1
|
Nakahata A, Ito A, Nakahara R, Kuroki H. Meniscus Injury Induces Patellofemoral Osteoarthritis Development Mediated by Synovitis and Gait Kinematics: A Preclinical Study. Cartilage 2024:19476035241299769. [PMID: 39567862 PMCID: PMC11580119 DOI: 10.1177/19476035241299769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/20/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE To investigate whether meniscal injury leads to the development of patellofemoral (PF) osteoarthritis (PFOA) and to explore how synovitis and gait kinematics mediate this relationship. METHODS Fifty-four male Wistar rats (12 weeks old) were randomly assigned to the control, sham, or destabilized medial meniscus (DMM) groups. The rats were subjected to gait analysis to assess the kinematic changes at 2, 4, and 8 weeks postoperatively. Subsequently, the rats were euthanized, and their right knees were harvested for histological analysis. RESULTS The Osteoarthritis Research Society International (OARSI) and modified Mankin (MM) scores in the DMM group were significantly higher than those in the control and sham groups at week 2 and significantly higher than those in the control group at week 4. The OARSI and MM scores in the sham group were significantly higher than those in the control group at weeks 2 and 4. The association between the DMM and OARSI scores was significantly mediated by the synovitis score and knee flexion angle at foot contact (proportion mediated: 58% and 10%, respectively). The association between the sham and OARSI scores was significantly mediated by the synovitis score and knee flexion angle (proportion mediated: 24% and 24%, respectively). CONCLUSIONS DMM surgery induced articular cartilage damage in the PF joint. Synovitis and the knee flexion angle significantly mediated the association between DMM or sham surgery and PFOA development.
Collapse
Affiliation(s)
- Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Li X, Zhang S, Du L, Ping F, Gao Q, Liu Y. Microstructural changes of cartilage and subchondral bone in a guinea pig model of early- and middle-stage patellofemoral arthritis. Am J Transl Res 2023; 15:847-857. [PMID: 36915787 PMCID: PMC10006769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/27/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Patellofemoral arthritis is a common type of knee osteoarthritis and a prime cause of anterior knee pain and disability. Most of the existing research on knee osteoarthritis focuses on tibial-femoral arthritis, while studies on patellofemoral arthritis are relatively rare. This study aims to observe changes in osteochondral and subchondral bone structure over time in the patella and femoral trochlea in an animal model of spontaneous patellofemoral arthritis. METHODS A total of 24 1-, 3- or 5-month-old healthy female Hartley guinea pigs were used for experiments. No intervention was applied, and the mechanical pain threshold was assessed prior to euthanasia. Bilateral knee joints were collected in the animals at the different ages, and the patellofemoral joints were taken to evaluate the bone microstructure of patellofemoral articular cartilage and subchondral bone by macroscopy, histopathology and micro-computed tomography (micro-CT). RESULTS There was a significant difference in the severity of femoral trochlea injury assessed by the Macro score between 5- and 1-month-old groups (P<0.01), as well as in patellar cartilage damage (P<0.05). The mechanical pain threshold of lower extremities in each group was statistically different between different age groups (P<0.05). The OARSI articular cartilage histopathological scores, including patella and femoral trochlea, were significantly different among 1-, 3- and 5-month-old groups. The 5-month-old group exhibited statistically lower values of bone volume/trabecular volume, trabecular number and trabecular thickness in the femoral subchondral bone and evidently higher structure model index than the 1-month-old group. CONCLUSIONS This study demonstrated that 3- to 5-month-old female Hartley guinea pigs can develop early-to-mid-stage spontaneous patellofemoral arthritis that causes significant cartilage degeneration and loss of subchondral bone. In addition, the bone microarchitecture of the femur is more severely degraded.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054, Shaanxi, China
| | - Shihui Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054, Shaanxi, China
| | - Longlong Du
- Traditional Chinese Medicine, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054, Shaanxi, China
| | - Fan Ping
- Shaanxi University of Traditional Chinese Medicine School of Pharmacy Xianyang 712046, Shaanxi, China
| | - Qimeng Gao
- The First Clinical Medical College of Shaanxi University of Traditional Chinese Medicine Xianyang 712046, Shaanxi, China
| | - Yafei Liu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054, Shaanxi, China
| |
Collapse
|
3
|
Kaneguchi A, Ozawa J, Yamaoka K. Effects of Joint Immobilization and Treadmill Exercise on Articular Cartilage After ACL Reconstruction in Rats. Orthop J Sports Med 2022; 10:23259671221123543. [PMID: 36276424 PMCID: PMC9580101 DOI: 10.1177/23259671221123543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background: The development of osteoarthritis after anterior cruciate ligament (ACL) reconstruction (ACLR) is an important issue. However, the appropriate rehabilitation protocol to prevent cartilage degeneration due to postoperative osteoarthritis is unclear. Purpose: To examine the effects of joint immobilization and treadmill exercise on articular cartilage after ACLR. Study Design: Controlled laboratory study. Methods: A total of 55 rats received unilateral knee ACL transection and reconstruction surgery using tail tendon autografts. After surgery, rats were reared without intervention, with joint immobilization, or with daily treadmill exercise (12 m/minute, 60 minutes/day, 6 days/week). Treadmill exercise was initiated at 3 or 14 days postoperatively. After 2 weeks of immobilization, the fixation device was removed from some of the immobilized rats, and the knee was allowed to move freely for 2 weeks. Untreated, age-matched rats (n = 8) were used as controls. At 2 or 4 weeks after starting the experiment, cartilage degeneration in the medial tibial plateau was histologically assessed using a modified Mankin score, cartilage thickness, chondrocyte density, and immunohistochemistry for cyclooxygenase-2 (COX-2) in the anterior, middle, and posterior regions. Results: After ACLR, cartilage degeneration in the anterior region characterized by increased Mankin score, accompanied with increased COX-2 expression, was detected. Joint immobilization after ACLR facilitated cartilage degeneration, which is detected by histological changes such as reductions in cartilage thickness, chondrocyte density, and high Mankin scores. Enhanced COX-2 expression in all degenerated cartilage regions was also detected. It was found that 2 weeks of remobilization could not restore cartilage degeneration induced by 2 weeks of immobilization after ACLR. Treadmill exercise after ACLR did not affect most articular cartilage parameters, regardless of the timing of exercise. Conclusion: Our results indicated that (1) immobilization after ACLR accelerates cartilage degeneration, even when applied only for 2 weeks, and (2) mild exercise during early phases after ACLR does not facilitate cartilage degeneration. Clinical Relevance: To reduce cartilage degeneration, periods of joint immobilization after ACLR should be minimized. Mild exercise during the early phases after ACLR will not negatively affect articular cartilage.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan.,Junya Ozawa, PT, PhD, Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan ()
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
4
|
Chen R, Li X, Sun Z, Yin J, Hu X, Deng J, Liu X. Intra-bone marrow injection of magnesium isoglyrrhizinate inhibits inflammation and delays osteoarthritis progression through the NF-κB pathway. J Orthop Surg Res 2022; 17:400. [PMID: 36045373 PMCID: PMC9429748 DOI: 10.1186/s13018-022-03294-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Osteoarthritis (OA) presents cartilage damage in addition to chronic inflammation. However, self-recovery of damaged cartilage in an inflammatory environment is not possible. Mesenchymal stem cells (MSCs) in the bone marrow are a source of regenerative repair of damaged cartilage. To date, whether intra-luminal administration of the bone marrow can delay the progression of OA is still unknown. This study, therefore, aimed to explore the role of intra-bone marrow injection of Magnesium isoglycyrrhizinate (MgIG) in delaying the OA progression and to investigate the underlying mechanism. Methods Rabbit OA models were established using the anterior cruciate ligament transection method while a catheter was implanted into the bone marrow cavity. 1 week after surgery, MgIG treatment was started once a week for 4 weeks. The cartilage degradation was analyzed using hematoxylin–eosin staining, Masson’s trichrome staining and Alcian blue staining. Additionally, the pro-inflammatory factors and cartilage regeneration genes involved in the cartilage degeneration and the underlying mechanisms in OA were detected using enzyme-linked immunosorbent assay, quantitative real-time PCR (qRT-PCR) and Western blotting. Results The results of histological staining revealed that intra-bone marrow injection of MgIG reduced degeneration and erosion of articular cartilage, substantially reducing the Osteoarthritis Research Society International scores. Furthermore, the productions of inflammatory cytokines in the bone marrow cavity and articular cavity such as interleukin-1β(IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were inhibited upon the treatment of MgIG. At the same time, the expression of alkaline phosphate, tartrate-resistant acid phosphatase-5b (TRAP-5b) and C-telopeptides of type II collagen (CTX-II) in the blood also decreased and was positively correlated. On the contrary, cartilage-related genes in the bone marrow cavity such as type II collagen (Col II), Aggrecan (AGN), and SRY-box 9 (SOX9) were up-regulated, while matrix metalloproteinase-3 (MMP-3) was down-regulated. Mechanistically, MgIG was found to exert an anti-inflammatory effect and impart protection to the cartilage by inhibiting the NF-κB pathway. Conclusion Intra-bone marrow injection of MgIG might inhibit the activation of the NF-κB pathway in the progression of OA to exert an anti-inflammatory effect in the bone marrow cavity and articular cavity, thereby promoting cartilage regeneration of MSCs in the bone marrow, making it a potential new therapeutic intervention for the treatment of OA.
Collapse
Affiliation(s)
- Rong Chen
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiangwei Li
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhibo Sun
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Junyi Yin
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Xiaowei Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Jingwen Deng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Xinghui Liu
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China.
| |
Collapse
|
5
|
Liu Y, Dzidotor G, Le TT, Vinikoor T, Morgan K, Curry EJ, Das R, McClinton A, Eisenberg E, Apuzzo LN, Tran KTM, Prasad P, Flanagan TJ, Lee SW, Kan HM, Chorsi MT, Lo KWH, Laurencin CT, Nguyen TD. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci Transl Med 2022; 14:eabi7282. [PMID: 35020409 DOI: 10.1126/scitranslmed.abi7282] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
More than 32.5 million American adults suffer from osteoarthritis, and current treatments including pain medicines and anti-inflammatory drugs only alleviate symptoms but do not cure the disease. Here, we have demonstrated that a biodegradable piezoelectric poly(L-lactic acid) (PLLA) nanofiber scaffold under applied force or joint load could act as a battery-less electrical stimulator to promote chondrogenesis and cartilage regeneration. The PLLA scaffold under applied force or joint load generated a controllable piezoelectric charge, which promoted extracellular protein adsorption, facilitated cell migration or recruitment, induced endogenous TGF-β via calcium signaling pathway, and improved chondrogenesis and cartilage regeneration both in vitro and in vivo. Rabbits with critical-sized osteochondral defects receiving the piezoelectric scaffold and exercise treatment experienced hyaline-cartilage regeneration and completely healed cartilage with abundant chondrocytes and type II collagen after 1 to 2 months of exercise (2 to 3 months after surgery including 1 month of recovery before exercise), whereas rabbits treated with nonpiezoelectric scaffold and exercise treatment had unfilled defect and limited healing. The approach of combining biodegradable piezoelectric tissue scaffolds with controlled mechanical activation (via physical exercise) may therefore be useful for the treatment of osteoarthritis and is potentially applicable to regenerating other injured tissues.
Collapse
Affiliation(s)
- Yang Liu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Godwin Dzidotor
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Thinh T Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kristin Morgan
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Eli J Curry
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Aneesah McClinton
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ellen Eisenberg
- Division of Oral and Maxillofacial Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT 06030, USA
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Lorraine N Apuzzo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Khanh T M Tran
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Pooja Prasad
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Tyler J Flanagan
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Seok-Woo Lee
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Meysam T Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kevin W H Lo
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
6
|
Liu X, Chen R, Jiang L, Li X, Sun Z. Effect of infusion irrigation with different irrigating solutions on transient receptor potential vanilloid 5 and intra-articular inflammation in a post-traumatic osteoarthritis rabbit model. Eur J Med Res 2021; 26:24. [PMID: 33706812 PMCID: PMC7953622 DOI: 10.1186/s40001-021-00491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The incidence of post-traumatic osteoarthritis (PTOA) after anterior cruciate ligament reconstruction (ACLR) is high, but there is still a lack of intra-operative preventive measures. This study aimed to evaluate the effect of different irrigating solutions continuous irrigation on intra-articular inflammation and cartilage degeneration. METHODS 66 New Zealand rabbits were randomly divided into normal (N) group, no treatment (NT) group, sodium chloride (NaCl) group, magnesium sulfate (MgSO4) group, and calcium chloride (CaCl2) group. The right knee joint of the experimental group was utilized to construct the model of PTOA, and the left side was utilized as the normal control group. At different time points postoperatively, the blood concentration of hemoglobin and Mg2 + , the synovial fluid concentration of IL-1 β, TNF-α, tartrate-resistant acid phosphatase-5b (TRAP-5b), and Type II Collagen, the gene expression of IL-1 β and MMP-3, and the protein expression of TRPV5 and CaM were detected. Pearson's linear correlation was employed to identify the possible relationship between the expression of TRAP-5b and the expression of IL-1β, IL-6, TNF-α, and Type II collagen. The hematoxylin and eosin staining (HE), Masson's trichrome staining, and Alcian blue staining were performed at postoperative 35 days. Osteoarthritis Scoring (OA score) comprised categories including Alcian blue staining, cartilage histology, the cellular density of cartilage, degree of cell disintegration, and formation of chondrocyte cluster were blindly scored by trained researchers at postoperative 35 days. RESULTS There was no statistical difference (P > 0.05) in the hemoglobin concentration between different groups. The concentration of serum Mg2+ in the MgSO4 group was higher than that of the other three groups (P < 0.05) on the same day of operation, then gradually decreased. The expression of IL-1 β, IL-6, and TRAP-5b in synovial fluid increased 5 days after the operation, decreased at 15 days, and then increased again with time in the NT group, NaCl group, and NT group and NaCl group. At 35 days after the operation, the expression of IL-1 β, IL-6, TRAP-5b, and type II collagen in the MgSO4 group were lower than that in the other three groups (except group N) (P < 0.05).The correlation analysis results showed that the TRAP-5b levels correlated positively with IL-1 β, IL-6, TNF-α, and type II collagen concentrations. The histological examination revealed that the surface smoothness of cartilage, the morphology of chondrocytes, the arrangement of collagen fibers, and the density of proteoglycan in the MgSO4 group were better than those in other experimental groups. At 35 days postoperatively, the gene expression of IL-1 β and MMP-3 and the protein expression of CaM and TRPV5 in synovium in the MgSO4 group was lower than that in the NaCl group and CaCl2 group. CONCLUSION Intra-operative irrigation with magnesium sulfate solution can inhibit the inflammatory factors and the expression of TRPV5, which can also reduce collagen loss and delay cartilage degeneration. Therefore, the use of magnesium sulfate in intra-operative irrigation may be an ideal choice to prevent PTOA.
Collapse
Affiliation(s)
- Xinghui Liu
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 Hubei China
| | - Rong Chen
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| | - Liangbo Jiang
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| | - Xiangwei Li
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| | - Zhibo Sun
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| |
Collapse
|
7
|
Lin W, Kang H, Dai Y, Niu Y, Yang G, Niu J, Li M, Wang F. Early patellofemoral articular cartilage degeneration in a rat model of patellar instability is associated with activation of the NF-κB signaling pathway. BMC Musculoskelet Disord 2021; 22:90. [PMID: 33461534 PMCID: PMC7814603 DOI: 10.1186/s12891-021-03965-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Background Patellar instability (PI) often increases the possibility of lateral patellar dislocation and early osteoarthritis. The molecular mechanism of early articular cartilage degeneration during patellofemoral osteoarthritis (PFOA) still requires further investigation. However, it is known that the NF-κB signaling pathway plays an important role in articular cartilage degeneration. The aim of this study was to investigate the relationship between the NF-κB signaling pathway and patellofemoral joint cartilage degeneration. Methods We established a rat model of PI-induced PFOA. Female 4-week-old Sprague-Dawley rats (n = 120) were randomly divided into two groups: the PI (n = 60) and control group (n = 60). The distal femurs of the PI and control group were isolated and compared 4, 8, and 12 weeks after surgery. The morphological structure of the trochlear cartilage and subchondral bone were evaluated by micro-computed tomography and histology. The expression of NF-κB, matrix metalloproteinase (MMP)-13, collagen X, and TNF-ɑ were evaluated by immunohistochemistry and quantitative polymerase chain reaction. Results In the PI group, subchondral bone loss and cartilage degeneration were found 4 weeks after surgery. Compared with the control group, the protein and mRNA expression of NF-κB and TNF-ɑ were significantly increased 4, 8, and 12 weeks after surgery in the PI group. In addition, the markers of cartilage degeneration MMP-13 and collagen X were more highly expressed in the PI group compared with the control group at different time points after surgery. Conclusions This study has demonstrated that early patellofemoral joint cartilage degeneration can be caused by PI in growing rats, accompanied by significant subchondral bone loss and cartilage degeneration. In addition, the degeneration of articular cartilage may be associated with the activation of the NF-κB signaling pathway and can deteriorate with time as a result of PI.
Collapse
Affiliation(s)
- Wei Lin
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Huijun Kang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Yike Dai
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Yingzhen Niu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Guangmin Yang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Jinghui Niu
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Ming Li
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China
| | - Fei Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, 050051, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Bei M, Tian F, Liu N, Zheng Z, Cao X, Zhang H, Wang Y, Xiao Y, Dai M, Zhang L. A Novel Rat Model of Patellofemoral Osteoarthritis Due to Patella Baja, or Low-Lying Patella. Med Sci Monit 2019; 25:2702-2717. [PMID: 30979862 PMCID: PMC6476235 DOI: 10.12659/msm.915018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Patella baja, or patella infera, consists of a low-lying patella that results in a limited range of motion, joint pain, and crepitations. Patellofemoral joint osteoarthritis (PFJOA) is a subtype OA of the knee. This study aimed to develop a reproducible and reliable rat model of PFJOA. Material/Methods Three-month-old female Sprague-Dawley rats (n=24) included a baseline group (n=8) that were euthanized at the beginning of the study. The sham group (n=8), and the patella ligament shortening (PLS) group (n=8) were euthanized and evaluated at ten weeks. The PLS model group (n=8) underwent insertion of a Kirschner wire under the patella tendon to induce patella baja. At ten weeks, the sham group and the PLS group were compared using X-ray imaging, macroscopic appearance, histology, immunohistochemistry, TUNEL staining for apoptosis, and micro-computed tomography (micro-CT). The patella height was determined using the modified Insall-Salvati (MIS) ratio. Results The establishment of the rat model of patella baja in the PLS group at ten weeks was confirmed by X-ray. In the PLS group, patella volume, sagittal length, and cross-sectional area were significantly increased compared with the sham group. The PFJ showed typical lesions of OA, confirmed macroscopically and histologically. Compared with the sham group, in the rat model of PFJOA, there was increased cell apoptosis, and immunohistochemistry showed increased expression of biomarkers of osteoarthritis, compared with the sham group. Conclusions A rat model of PFJOA was developed that was confirmed by changes in cartilage and subchondral bone.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Faming Tian
- Meical Research Center, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Ning Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Zhiyuan Zheng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Xuehui Cao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Hongfei Zhang
- Meical Research Center, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yudan Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yaping Xiao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Muwei Dai
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Orthopedic Surgery, Meitan General Hospital, Beijing, China (mainland)
| |
Collapse
|
9
|
Continuous Passive Motion Promotes and Maintains Chondrogenesis in Autologous Endothelial Progenitor Cell-Loaded Porous PLGA Scaffolds during Osteochondral Defect Repair in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20020259. [PMID: 30634691 PMCID: PMC6358980 DOI: 10.3390/ijms20020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Continuous passive motion (CPM) is widely used after total knee replacement. In this study, we investigated the effect of CPM combined with cell-based construct-transplantation in osteochondral tissue engineering. We created osteochondral defects (3 mm in diameter and 3 mm in depth) in the medial femoral condyle of 36 knees and randomized them into three groups: ED (empty defect), EPC/PLGA (endothelial progenitor cells (EPCs) seeded in the poly lactic-co-glycolic acid (PLGA) scaffold), or EPC/PLGA/CPM (EPC/PLGA scaffold complemented with CPM starting one day after transplantation). We investigated the effects of CPM and the EPC/PLGA constructs on tissue restoration in weight-bearing sites by histological observation and micro-computed tomography (micro-CT) evaluation 4 and 12 weeks after implantation. After CPM, the EPC/PLGA construct exhibited early osteochondral regeneration and prevention of subchondral bone overgrowth and cartilage degeneration. CPM did not alter the microenvironment created by the construct; it up-regulated the expression of the extracellular matrix components (glycosaminoglycan and collagen), down-regulated bone formation, and induced the biosynthesis of lubricin, which appeared in the EPC/PLGA/CPM group after 12 weeks. CPM can provide promoting signals during osteochondral tissue engineering and achieve a synergistic effect when combined with EPC/PLGA transplantation, so it should be considered a non-invasive treatment to be adopted in clinical practices.
Collapse
|
10
|
Hsieh YL, Yang CC. Early intervention of swimming exercises attenuate articular cartilage destruction in a rat model of anterior cruciate ligament and meniscus knee injuries. Life Sci 2018; 212:267-274. [PMID: 30304692 DOI: 10.1016/j.lfs.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 01/12/2023]
Abstract
AIM The anterior cruciate ligament (ACL) and meniscus injuries often cause post-traumatic knee osteoarthritis (PTOA), which can place great limitations on patients. But to date there is no effective therapy to delay the progression of cartilage destruction in PTOA. This study aimed to compare the effects of early versus delayed swimming exercise on the chondroprotective effects in a rat PTOA model with ACL and meniscus injuries. MAIN METHODS Thirty-two adult male Sprague-Dawley rats received unilateral ACL transection and medial meniscectomy (ACLMT). These were randomly allocated to four groups: early swimming (eSW), delayed swimming (dSW), sham-operated early swimming (sham-eSW) and sham-operated delayed swimming (sham-dSW). Swimming (30 min per session) continuing for 28 days was started three days and three months after ACLMT surgery as a protocol for eSW and dSW intervention. Cartilage quality was assessed by Mankin HHGS examination (H&E, Safranin-O stain) and collagen type II (CoII) and matrix metalloproteases-13 (MMP13) immunohistochemistry. KEY FINDINGS ACLMT induced the PTOA histopathological changes, inhibited CoII and enhanced MMP13 expressions in cartilage for both sham-eSW and sham-dSW groups. eSW intervention significantly enhanced CoII expression and suppressed MMP13 overexpression in superficial and transitional zones of cartilage, as well as better Mankin scores, corresponding to sham-swimming controls (P < 0.05). dSW intervention provided less enhancement of CoII expression and improvement of histopathological scoring, but significantly reduced MMP13 overexpression compared to animals in eSW (P < 0.05). SIGNIFICANCE Early intervention by swimming at very early stages of cartilage damage provides greater benefits than delayed intervention when PTOA has already developed.
Collapse
Affiliation(s)
- Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.
| | - Chen-Chia Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung, Taiwan
| |
Collapse
|
11
|
Zhang S, Guo H, Chen D, Chen X, Jin Q. MUTYH and ORAI1 polymorphisms are associated with susceptibility to osteoarthritis in the Chinese Han population. J Int Med Res 2018; 46:2292-2300. [PMID: 29587570 PMCID: PMC6023038 DOI: 10.1177/0300060518762988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study analyzed the associations between single nucleotide polymorphisms (SNPs) in the mutY homolog gene ( MUTYH) and the calcium release-activated calcium channel gene ( ORAI1) with susceptibility to osteoarthritis in the Chinese Han population. Methods A total of 350 patients diagnosed with osteoarthritis from October 2013 to May 2016 were selected as the study group, together with 350 age- and gender-matched healthy controls. MUTYH SNP rs3219463 and ORAI1 SNPs rs712853, rs12313273, rs6486795, rs12320939, and rs7135617 were analyzed by Sanger sequencing. Serum MUTYH levels were measured by enzyme-linked immunosorbent assay. The relationship between SNPs in MUTYH and ORAI1 and osteoarthritis susceptibility was analyzed and compared with the level of serum MUTYH in the osteoarthritis and control groups. Results MUTYH rs3219463 G allele carriers (GG or GA genotypes) and ORAI1 rs7135617 T allele carriers had a higher risk of osteoarthritis than patients with other genotypes. The level of serum MUTYH in the study group was significantly higher than in the control group (22.05 ± 19.14 ng/mL vs. 14.15 ± 13.54 ng/mL). Conclusions MUTYH and ORAI1 SNPs are associated with osteoarthritis susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
| | | | - Da Chen
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xi Chen
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qunhua Jin
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
12
|
Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One 2018; 13:e0196625. [PMID: 29698461 PMCID: PMC5919651 DOI: 10.1371/journal.pone.0196625] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the histopathological changes in the patellofemoral joint using a rat model of osteoarthritis that was induced using monosodium iodoacetate, and to establish a novel model of patellofemoral osteoarthritis in a rat model using histopathological analysis. Sixty male rats were used. Osteoarthritis was induced through a single intra-articular injection of monosodium iodoacetate in both knee joints. Animals were equally divided into two experimental groups based on the monosodium iodoacetate dose: 0.2 mg and 1.0 mg. Histopathological changes in the articular cartilage of the patellofemoral joint and the infrapatellar fat pad were examined at 3 days, 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks after the monosodium iodoacetate injection. In the 1.0-mg group, the representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint over time. Additionally, the Osteoarthritis Research Society International scores of the patellofemoral joint increased over time. The synovitis scores of the infrapatellar fat pad in both groups were highest at 3 days, and then the values decreased over time. The fibrosis score of the infrapatellar fat pad in the 1.0-mg group increased with time, whereas the fibrosis score in the 0.2-mg group remained low. Representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint in a rat model of osteoarthritis induced using monosodium iodoacetate. With appropriate selection, this model may be regarded as an ideal patellofemoral osteoarthritis model.
Collapse
|