and 4% formulations. XRD confirmed a wurtzite hexagonal phase. FTIR spectra showed Zn-O stretching vibrations. The 2%, 3% and 4% formulations presented IC50 values of 14.7, 26.2 and 47 μg/ml, respectively, with complete destruction of MCF-7 spheroids. Elevated TNF-α levels suggested an inflammatory-mediated mechanism of action.Conclusion: 2% Zingiber officinale-derived ZnO NPs showed antitumor potential against deserving further mechanistic and in vivo explorations.
Collapse
Affiliation(s)
- Ruqaya Alhaddad
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Bassam M Abualsoud
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ibrahim Al-Deeb
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, 13110, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
33
|
Mukhopadhyay B, Singh S, Singh A. Utilizing nanomaterials for cancer treatment and diagnosis: an overview. DISCOVER NANO 2024; 19:215. [PMID: 39718700 DOI: 10.1186/s11671-024-04128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024]
Abstract
Cancer is a deadly disease with complex pathophysiological nature and is the leading cause of death worldwide. Traditional diagnosis methods often detect cancer at a considerably critical stage and the conventional methods of treatment like chemotherapy, radiation therapy, targeted therapy, and immunotherapy have several limitations, multidrug resistance, cytotoxicity, and lack of specificity are a few examples. These pose substantial challenge for effective and favourable cancer treatment. The advent of nanotechnology has revolutionized the face of cancer diagnosis and treatment. Nanoparticles, which have a size range of 1-100 nm, are biocompatible and have special optical, magnetic, and electrical capabilities, less toxic, more stable, exhibit permeability and retention effect, and are used for precise targeting. There are several classes of nanoparticles each having their own sets of unique properties. NPs have played an important role in the drug delivery system, overcoming the multi-drug resistance, reducing the side-effects as seen in conventional therapeutic methods and hence able to solve the limitations of conventional methods of diagnosis and treatment. This review discusses the four major classes of nanoparticles (Lipid based NPs, Carbon NPs and Metallic NPs and Polymeric NPs): their discovery and introduction in medical field, unique properties and characteristics, advantages and disadvantages, sub-categories and characteristics of these categories, major area of application in Cancer diagnosis and treatment, and latest methodologies where these are used in cancer treatment.
Collapse
Affiliation(s)
- Bageesha Mukhopadhyay
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sudhakar Singh
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), 1888, Adama, Ethiopia.
| |
Collapse
|
34
|
Gradișteanu-Pircalabioru G, Negut I, Dinu M, Parau AC, Bita B, Duta L, Ristoscu C, Sava B. Enhancing orthopaedic implant efficacy: the development of cerium-doped bioactive glass and polyvinylpyrrolidone composite coatings via MAPLE technique. Biomed Mater 2024; 20:015019. [PMID: 39612575 DOI: 10.1088/1748-605x/ad98d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
This study investigates the potential of combining Cerium-doped bioactive glass (BBGi) with Polyvinylpyrrolidone (PVP) to enhance the properties of titanium (Ti) implant surfaces using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The primary focus is on improving osseointegration, corrosion resistance, and evaluating the cytotoxicity of the developed thin films towards host cells. The innovative approach involves synthesizing a composite thin film comprising BBGi and PVP, leveraging the distinct benefits of both materials: BBGi's biocompatibility and osteoinductive capabilities, and PVP's film-forming and biocompatible properties. Results demonstrate that the BBGi + PVP coatings significantly enhance hydrophilicity, indicating improved cell-material interaction potential. The electrochemical analysis reveals superior corrosion resistance of the BBGi + PVP films compared to BBGi alone, which is critical for long-term implant stability. The mechanical adherence tests confirm the robust attachment of the coatings to Ti substrates, surpassing the ISO standards for implant materials. Biocompatibility tests show promising cell viability and negligible cytotoxic effects, with a controlled inflammatory response, underscoring the potential of BBGi + PVP coatings for orthopedic applications. The study concludes that the synergistic combination of BBGi and PVP, applied through the MAPLE technique, offers a promising route to fabricate bioactive and corrosion-resistant coatings for Ti implants, potentially enhancing osseointegration and longevity in clinical settings.
Collapse
Affiliation(s)
- Gratiela Gradișteanu-Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
| | - Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125, Magurele, Romania
| | - Anca Constantina Parau
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125, Magurele, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Liviu Duta
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Carmen Ristoscu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Bogdan Sava
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
- University Politehnica of Bucharest, 313 Splaiul Independentei, sector 6, Bucharest, Romania
| |
Collapse
|
35
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
36
|
Wang N, Wang C, Wei C, Chen M, Gao Y, Zhang Y, Wang T. Constructing the cGAMP-Aluminum Nanoparticles as a Vaccine Adjuvant-Delivery System (VADS) for Developing the Efficient Pulmonary COVID-19 Subunit Vaccines. Adv Healthc Mater 2024; 13:e2401650. [PMID: 39319481 DOI: 10.1002/adhm.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The cGAMP-aluminum nanoparticles (CAN) are engineered as a vaccine adjuvant-delivery system to carry mixed RBD (receptor-binding domain) of the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variant for developing bivalent pulmonary coronavirus disease 2019 (COVID-19) vaccines (biRBD-CAN). High phosphophilicity/adsorptivity made intrapulmonary CAN instantly form the pulmonary ingredient-coated CAN (piCAN) to possess biomimetic features enhancing biocompatibility. In vitro biRBD-CAN sparked APCs (antigen-presenting cells) to mature and make extra reactive oxygen species, engendered lysosome escape effects and enhanced proteasome activities. Through activating the intracellular stimulator of interferon genes (STING) and nucleotide-binding domain and leucine-rich repeat and pyrin domain containing proteins 3 (NALP3) inflammasome pathways to exert synergy between cGAMP and AN, biRBD-CAN stimulated APCs to secret cytokines favoring mixed Th1/Th2 immunoresponses. Mice bearing twice intrapulmonary biRBD-CAN produced high levels of mucosal antibodies, the long-lasting systemic antibodies, and potent cytotoxic T lymphocytes which efficiently erased cells displaying cognate epitopes. Notably, biRBD-CAN existed in mouse lungs and different lymph nodes for at least 48 h, unveiling their sustained immunostimulatory activity as the main mechanism underlying the long-lasting immunity and memory. Hamsters bearing twice intrapulmonary biRBD-CAN developed high resistance to pseudoviral challenges performed using different recombinant strains including the ones with distinct SARS-CoV-2-spike mutations. Thus, biRBD-CAN as a broad-spectrum pulmonary COVID-19 vaccine candidate may provide a tool for controlling the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 420 Jade Road, Hefei, Anhui Province, 230601, China
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Can Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
- Department of Pharmacy, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, Jiangsu Province, 222006, China
| | - Chunliu Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuhao Gao
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuxi Zhang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| |
Collapse
|
37
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
38
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
39
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
40
|
Elden Hassan HSS, Moselhy WA, Ibrahim MA, Zaki AH, Khalil F, Hassanen EI, Abdel-Gawad DRI. Exosomal therapy mitigates silver nanoparticles-induced neurotoxicity in rats. Biomarkers 2024; 29:442-458. [PMID: 39417532 DOI: 10.1080/1354750x.2024.2415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Our investigation aims to appraise the neuroprotective impact of Bone Marrow-Mesenchymal Stem Cells (BM-MSCs) derived exosomes against Ag NPs-inducing neurotoxicity in rats. MATERIALS AND METHODS Twenty-four albino rats were divided into 3 groups. Group I (control negative), Group II (intraperitoneally injected with Ag NPs for 28 days, whereas Group III (intraperitoneally injected with Ag NP and BM-MSCs derived exosomes. RESULTS There was a marked elevation of Malondialdehyde (MDA) along with a reduction of brain antioxidants, Gamma-aminobutyric acid (GABA) and Monoamine Oxidase (MAO) in the Ag NPs receiving group. Ag NPs upregulated c-Jun N-terminal Kinases (JNK) genes and c-Myc and downregulated the tissue inhibitors of metalloproteinases (TIMP-1) and Histone deacetylase 1 (HDAC1) genes. Otherwise, the co-treatment of BM-MSCs derived exosomes with Ag NPs could markedly increase the rat's body weight, activity and learning while, decreasing anxiety, restoring all the toxicological parameters and improving the microscopic appearance of different brain areas. CONCLUSION BM-MSCs-derived exosomes downregulated both apoptotic and inflammatory mediators and upregulated the antiapoptotic genes. BM-MSCs-derived exosomes exhibit a great therapeutic effect against the neurotoxic effects of Ag NPs.
Collapse
Affiliation(s)
- Hanan Safwat Salah Elden Hassan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Walaa A Moselhy
- Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman H Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
41
|
Voicu SN, Mernea M, Moreau J, Carteret CE, Callewaert M, Chuburu F, Herman H, Hermenean A, Mihailescu DF, Stan MS. Unlocking the potential of biocompatible chitosan-hyaluronic acid nanogels labeled with fluorochromes: A promising step toward enhanced FRET bioimaging. Int J Biol Macromol 2024; 282:137063. [PMID: 39481720 DOI: 10.1016/j.ijbiomac.2024.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Chitosan is a natural polysaccharide widely used in medical formulations as nanoparticles due to their special properties. Our work aimed to assess the biocompatibility of chitosan-hyaluronic acid nanogels labeled with fluorochromes for use in biomedical applications, based on the FRET effect. The preparation method included the ionic gelation, grafting rhodamine or fluorescein isothiocyanate molecules onto the chitosan backbone. To assess the potential applications as fluorescence imaging tools of chitosan-fluorophores conjugates in diagnostics and therapies, SVEC4-10 cells (simian virus 40-transformed mouse microvascular endothelial cell line) and RAW264.7 murine macrophages were used within this study. Good biocompatibility was observed after 6 and 24 h of incubation with nanogels, with no increase in cell death or membrane damage for concentrations up to 120 μg/mL. Both types of fluorescent nanogels presented the tendency to agglomerate on the cell membrane's surface, and few cells were internalized, especially at the periphery of cells. Molecular dynamics simulations showed that distances between fluorophores fitted at values close to those calculated based on FRET experiments. These formulations can further incorporate gadolinium for better nanomedicine tools.
Collapse
Affiliation(s)
- Sorina N Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania.
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania.
| | - Juliette Moreau
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Charles-Emmanuel Carteret
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Maité Callewaert
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Françoise Chuburu
- Institut de Chimie Moléculaire de Reims, University of Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldiș" Western University of Arad, 310414 Arad, Romania
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania; "Aurel Ardelean" Institute of Life Sciences, "Vasile Goldiș" Western University of Arad, 310414 Arad, Romania
| | - Dan F Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania; Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Psychiatric Hospital, 10 Șoseaua Berceni Str., 041914 Bucharest, Romania.
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Bucharest, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
42
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
43
|
Solanki R, Makwana N, Kumar R, Joshi M, Patel A, Bhatia D, Sahoo DK. Nanomedicines as a cutting-edge solution to combat antimicrobial resistance. RSC Adv 2024; 14:33568-33586. [PMID: 39439838 PMCID: PMC11495475 DOI: 10.1039/d4ra06117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a critical threat to global public health, necessitating the development of novel strategies. AMR occurs when bacteria, viruses, fungi, and parasites evolve to resist antimicrobial drugs, making infections difficult to treat and increasing the risk of disease spread, severe illness, and death. Over 70% of infection-causing microorganisms are estimated to be resistant to one or several antimicrobial drugs. AMR mechanisms include efflux pumps, target modifications (e.g., mutations in penicillin-binding proteins (PBPs), ribosomal subunits, or DNA gyrase), drug hydrolysis by enzymes (e.g., β-lactamase), and membrane alterations that reduce the antibiotic's binding affinity and entry. Microbes also resist antimicrobials through peptidoglycan precursor modification, ribosomal subunit methylation, and alterations in metabolic enzymes. Rapid development of new strategies is essential to curb the spread of AMR and microbial infections. Nanomedicines, with their small size and unique physicochemical properties, offer a promising solution by overcoming drug resistance mechanisms such as reduced drug uptake, increased efflux, biofilm formation, and intracellular bacterial persistence. They enhance the therapeutic efficacy of antimicrobial agents, reduce toxicity, and tackle microbial resistance effectively. Various nanomaterials, including polymeric-based, lipid-based, metal nanoparticles, carbohydrate-derived, nucleic acid-based, and hydrogels, provide efficient solutions for AMR. This review addresses the epidemiology of microbial resistance, outlines key resistance mechanisms, and explores how nanomedicines overcome these barriers. In conclusion, nanomaterials represent a versatile and powerful approach to combating the current antimicrobial crisis.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Nilesh Makwana
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rahul Kumar
- Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC) Gandhinagar Gujarat India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University Patan 384265 Gujarat India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University Ames IA USA
| |
Collapse
|
44
|
Zagal-Salinas AA, Ispanixtlahuatl-Meráz O, Olguín-Hernández JE, Rodríguez-Sosa M, García Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide (E171) interferes with monocyte-macrophage cell differentiation and their phagocytic capacity. Food Chem Toxicol 2024; 192:114912. [PMID: 39121895 DOI: 10.1016/j.fct.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Food grade titanium dioxide E171 has been used in products such as confectionery, doughs and flours to enhance organoleptic properties. The European Union has warned about adverse effects on humans due to oral consumption. After oral exposure, E171 reaches the bloodstream which raises the concern about effects on blood cells such as monocytes. One of the main functions of these cells is the differentiation of macrophages leading to the phagocytosis of foreign particles. The aim of this study was to evaluate the effect of E171 exposure on the phagocytic capacity and differentiation process of monocytes (THP-1) into macrophages. Physicochemical E171 properties were evaluated, and THP-1 monocytes were exposed to 4, 40 and 200 μg/ml. Cell viability, uptake capacity, cytokine release, the differentiation process, cytoskeletal arrangement and E171 internalization were assayed. Results showed that E171 particles had an amorphous shape with a mean of hydrodynamic size of ∼46 nm in cell culture media. Cell viability decreased until the 9th day of exposure, while the uptake capacity decreased up to 62% in a concentration dependent manner in monocytes. Additionally, the E171 exposure increased the proinflammatory cytokines release and decreased the cell differentiation by a 61% in macrophages. E171 induced changes in cytoskeletal arrangement and some of the E171 particles were located inside the nuclei. We conclude that E171 exposure in THP-1 monocytes induced an inflammatory response, impaired the phagocytic capacity, and interfered with cell differentiation from monocytes to macrophages.
Collapse
Affiliation(s)
- Alejandro A Zagal-Salinas
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Octavio Ispanixtlahuatl-Meráz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Jonadab E Olguín-Hernández
- Laboratorio Nacional en Salud Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico.
| |
Collapse
|
45
|
Al-Samydai A, Abu Hajleh MN, Al-Sahlawi F, Nsairat H, Khatib AA, Alqaraleh M, Ibrahim AK. Advancements of metallic nanoparticles: A promising frontier in cancer treatment. Sci Prog 2024; 107:368504241274967. [PMID: 39370817 PMCID: PMC11459474 DOI: 10.1177/00368504241274967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The incidence of cancer is increasing and evolving as a major source of mortality. Nanotechnology has garnered considerable scientific interest in recent decades and can offer a promising solution to the challenges encountered with traditional chemotherapy. Nanoparticle utilization holds promise in combating cancer and other diseases, offering exciting prospects for drug delivery systems and medicinal applications. Metallic nanoparticles exhibit remarkable physical and chemical properties, such as their minute size, chemical composition, structure, and extensive surface area, rendering them versatile and cost-effective. Research has demonstrated their significant and beneficial impact on cancer treatment, characterized by enhanced targeting abilities, gene activity suppression, and improved drug delivery efficiency. By incorporating targeting ligands, functionalized metal nanoparticles ensure precise energy deposition within tumors, thereby augmenting treatment accuracy. Moreover, beyond their therapeutic efficacy, metal nanoparticles serve as valuable tools for cancer cell visualization, contributing to diagnostic techniques. Utilizing metal nanoparticles in therapeutic systems allows for simultaneous cancer diagnosis and treatment, while also facilitating controlled drug release, thus revolutionizing cancer care. This narrative review investigates the advancements of metal nanoparticles in cancer treatment, types and mechanisms in targeting cancer cells, application in clinical scenarios, and potential toxicity in medicine.
Collapse
Affiliation(s)
- Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Maha N. Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Farah Al-Sahlawi
- Department of Pharmaceutics at the College of Pharmacy, University of Alkafeel, AlNajaf, Iraq
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Arwa Al Khatib
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Alia K. Ibrahim
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
46
|
Lin Z, Jiwani Z, Serpooshan V, Aghaverdi H, Yang PC, Aguirre A, Wu JC, Mahmoudi M. Sex Influences the Safety and Therapeutic Efficacy of Cardiac Nanomedicine Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305940. [PMID: 37803920 PMCID: PMC10997742 DOI: 10.1002/smll.202305940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Nanomedicine technologies are being developed for the prevention, diagnosis, and treatment of cardiovascular disease (CVD), which is the leading cause of death worldwide. Before delving into the nuances of cardiac nanomedicine, it is essential to comprehend the fundamental sex-specific differences in cardiovascular health. Traditionally, CVDs have been more prevalent in males, but it is increasingly evident that females also face significant risks, albeit with distinct characteristics. Females tend to develop CVDs at a later age, exhibit different clinical symptoms, and often experience worse outcomes compared to males. These differences indicate the need for sex-specific approaches in cardiac nanomedicine. This Perspective discusses the importance of considering sex in the safety and therapeutic efficacy of nanomedicine approaches for the prevention, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Zahra Jiwani
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Haniyeh Aghaverdi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Phillip C Yang
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
| | - Aitor Aguirre
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48823, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Joseph C. Wu
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA 94305, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
47
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
48
|
Li J, Jin X, Jiao Z, Gao L, Dai X, Cheng L, Wang Y, Yan LT. Designing antibacterial materials through simulation and theory. J Mater Chem B 2024; 12:9155-9172. [PMID: 39189825 DOI: 10.1039/d4tb01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Antibacterial materials have a wide range of potential applications in bio-antimicrobial, environmental antimicrobial, and food antimicrobial fields due to their intrinsic antimicrobial properties, which can circumvent the development of drug resistance in bacteria. Understanding the intricate mechanisms and intrinsic nature of diverse antibacterial materials is significant for the formulation of guidelines for the design of materials with rapid and efficacious antimicrobial action and a high degree of biomedical material safety. Herein, this review highlights the recent advances in investigating antimicrobial mechanisms of different antibacterial materials with a particular focus on tailored computer simulations and theoretical analysis. From the view of structure and function, we summarize the characteristics and mechanisms of different antibacterial materials, introduce the latest advances of new antibacterial materials, and discuss the design concept and development direction of new materials. In addition, we underscore the significance of employing simulation and theoretical methodologies to elucidate the intrinsic antimicrobial mechanisms, which is crucial for a comprehensive comprehension of the control strategies, safer biomedical applications, and the management of health and environmental concerns associated with antibacterial materials. This review could potentially stimulate further endeavors in fundamental research and facilitate the extensive utilization of computational and theoretical approaches in the design of novel functional nanomaterials.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Maliar T, Blažková M, Polák J, Maliarová M, Ürgeová E, Viskupičová J. Antioxidant and Pro-Oxidant Properties of Selected Clinically Applied Antibiotics: Therapeutic Insights. Pharmaceuticals (Basel) 2024; 17:1257. [PMID: 39458897 PMCID: PMC11510234 DOI: 10.3390/ph17101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The balance between antioxidants and pro-oxidants plays a significant role in the context of oxidative stress, influenced by both physiological and non-physiological factors. OBJECTIVES In this study, 18 prescribed antibiotics (including doxycycline hydrochloride, tigecycline, rifampicin, tebipenem, cefuroxime, cefixime, potassium clavulanate, colistin, ampicillin, amoxicillin, amikacin, nalidixic acid, azithromycin, pipemidic acid trihydrate, pivmecillinam, aztreonam, fosfomycin sodium, and ciprofloxacin) were subjected to simultaneous determination of antioxidant and pro-oxidant potential to assess if pro-oxidant activity is a dominant co-mechanism of antibacterial activity or if any antibiotic exhibits a balanced effect. METHODS This study presents a recently developed approach for the simultaneous assessment of antioxidant and pro-oxidant potential on a single microplate in situ, applied to prescribed antibiotics. RESULTS Ten antibiotics from eighteen showed lower antioxidant or pro-oxidant potential, while five exhibited only mild potential with DPPH50 values over 0.5 mM. The pro-oxidant antioxidant balance index (PABI) was also calculated to determine whether antioxidant or pro-oxidant activity was dominant for each antibiotic. Surprisingly, three antibiotics-doxycycline hydrochloride, tigecycline, and rifampicin-showed significant measures of both antioxidant and pro-oxidant activities. Especially notable was tebipenem, a broad-spectrum, orally administered carbapenem, showed a positive PABI index ratio, indicating a dominant antioxidant over pro-oxidant effect. CONCLUSIONS These findings could be significant for both therapy, where the antibacterial effect is enhanced by radical scavenging activity, and biotechnology, where substantial pro-oxidant activity might limit microbial viability in cultures and consequently affect yield.
Collapse
Affiliation(s)
- Tibor Maliar
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Marcela Blažková
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia
| | - Jaroslav Polák
- Helgeheim Inc., Palackého 6403, 911 01 Trenčín, Slovakia;
| | - Mária Maliarová
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Eva Ürgeová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
| | - Jana Viskupičová
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| |
Collapse
|
50
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|